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ABSTRACT

With Islands of Music we present an approach which facil-
itates exploration of music libraries without requiring man-
ual genre classification. Given pieces of music in raw audio
format we calculate their perceived similarities based on psy-
choacoustic models. Subsequently, the pieces are organized
on a 2-dimensional map so that similar pieces are located
close to each other. A visualization using a metaphor of ge-
ographic maps provides an intuitive interface where islands
resemble genres or styles of music. We demonstrate the ap-
proach using a collection of 359 popular pieces of music.
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1. INTRODUCTION

Large music archives, such as those of online music retailers,
usually offer several ways to find a desired piece of music. A
very straightforward approach is to use text based queries
to search for the artist, the title or some phrase in the lyrics.
Although such queries are very efficient they do not offer any
particular support for queries based on the perceived simi-
larities of music. For example, a simple text query asking for
pieces with characteristics similar to Fir Elise by Beethoven
would return pieces with either the same title or the same
artist. Thus, pieces like Fremde Ldnder und Menschen by
Schumann would be ignored.

The common solution is to organize music collections by a
hierarchical structure of predefined genres and styles such as
Classical, Jazz, Rock. Hence, a customer seeking something
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similar to Fir Elise can limit the search to all pieces in the
same category. However, such organizations rely on manual
categorizations and usually consist of several hundred cat-
egories and sub-categories which involve high maintenance
costs, in particular for dynamic collections. The difficulties
of such taxonomies have been analyzed, for example, in [19].

Another approach, taken by online music stores is to analyze
the behavior of customers to give those showing similar in-
terests recommendations on music which they might appre-
ciate. For example, a simple approach is to give a customer
looking for pieces similar to Fiir Elise recommendations on
music which is usually bought by people who also purchased
Fiir Elise. However, extensive and detailed customer profiles
are rarely available.

The Islands of Music system we propose facilitates explo-
ration of music archives without relying on further infor-
mation such as customer profiles or predefined categories.
Instead, we estimate the perceived similarities between two
pieces of music and organize them in such a way that simi-
lar pieces of music are close to each other on a 2-dimensional
map display. We visualize this organization using a metaphor
of geographic maps where islands represent musical genres
or styles and the arrangement of the islands reflects the in-
herent structure of the music collection.

The main challenge is to calculate an estimation for the per-
ceived similarity of two pieces of music. To achieve this, we
use audio data as it is available from CD or decoded MP3
files. The raw audio signals are preprocessed in order to ob-
tain a time-invariant representation of the perceived char-
acteristics following psychoacoustic models. In particular,
we extract features which characterize dynamic properties
of the music, namely rhythm patterns.

To cluster and organize the pieces on a 2-dimensional map
display we use the Self-Organizing Map [12], a prominent
unsupervised neural network. This results in a map where
similar pieces of music are grouped together. In addition
we visualize clusters using Smoothed Data Histograms [21]
to simplify the identification of interesting regions on the
map and to obtain the island visualization. We demonstrate
the user interface using a collection of 359 popular pieces of
music resembling a wide spectrum of musical taste.

The remainder of this paper is organized as follows. Sec-



tion 2 briefly reviews related work. The feature extraction
process is presented in Section 3, followed by the organiza-
tion and visualization of the music archives, which is pre-
sented in Section 4. We give a brief discussion of the user
interface in Section 5 and present experiments in Section 6.
Finally, in Section 7 some conclusions are drawn.

2. RELATED WORK

A vast amount of research has been conducted in the field
of content-based music and audio retrieval. For example,
methods have been developed to search for pieces of music
with a particular melody. The queries can be formulated
by humming and are usually transformed into a symbolic
melody representation, which is matched against a database
of scores usually given in MIDI format. Research in this
direction is reported in, e.g. [1, 2, 10, 14, 26]. Other than
melodic information it is also possible to extract and search
for style information using the MIDI format. For example,
in [5] solo improvised trumpet performances are classified
into one of the four styles: lyrical, frantic, syncopated, or
pointillistic.

The MIDI format offers a wealth of possibilities, however,
only a small fraction of all electronically available pieces of
music are available as MIDI. A more readily available format
is the raw audio signal to which all other audio formats
can be decoded. One of the first audio retrieval approaches
dealing with music was presented in [33], where attributes
such as the pitch, loudness, brightness and bandwidth of
speech and individual musical notes were analyzed. Several
overviews of systems based on the raw audio data have been
presented, e.g. [9, 17]. However, most of these systems do
not treat content-based music retrieval in detail, but mainly
focus on speech or partly-speech audio data.

