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Abstract—We present and compare two approaches to detect
the presence of bird calls in audio recordings using convolutional
neural networks on mel spectrograms. In a signal processing chal-
lenge using environmental recordings from three very different
sources, only two of them available for supervised training, we
obtained an Area Under Curve (AUC) measure of 89% on the
hidden test set, higher than any other contestant. By comparing
multiple variations of our systems, we find that despite very
different architectures, both approaches can be tuned to perform
equally well. Further improvements will likely require a radically
different approach to dealing with the discrepancy between data
sources.

I. INTRODUCTION

Detecting the presence of bird calls in audio recordings can
serve as a basic step for wildlife and biodiversity monitoring.
To help advance the state of the art in automating this task,
Stowell et al. [1] organized a Bird audio detection challenge.1

Specifically, participants were asked to build algorithms that
predict whether a given 10-second recording contains any
type of bird vocalization, regardless of the species. For recent
surveys of existing approaches, see [1, Sec. 3] and [2, Sec. 2].

The authors took part in the challenge with two inde-
pendent submissions (bulbul and sparrow), both deploying
convolutional neural networks applied to spectrograms. In the
following, we describe the common denominators as well
as individual prerequisites and strengths of the approaches.
Section II describes the data used in the challenge, before Sec-
tion III goes into depths regarding the methods of supervised
learning used to tackle the problem. Section IV provides an
overview of the results obtained, joined by a conclusion and
outlook in Section V.

II. DATA

A. Data sources

The Bird audio detection challenge provides data from
three different sources, as described on its website: First, field
recordings from the freefield1010 project [3], a collection of
excerpts from field recordings originating from the FreeSound2

online database, being very diverse in location and envi-
ronment. Second, ten-second smartphone audio recordings,
coming from a bird-sound crowdsourcing research spinout

1http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge,
visited 2017-02-20

2http://freesound.org, visited 2017-02-20

called Warblr3. The audio covers a wide distribution of UK
locations and environments, and includes weather noise, traffic
noise, human speech and even human bird imitations. The
third dataset comes from the TREE research project4, which
is deploying unattended remote monitoring equipment in the
Chernobyl Exclusion Zone, with its audio covering a range
of bird vocalizations, weather, large mammal and insect noise
sampled across various environments.

B. Data structure

According to the challenge website, the provided training
data comes from freefield1010 (7690 examples) and Warblr
(8000 examples), the testing data mostly from Chernobyl and
to a smaller extent from Warblr (8620 examples altogether).
Each training example comes with a single human annotation
if birds are present anywhere in the audio (1), or no birds
present at all (0). Most of the files are 10 seconds long, but
there are exceptions with a duration of up to 22 seconds or
down to only one second. Notably, the freefield1010 dataset
contains examples that are predominantly negative (25% bird
presence), while Warblr contains mostly positively annotated
examples (76% bird presence).

The representation of the data we used for machine learning
consists of Mel-scaled log-magnitude spectrograms with 80
bands. In order to obtain a clearer picture of the data structure,
we performed clustering on some simple features derived from
those spectrograms: per example and per frequency mean,
standard deviation, 1-percentile (quasi-minimum excluding
outliers) and 99-percentile (quasi-maximum excluding out-
liers), forming a 320-dimensional vector per audio file. After
a PCA (variance coverage 95%, reducing to 11 dimensions),
we clustered agglomeratively using Ward linkage5.

In Figure 1, train and test data sets are clustered separately:
eight clusters for the training data and four for the test data.
Test clusters 1 and 3 are quite similar, comprising 7206 items
(84% of the test data) of a rather low audio quality (high 1-
percentile, low standard deviation, indicating noisy sound with
low dynamics). For these clusters, matches to the training set
can only be found partly in train cluster 7 and, vaguely, in

3http://warblr.net, visited 2017-02-20
4https://wiki.ceh.ac.uk/display/NRT/NERC+RATE+TREE+Home, visited

2017-02-20
5http://scikit-learn.org/stable/modules/generated/sklearn.cluster.

AgglomerativeClustering.html, visited 2017-02-20



Fig. 1. Clusters in train (top eight) and test data (bottom four). The four
discernible bands per subplot (on the y-axis) are 80 components of mean,
standard deviation, 1-percentile and 99-percentile, respectively, accumulated
over time for each example spectrogram (along the x-axis). On the top of each
training data subplot, examples from the freefield1010 dataset are encoded
with small blue dots, examples from the Warblr dataset in orange. On the
bottom, green/red dots indicate bird presence or absence, respectively.

train cluster 2. Both latter clusters come from mixed sources
with quite balanced absence/presence annotations. Test cluster
2 (high dynamics, low noise) with only 377 items can be
identified with train clusters 1 and 6, both mostly from the
Warblr source (63% and 73%), the first one with mostly
negative (80%), the latter with predominantly positive labels
(90%). Test cluster 4 (mixed quality, 1037 items) matches parts
of train clusters 5 and 8, both of mixed origin and annotation.