Furthermore, only few approaches in the area of content-
based music analysis have utilized the framework of psy-
choacoustics. Psychoacoustics deals with the relationship
of physical sounds and the human brain’s interpretation of
them, cf. [34]. One of the first exceptions is [8], where psy-
choacoustic models are used to describe the similarity of
instrumental sounds. The approach is demonstrated using
a collection of about 100 instruments, which are organized
using a Self-Organizing Map (SOM) in a similar way as pre-
sented in this paper. For each instrument a short sound
(300 milliseconds) is analyzed and steady state sounds with
a duration of 6 milliseconds are extracted. These steady
state sounds are interpreted as the smallest possible build-
ing blocks of music. The dynamic properties of a sound
are described through the sequence of building blocks. Al-
though this approach yields promising results, the applica-
tion to pieces of music with a length of several minutes is
not straightforward.

A model of the human perceptual behavior of music using
psychoacoustic findings was presented in [28] together with
methods to compute the similarity of two pieces of music. A
more practical approach to the topic was presented in [31]
where music given as raw audio is automatically classified
into genres based on musical surface and rhythm features.
The rhythm features are similar to the rhythm patterns we
extract, with the main difference that we analyze the rhythm
in 20 frequency bands separately.
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Figure 1: Overview of the feature extraction pro-
cess.

Our work has its origin in [23] where a mediaplayer is used to
decompose the acoustic waves into frequency bands. Subse-
quently, the activity in some of the bands are analyzed using
a Fourier transformation. The resulting complex coefficients
are used as feature vectors to train a SOM. In this paper we
present a redesigned feature extraction process based on psy-
choacoustic models. Furthermore, we developed methods
to interpret the trained SOMs in terms of the underlining
structure and its musical meaning.

3. FEATURE EXTRACTION

Digitized music in good sound quality (44kHz, stereo) with
a duration of one minute is represented by approximately
10MB of data in its raw format. These ones and zeros
describe the physical properties of the acoustical waves we
hear. From this huge amount of numbers we extract features
enabling us to calculate the similarities of two pieces of mu-
sic. Selecting the features to extract and how to extract
them is the most critical decision in the process of creating
a content-based organization of a music archive. We present
features which are robust towards non-perceptive variations
and on the other hand resemble characteristics which are
critical to our hearing sensation, namely, rhythm patterns
in various frequency bands.

The process of extracting the patterns consists of 10 trans-
formation steps and is divided into two main stages. In
the first stage, the loudness sensation per frequency band in
short time intervals is calculated from the raw music data.
In the second stage, the loudness modulation in each fre-
quency band over a time period of 6 seconds is analyzed in
respect to reoccurring beats. Figure 1 gives an overview of
the process. The various feature extraction steps are pre-
sented in more detail in the following subsections.



3.1 Raw Audio Data

The pieces of music we use are given as MP3 files, which
we decode to the raw Pulse Code Modulation (PCM) audio
format. As mentioned before, the raw audio format of music
in good quality requires huge amounts of storage. However,
humans can easily identify the genre of a piece of music even
if its sound quality is rather poor. Thus, for our experiments
we reduced the quality and as a consequence the amount of
data to a level which is computationally feasible while ensur-
ing that human listeners are still easily capable of identifying
the genre of a piece. In particular, we reduced stereo sound
quality to mono and down-sampled the music from 44kHz
to 11kHz. Furthermore, we divided each piece into 6-second
sequences and selected only every third of these after remov-
ing the first two and last two sequences to avoid lead-in and
fade-out effects. The duration of 6 seconds (2'® samples)
was chosen because it is long enough for human listeners to
get an impression of the style of a piece of music while being
short enough to optimize the computations. All in all, we
reduced the amount of data by the factor of over 24 without
losing relevant information, i.e. a human listener is still able
to identify the genre or style of a piece of music given the
few 6-second sequences in lower quality.

3.2 Specific Loudness Sensation

In the first stage of the feature extraction process, the spe-
cific loudness sensation (Sone) per critical-band (Bark) is
calculated in 6 steps starting with the PCM data. (1) First
the power spectrum of the audio signal is calculated using a
Fast Fourier Transformation (FFT). We use a window size
of 256 samples which corresponds to about 23ms at 11kHz,
and a Hanning window with 50% overlap. (2) The frequen-
cies are bundled into 20 critical-bands according to the Bark
scale [34]. These frequency bands reflect characteristics of
the human auditory system, in particular of the cochlea in
the inner ear. Below 500Hz the critical-bands are about
100Hz wide. Above 500Hz the width increases rapidly with
the frequency. The 24th critical-band has a width of 3500Hz
and is centered at 13500Hz. (3) Spectral masking effects are
calculated based on [29]. Spectral Masking is the occlusion
of a quiet sound by a louder sound when both sounds are
present simultaneously and have similar frequencies. (4)
The loudness is calculated first in decibel relative to the
threshold of hearing, also known as dB-SPL, where SPL is
the abbreviation for sound pressure level. (5) From the dB-
SPL values we calculate the equal loudness levels with their
unit Phon. The Phon levels are defined through the loud-
ness in dB-SPL of a tone with 1kHz frequency. A level of
40 Phon resembles the loudness level of a 40dB-SPL tone
at 1kHz. The loudness level of an acoustical signal with a
specific dB-SPL value depends on the frequency of the sig-
nal. For example, a tone with 65dB-SPL at 50Hz has about
40 Phon [34]. (6) Finally the loudness is calculated in Sone
based on [4]. The loudness of the 1kHz tone at 40dB-SPL
is defined to be 1 Sone. A tone twice as loud is defined to
be 2 Sone and so on. Figure 2 summarizes the main charac-
teristics of the psychoacoustic model used to calculate the
specific loudness sensation.

After the first preprocessing stage a piece of music is rep-
resented by several 6-second sequences. Each of these se-
quences contains information on how loud the piece is at a
specific point in time in a specific frequency band.
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Figure 2: The equal loudness contours for 3, 20, 40,
60, 80, and 100 Phon are represented by the dashed
lines. The respective Sone values are 0, 0.15, 1, 4,
16, and 64 Sone. The dotted vertical lines mark the
positions of the center frequencies of the 24 critical-
bands. The dip around 2kHz to 5kHz corresponds
to the frequency spectrum we are most sensitive to.
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Figure 3: The relationship between the modulation
frequency and the weighting factors of the fluctua-
tion strength.

3.3 Rhythm Patterns

In the second stage of the feature extraction process, we
calculate a time-invariant representation for each piece in
3 further steps, namely the rhythm pattern. The rhythm
pattern contains information on how strong and fast beats
are played within the respective frequency bands.

('7) First the amplitude modulation of the loudness sensation
per critical-band for each 6-second sequence is calculated us-
ing a FFT. (8) The amplitude modulation coefficients are
weighted based on the psychoacoustic model of the fluctu-
ation strength [7]. The amplitude modulation of the loud-
ness has different effects on our hearing sensation depending
on the modulation frequency. The sensation of fluctuation
strength is most intense around 4Hz and gradually decreases
up to a modulation frequency of 15Hz (cf. Figure 3). In our
experiments we investigate the rhythm patterns up to 600
beats per minute (bpm) which is equivalent to a modulation
frequency of 10Hz.

For each of the 20 frequency bands we obtain 60 values for
modulation frequencies between 0 and 10Hz. This results
in 1200 values representing the fluctuation strength. (9) To
distinguish certain rhythm patterns better and to reduce
irrelevant information, gradient and Gaussian filters are ap-
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Figure 4: The data before and after the first feature
extraction stage. The top row represents the trans-
formation of a 6-second sequence from Beethoven,
Fir Elise and the bottom row a 6-second sequence
from Korn, Freak on a Leash.

plied. In particular, we use gradient filters to emphasize dis-
tinctive beats, which are characterized through a relatively
high fluctuation strength at a specific modulation frequency
compared to the values immediately below and above this
specific frequency. We apply a Gaussian filter to increase
the similarity between two characteristics in a rhythm pat-
tern which differ only slightly in the sense of either being
in similar frequency bands or having similar modulation fre-
quencies.