All in all, the structure of the data represents a challenging
situation for a supervised machine learning approach: Mostly
positive examples from one source, mostly negative examples
from another source with different characteristics, and test
data for which predictions are desired predominantly from yet
another source.

III. METHOD

Our approach to the Bird audio detection challenge deploys
feed-forward CNNs trained on Mel-scaled log-magnitude
spectrograms. The task poses two main challenges: Firstly, the
label of an audio file can be determined by very local events
(e.g., short chirps), sometimes less than half a second (see
Figure 2a). Secondly, as stated already in Section II, the test
data exhibits very different characteristics from training data.
We compare two principally different network architectures
(see Tables I and II) addressing the former, and attempt
to overcome the latter with various training and pre/post
processing techniques.

TABLE I
NETWORK ARCHITECTURE OF

bulbul SUBMISSION

Input 1×1000×80
Conv(3×3) 16×998×78
Pool(3×3) 16×332×26

Conv(3×3) 16×330×24
Pool(3×3) 16×110×8

Conv(3×1) 16×108×8
Pool(3×1) 16×36×8

Conv(3×1) 16×34×8
Pool(3×1) 16×11×8

Dense 256
Dense 32
Dense 1

TABLE II
NETWORK ARCHITECTURE OF

sparrow SUBMISSION

Input 1×701×80
Conv(3×3) 32×699×78
Conv(3×3) 32×697×76
Pool(3×3) 32×232×25

Conv(3×3) 32×230×23
Conv(3×3) 32×228×21

Conv(3×19) 64×226×3
Pool(3×3) 64×75×1

Conv(9×1) 256×67×1
Conv(1×1) 64×67×1
Conv(1×1) 1×67×1
GlobalMax 1

A. Input features

For each audio file under analysis, we first compute an STFT
magnitude spectrogram with a window size of 1024 samples at
22.05 kHz sample rate with 70 frames per second (hop size 315
frames), apply a mel-scaled filter bank of n = 80 triangular
filters from 50 Hz to 11 kHz (bulbul) or 10 kHz (sparrow, to
leave room for pitch-shifting, see Section III-D) and scale
magnitudes logarithmically. The features are normalized per
frequency band to zero mean and unit variance. This is
implemented using a batch normalization step [4] prior to the
first network layer – we found this works as well as manually
standardizing the features, but is more convenient. Finally,
for the bulbul submission, from each spectrogram we subtract
its mean over time, as a simple way of removing frequency-
dependent (colored) noise.

B. Global architecture (Submission bulbul)

This highest-scoring submission to the challenge6 uses a
network with a wide receptive field of 1000 frames (14 s)
processed into a single binary output. As shown in Table I,
a sequence of four combinations of convolution and pooling
condenses the input of 1000×80 into 16 feature maps of 11×8
units. Three dense layers with 256, 32 and 1 unit(s) classify the
condensed features. Except for the sigmoid output layer, each
convolution and dense layer is followed by the leaky rectifier
nonlinearity max(x, x/100). The total number of trainable
network parameters is 373169.

C. Local architecture (Submission sparrow)

A possible disadvantage of the global architecture is that
the network has to learn to detect birds at different temporal
positions within the receptive field, to predict the correct label
even if a file contains just a single chirp. In a separate line
of submissions, we attempted to treat bird detection as a
local task, with a short receptive field of 103 frames (1.5 s).
Since we do not know the label of short excerpts, only for a
full recording, this is a multiple-instance learning problem. It
follows the standard MI assumption [5]: a recording is labeled
positively if and only if at least one of its excerpts is positive.

6Code repository on https://jobim.ofai.at/gitlab/gr/bird_audio_detection_
challenge_2017, visited 2017-02-23



The architecture in Table II reflects this: It uses convolutional
and pooling layers to process the spectrogram into a one-
dimensional sequence, then takes the global maximum. As in
the bulbul submission, every convolution is followed by the
leaky rectifier except for the final one, which has a sigmoid.
The total number of network parameters is 309843.

Note that the way the network is designed, it can be applied
to any recording of at least 103 frames, producing a temporal
sequence of local predictions the maximum is taken over.
Each local prediction considers a 103-frame excerpt, with
consecutive excerpts overlapping by 94 frames.