Finally, to obtain a single representation for each piece of
music based on the rhythm patterns of its sequences, (10) the
median of the corresponding sequences is calculated. We
have evaluated several alternatives using Gaussian mixture
models, fuzzy c-means, and k-means pursuing the assump-
tion that a piece of music contains significantly different
rhythm patterns (see [20] for details). However, the median,
despite being by far the simplest technique, yielded compa-
rable results to the more complex methods. Other simple
alternatives such as the mean proved to be too sensitive to
outliers.

At the end of the feature extraction process each piece of
music is represented by a 20x60 matrix. In our experiments
with 359 pieces we further reduced the dimensionality from
1200 to 80 using Principial Component Analysis without
losing much of the variance in the data [20].

3.4 lllustrations

Figure 4 illustrates the data before and after the first feature
extraction stage using the first 6-second sequences extracted
from Beethoven, Fiir Elise and from Korn, Freak on a Leash.
The sequence of Fir Elise contains the main theme starting
shortly before the 2nd second. The specific loudness sensa-
tion depicts each piano key played and the rhythm pattern
has very low values with no distinctive vertical lines. This
reflects that there are no strong beats reoccurring in the ex-
act same intervals. On the other hand, Freak on a Leash
which is classified as Heavy Metal/Death Metal is quite ag-
gressive. Melodic elements do not play a major role and the
specific loudness sensation is a rather complex pattern.

The rhythm patterns of all 6-second sequences extracted
from Fiur Elise and from Freak on a Leash as well as their
medians are depicted in Figure 5. The first subplots corre-
spond to the sequences depicted in Figure 4.
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Figure 5: The rhythm patterns of Beethoven, Fir
Elise and Korn, Freak on a Leash and their medi-
ans. The vertical axis represents the critical-bands
from Bark 1-20, the horizontal axis the modulation
frequencies from 0-10Hz, where Bark 1 and OHz is
located in the lower left corner.

Generally, the different patterns within a piece of music have
common properties. While Fir Elise is characterized by a
rather horizontal shape with low values, Freak on a Leash
has a characteristic vertical line around 7Hz that reflects
strong reoccurring rhythmic elements. It is also interesting
to note that the values of the patterns of Freak on a Leash
are up to 18 times higher compared to those of Fuir Flise.

To capture these common characteristics within a piece of
music the median is a suitable approach. The median of Fiir
Elise indicates that there are common but weak activities in
the range of 3-10 Bark with a modulation frequency of up
to 5Hz. The single sequences of Fiir FElise have many more
details, for example, the first sequence has a minor peak
around 5 Bark and 5Hz modulation frequency. That the
median cannot represent all details becomes more apparent
when analyzing Freak on a Leash. However, the main char-
acteristics, namely the vertical line at 7THz as well as the
generic activity in the frequency bands are preserved.

Further examples are depicted in Figure 6. The typical
rhythm pattern of Williams, Rock DJ has a strong bass
which is represented by the white spot around Bark 1-2 and
a little less then 2Hz modulation frequency (120bpm). The
maximum values are about twice as high as those of Freak
on a Leash because the beat plays a far more dominating
role in this dance club song. The beats of Bomfunk MC’s, In
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Figure 6: The median of the rhythm patterns of Rob-
bie Williams, Rock DJ, Bomfunk MC’s, In Stereo,

and The Beatles, Yesterday. The axes represent the
same scales as in Figure 5.

Stereo, which combines the styles of Hip Hop, Electro and
House, are just as strong. However, the beats are also a lot
faster 5Hz (300bpm). The final example depicts the median
of the rhythm patterns of the song Yesterday by The Beat-
les. There are no strong reoccurring beats. The activation
in the rhythm pattern is similar to the one of Fiir Elise, ex-
cept that the values are generally higher and that there are
also activations in higher frequency bands.

4. ORGANIZATION AND VISUALIZATION

We use the typical rhythm patterns as input to the Self-
Organizing Map (SOM) [12] algorithm to organize the pieces
of music on a 2-dimensional map display in such a way that
similar pieces are grouped close together. We then visualize
the clusters with a metaphor of geographic maps to create
a user interface where islands represent musical genres or
styles and the way the islands are automatically arranged
on the map represents the inherent structure of the music
archive.

4.1 Self-Organizing Maps

The SOM is a powerful tool for explorative data analysis,
and in particular to visualize clusters in high-dimensional
data. Methods with similar abilities include Principial Com-
ponent Analysis [11], Multi-Dimensional Scaling [15], Sam-
mon’s mapping [27], or the Generative Topographic Map-
ping [3]. One of the main advantages of the SOM with
regard to our application is, that new pieces of music, which
are added to the archive, can easily be placed on the map ac-
cording to the existing organization. Furthermore, the SOM
is a very efficient algorithm which has proven to be capable
of handling huge amounts of data. It has a strong tradition
in the organization of large text archives [13, 24, 18], which
makes it an interesting choice for large music archives.

The SOM usually consists of units which are ordered on
a rectangular 2-dimensional grid. A model vector in the
high-dimensional data space is assigned to each of the units.
During the training process the model vectors are fitted to
the data in such a way that the distances between the data
items and the corresponding closest model vectors are mini-
mized under the constraint that model vectors which belong
to units close to each other on the 2-dimensional grid, are
also close to each other in the data space.

For our experiments we use the batch-SOM algorithm. The
algorithm consists of two steps that are iteratively repeated
until no more significant changes occur. First the distances
between all data items {x;} and the model vectors {m;} are
computed and each data item x; is assigned to the unit ¢;
that represents it best.

In the second step each model vector is adapted to better
fit the data it represents. To ensure that each unit j rep-
resents similar data items as its neighbors, the model vec-
tor m; is adapted not only according to the assigned data
items but also in regard to those assigned to the units in
the neighborhood. The neighborhood relationship between
two units j and k is usually defined by a Gaussian-like func-
tion hjr = exp(—d3;/r7), where d; denotes the distance
between the units j and k£ on the map, and r: denotes the
neighborhood radius which is set to decrease with each iter-
ation t.

Assuming a Euclidean vector space, the two steps of the
batch-SOM algorithm can be formulated as

¢; = argmin |lx; — mj]||, and

J
m’ = Zz hjci X

] - b)
Zi/hjei/

where m} is the updated model vector.

Several variants of the SOM algorithm exist. A particu-
larly interesting variant regarding the organization of large
music archives is the adaptive GHSOM [6] which provides
a hierarchical organization and representation of the data.
Experiments using the GHSOM to organize a music archive
are presented in [25].

4.2 Smoothed Data Histograms

Several methods to visualize clusters based on the SOM can
be found in the literature. The most prominent method vi-
sualizes the distances between the model vectors of units
which are immediate neighbors and is known as the U-
matrix [32]. We use Smoothed Data Histograms (SDH) [21]
where each data item wvotes for the map units which repre-
sent it best based on some function of the distance to the
respective model vectors. All votes are accumulated for each
map unit and the resulting distribution is visualized on the
map. As voting function we use a robust ranking where the
map unit closest to a data item gets n points, the second
n-1, the third n-2 and so forth, for the n closest map units.
All other map units are assigned 0 points. The parameter
n can interactively be adjusted by the user. The concept of
this visualization technique is basically a density estimation,
thus the results resemble the probability density of the whole
data set on the 2-dimensional map (i.e. the latent space).
The main advantage of this technique is that it is compu-
tationally not heavier than one iteration of the batch-SOM
algorithm.

To create a metaphor of geographic maps, namely Islands
of Music, we visualize the density using a specific color code
that ranges from dark blue (deep sea) to light blue (shallow
water) to yellow (beach) to dark green (forest) to light green
(hills) to gray (rocks) and finally white (snow). Results of
these color codings can be found in [20]. In this paper we use
gray shaded contour plots where dark gray represents deep
sea, followed by shallow water, flat land, hills, and finally
mountains represented by the white.

4.3 lllustrations
Figure 7 illustrates characteristics of the SOM and the clus-
ter visualization using a synthetic 2-dimensional data set.



Figure 7: A simple demonstration of the SOM and
SDH. From left to right, top to bottom the figures
illustrate (a) the probability distribution in the 2-
dimensional data space, (b) the sample drawn from
this distribution, (c) the model vectors of the SOM
in the data space, (d) the map units of the SOM in
the visualization space with the clusters visualized
using the SDH (n=3 with spline interpolation). The
model vectors and the map units of the SOM are
represented by the nodes of the rectangular grid.

One important aspect of the SOM is the neighborhood preser-
vation. Map units next to each other on the grid represent
similar regions in the data space. Another important as-
pect is that the SOM defines a non-linear mapping from the
data space to the 2-dimensional map. The distances between
neighboring model vectors is not uniform, in particular, ar-
eas in the data space with a high density are represented in
higher detail, thus by more model vectors than sparse areas.

The SDH is a straightforward approach to visualize the clus-
ter structure of the data set. Map units which are in the cen-
ters of clusters are represented by peaks while map units lo-
cated between clusters are represented as valleys or trenches.

5. USER INTERFACE

In the previous sections we presented the technical compo-
nents of the Islands of Music system. In this section we will
briefly discuss how the maps are intended to support the
user to navigate through an archive and explore unknown
but interesting pieces.

The geographic arrangement of the maps reflects the inher-
ent hierarchical structure of genres and styles in an archive.
On the highest level in the hierarchy larger genres are repre-
sented by continents and islands. These might be connected
through land passages or might be completely isolated by the
sea. On lower levels the structure is represented by moun-
tains and hills, which can be connected through a ridge or
separated by valleys. For example, in the experiments pre-
sented in the next section, less aggressive music without
strong bass beats is represented by a larger continent. On
the south-east end of this continent there are two mountains,
one representing Classical music and the other representing
music such as Yesterday from the Beatles and film music
using orchestras.

To describe what type of music can be found in specific
regions of the map we offer two approaches. The first is to
use pieces known to the user as landmarks. Map areas are
then described based on their similarity to known pieces. For
example, if the user seeks music like Fir Elise by Beethoven
and this piece is located on the peak of a mountain, then this
mountain is a good starting point for an explorative search.
The main limitation of this approach is that large parts of
the map might not contain any music familiar to the user,
and thus lack a description. On the other hand, unknown
pieces can easily become familiar - if the user listens to them.

The second approach is to use general labels to describe
properties of the music. Similar techniques have been em-
ployed in the context of text-document archives [16, 22],
where map areas are labeled with words summarizing the
contents of the respective documents. Based on the rhythm
patterns we extract attributes such as mazimum fluctuation
strength, strength of the bass, aggressiveness, how much low
frequencies dominate the overall pattern, and the frequen-
cies at which beats occur.

The maximum fluctuation strength is the highest value in
the rhythm pattern. Pieces of music, which are dominated
by strong beats, have very high values. Typical examples
with high values include Electro and House music. Whereas,
for example, Classic music has very low values. The bass
is calculated as the sum of the values in the two lowest
frequency bands (Bark 1-2) with a modulation frequency
higher than 1Hz. The aggressiveness is measured as the ra-
tio of the sum of values within Bark 3-20 and modulation
frequencies below 0.5Hz compared to the sum of all. Gener-
ally, rhythm patterns which have strong vertical lines sound
more aggressive. The domination of low frequencies is cal-
culated as the ratio between the sum of the values in the
highest and lowest 5 frequency bands.

Using these attributes, geographic landmarks such as moun-
tains and hills can be labeled with descriptions which in-
dicate what type of music can be found in the respective
area. Details on the labeling of the Islands of Music can be
found in [20]. Another alternative is to create a metaphor
of weather charts. For example, areas with a strong bass are
visualized as areas with high temperatures, while areas with
low bass correspond to cooler regions. Hence, for example,
the user can easily understand that the pieces are organized
in such a manner that those with a strong bass are in the
west and those with less bass in the east.

6. EXPERIMENTS

In this section we briefly describe the results obtained from
our experiments with a music collection consisting of 359
pieces with a total play length of 23 hours representing a
broad spectrum of musical taste. A full list of all titles in
the collection can be found in [20].

Figure 8 gives an overview of the collection. The trained
SOM consists of 14x10 map units and the clusters are visu-
alized using the SDH (n=3 with linear interpolation). Sev-
eral clusters can be identified immediately. We will discuss
the 6 labeled clusters in more detail.

Figure 9 shows simplified weather charts. With these it is



Figure 8: The visualization of the music collection
consisting of 359 pieces of music trained on a SOM
with 14x10 map units. The rectangular boxes mark
areas into which the subsequent figures zoom into.
The islands labeled with numbers from 1 to 6 are
discussed in more detail in the text.

Figure 9: Simplified weather charts. White indi-
cates areas with high values while dark gray indi-
cates low values. The charts represent from left
to right, top to bottom the maximum fluctuation
strength, bass, non-aggressiveness, and domination
of low frequencies.

possible to obtain a first impression of the styles of music
which can be found in specific areas. For example, music
with strong bass can be found in the west, and in particular
in the north-west. The bass is strongly correlated with the
maximum fluctuation strength, i.e. pieces with very strong
beats can also be found in the north-west, while pieces with-
out strong beats nor bass are located in the south-east, to-
gether with non-aggressive pieces. Furthermore, the south-
east is the main location of pieces where the lower frequen-
cies are dominant. However, the north-west corner of the
map also represents music where the low frequencies dom-
inate. As we will see later, this is due to the strong bass
contained in the pieces.

A close-up of Cluster 1 in Figure 8 is depicted in the north
of the map in Figure 10. This island represents music with
very strong beats, in particular several songs of the group
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Figure 10: Close-up of Cluster 1 and 2 depicting
3x4 map units.

Bomfunk MCs (bfmc) are located here but also songs with
more moderate beats such as Blue by Eiffel 65 (eiffel65-
blue) or Let’s get loud by Jennifer Lopez (letsgetloud). All
but three songs of Bomfunk MCs in the collection are lo-
cated on the west side of this island. One exception is the
piece Freestyler (center-bottom Figure 10) which has been
the group’s biggest hit so far. Freestyler differs from the
other pieces by Bomfunk MC's as it is softer with more mod-
erate beats and more emphasis on the melody. Other songs
which can be found towards the east of the island are Around
the World by ATC (aroundtheworld), and Together again
by Janet Jackson (togetheragain) which both can be cat-
egorized as a Electronic/Dance. Around the island other
songs are located which have stronger beats, for example
towards the south-west, Bongo Bong by Mano Chao (bon-
gobong) and Under the mango tree by Tim Tim (theman-
gotree), both with male vocals, an exotic flair and similar
instruments.

In the Figure 10 Cluster 2 is depicted in the south-east. This
island is dominated by pieces of the rock band Red Hot Chili
Peppers (rhep). All but few of the band’s songs which are in
the collection are located on this island. To the west of the
island a piece is located which, at first does not appear to be
similar, namely Summertime by Sublime (sl-summertime).
This song is a crossover of styles such as Rock and Reg-
gae but has a similar beat pattern as Freestyler. However,
Summertime would make a good transition in a play-list
starting with Electro/House and moving towards the style
of Red Hot Chili Peppers which resembles a crossover of dif-
ferent styles such as Funk and Punk Rock, e.g. In Stereo,
Freestyler, Summertime, Californication. Not illustrated in
the close-up but also interesting is that just to the south of
Summertime another song of Sublime can be found namely
What I got.

A close-up of Cluster 3 is depicted in the south-west of Fig-
ure 11. This cluster is dominated by aggressive music such
as the songs of the band Limp Bizkit (limp) which can be
categorized as Rap-Rock. Other similar pieces are Freak on
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Figure 11: Close-up of Cluster 3 and 4 depicting
4x3 map units.

a Leash by Korn (korn-freak), Dead Cell by Papa Roach (pr-
deadcell), or Kryptonite by 8 Doors Down (d3-kryptonite).
In the north of this cluster, for example, the Punk Rock Song
by Bad Religion (br-punkrock) can be found. To the west
of this cluster, just beyond the borders of this close-up, sev-
eral other songs by Limp Bizkit are located together with
songs by Papa Roach and to the south-west Rock is dead by
Marilyn Manson.

The pieces arranged around Cluster J are depicted in the
east of Figure 11. Generally the pieces in Cluster 4 sound
less aggressive than those in Cluster 3. However, those in the
south of this cluster are closely related to those of Cluster 3,
including pieces such as Wandering by Limp Bizkit (limp-
wandering), Binge by Papa Roach (pr-binge), and the two
songs by Guano Apes (ga) which are a mixture of Punk
Revival, Alternative Metal, and Alternative Pop/Rock. To
the north of the cluster the songs Addict by K’s Choice and
Living in a Lie by Guano Appes are mapped next to each
other. Living in a Lie deals with the end of a love story, and
is dominated by a mood, which sounds very similar to the
mood of Addict which deals with addiction and includes lines
such as “I am falling” and “I am cold, alone”. The other
pieces in the north of the cluster are modern interpretations
of classical pieces by Vanessa Mae (vm).

The final two clusters which we will describe in detail are de-
picted in Figure 12. Cluster 5 represents concert music and
classical music used for films, including the well known Star-
wars theme (starwars), the theme of Indiana Jones (indy),
and the end credits of Back to the Future III (future). How-
ever, there are also two pieces in this cluster which do not
fit this style, namely Yesterday by the Beatles (yesterday)
and Morning has broken by Cat Stevens (morningbroken).

Cluster 6 represents peaceful classical pieces such as Fiir

Elise by Beethoven (elise), Eine kleine Nachtmusik by Mozart
(nachtmusik), Fremde Lander und Menschen by Schumann

(kidscene), Air from Orchestral Suite #3 by Bach (air), and

Trout Quintet by Schubert.

Although the results we obtained are generally very encour-
aging, we have come across some problems which point out
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Figure 12: Close-up of Cluster 5 and 6 depicting
3x4 map units.

the limitations of the approach. For example, the song Wild
Wild West by Will Smith (wildwildwest) does not sound
very similar to songs by Papa Roach or Limp Bizkit, how-
ever, they are located together in Cluster 3. Another prob-
lem in the same region is the song It’s the end of the world
by REM (rem-endoftheworld) which is located next to songs
such as Freak on a Leash by Korn. Problems in different re-
gions include, for example, Between Angles and Insect by
Papa Roach (pr-angles) which is located in the south of the
Cluster 5 which is definitely a poor match.

The main reason to these problems can be found in the fea-
ture extraction process. Although we analyze the dynamic
behavior of the loudness in several frequency bands, we do
not take the sound characteristics directly into account as
could be done, for example, by analyzing the cepstrum which
is a common technique in speech recognition. Another ex-
planation is the simplified median approach. Many pieces
usually consist of more than one typical rhythm pattern,
combining these using the median can lead to a pattern
which might be less typical for a piece than the individual
ones.

For detailed evaluations the model vectors of the SOM can
be visualized as depicted in Figure 13. As indicated by the
weather charts the lowest fluctuation strength values are lo-
cated in the south-east of the map and can be found in map
unit (14,1). It is interesting to note the similarity between
the typical rhythm pattern of Fir Elise (cf. Figure 5(a))
and this unit. On the other hand the unit (6,2) which repre-
sents Freak on a Leash is not a perfect match for its rhythm
pattern as a comparison to Figure 5(b) reveals. In partic-
ular the vertical line at about THz is emphasized stronger
in Freak on a Leash than in its corresponding model vector.
Note, that the highest fluctuation strength values of Freak
on a Leash are around 4.2 while the model vector only cov-
ers the range up to 3. Generally, the model vectors are a
good representation of the rhythm patterns contained in the
collection, as each model vector represents the average of all
pieces mapped to it.
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Figure 13: The model vectors of the 14x10 music SOM. Each subplot represents the rhythm pattern of a
specific model vector. The horizontal axis represents modulation frequencies from 0-10Hz the vertical axis
represents the frequency bands Bark 1-20. The range depicted to the left of each subplot depicts the highest
and lowest fluctuation strength value within the respective rhythm pattern. The gray shadings are adjusted
so that black corresponds to the lowest and white to the highest value in each pattern.

On the web' we provide a demonstration and a Matlab®
toolbox, including the functions used to conduct the exper-
iments.

7. CONCLUSIONS

We have presented a system for content-based organization
and visualization of music archives. Given pieces of music in
raw audio format a geographic map is created where islands
represent musical genres or styles. The inherent structure
of the music collection is reflected in the arrangement of the
islands, mountains, and the sea. Islands of Music enable
exploration of music archives based on sound similarities
without relying on manual genre classification.

The most challenging part is to compute the perceived sim-
ilarity of two pieces of music. We have presented a novel
and straightforward approach focusing on rhythmic prop-
erties following psychoacoustic models. We evaluated our
approach using a collection of 359 pieces of music and ob-
tained encouraging results.

Future work will mainly deal with improving the feature
extraction process. While low-level features seem to offer
a simple but powerful way of describing the music, more
abstract features are necessary to explain what the organi-
zation represents. Several alternatives to estimate the per-
ceived similarity of music have been published recently (e.g.
[30]) and a combination might yield superior results.
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