D. Training

Training is done by stochastic gradient descent on mini-
batches of 64 (bulbul) or 32 (sparrow) examples, using the
ADAM update rule [6] with an initial learning rate of 0.001,
reduced by a factor of 10 two times during training. sparrow
uses a fixed scheme, training for 80,000 updates with learning
rate drops after 40,000 and 60,000 updates. bulbul uses a vari-
able scheme dropping the learning rate whenever the training
error does not improve over three consecutive episodes of
1500 updates, resulting in about the same number of updates.
sparrow is trained on excerpts of 701 frames, bulbul on 1000
frames. Files shorter than required are looped up to the length
needed.

Especially with the strongly different test data character-
istics, a critical point in training is regularization, to avoid
overfitting not only to the specific training examples, but also
to the sources they are drawn from. As a general measure,
for both architectures, we apply 50% dropout to the inputs
of the last three layers. In sparrow, we also apply batch
normalization to all layers. Specific to the task, we employ
different ways of augmenting the training data: In order
to achieve temporally translational invariance (the position
of a bird vocalization in the spectrogram is irrelevant), the
training examples are cyclically shifted in time. To become
less sensitive to the exact pitches of bird calls, we employ
random pitch shifting: up to ±1 mel band for bulbul, by
linearly interpolated shifting of the mel spectrograms, and
up to ±10% for sparrow, by spreading/compressing the mel
filterbank. Finally, to generalize to different noise floors, in
training the sparrow system, the first 8 examples of each mini-
batch are mixed with the central frames of the last 8 examples
of each mini-batch, with a coefficient between 0 and 0.4 for
the noise and a corresponding coefficient between 1 and 0.6
for the signal. This provides a sound floor constant over time,
encouraging the network to ignore static background. We also
tried mixing full recordings, adapting the label accordingly,
but this deteriorated results for both architectures.

As another way to better generalize towards the test set,
we experimented with pseudo-labeling: After training a first
model, we compute predictions for the test examples and add
some of them to the training set for a second model – either
using the real-valued predictions as soft labels, or using hard
labels, limited to the most confidently predicted test examples.
This did not improve results for either of our systems.
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(a) mel spectrogram, with single chirp at about 4.5 s
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(c) sparrow predictions, receptive field of 103 frames
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(e) sparrow predictions, 103 frames, global mean pooling

Fig. 2. Predictions of different variants on file warblrb10k/92ee2259-6ed8-
4120-9511.wav, a recording with a single short chirp. bulbul (b) confidently
detects the bird call for all cyclic rotations of the input. At test time, only a
single prediction is computed. sparrow (c–e) detects the call whenever it is
near the edge of its receptive field, producing a double peak (see Sect. IV-B).
At test time, the maximum over the local predictions is taken. Training with
global mean instead of global maximum strongly impairs discrimination (e).

E. Predicting

After training, to obtain a prediction for a recording, we loop
it as needed to fill the network’s receptive field. For bulbul,
we then obtain a prediction for non-overlapping 1000-frame
excerpts (for most files in this dataset, there only is a single
such excerpt) and take their mean. For sparrow, we cyclically
pad the recording with half a receptive field on either side, and
modify the network to internally produce a prediction at every
frame instead of every 9th frame (using overlapping pooling
and dilation [7], [8]). As in training, the network then takes
the global maximum over these local predictions.

To improve results, for both submissions, we average the
file-wise predictions of five networks trained on each of five
cross-validation splits of the training data. For sparrow, we
also tried averaging the local predictions instead, but this
worked worse in cross-validation on the training set.

IV. RESULTS

The Bird audio detection challenge featured a submission
site where contestants could upload their predictions for the
test set, at most once every 24 hours. A ‘preview score’ was
then computed giving the AUC (area under ROC curve) for
a subset of 1293 files from the test set. Scores for the full
test set7 were published after the contest deadline, deviating
from the preview scores by some tenths of a percent for the
top submissions. For development, we also computed the AUC
using five-fold cross-validation on the training set.

7http://c4dm.eecs.qmul.ac.uk/events/badchallenge_results, last visited
2017-03-04
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Fig. 3. Results for variants of the bulbul architecture.

As a consequence from the differences between the train and
test data, the scores computed on the test set deviate consider-
ably from our cross-validation scores. The correlation between
scores calculated on the train and test domains is low, with a
Pearson correlation value of 0.40 (for 19 samples), implying
that effects of experimental variations hardly extrapolate from
cross-validation scores to the test scores. We will thus always
report both the cross-validation and the preview scores.

In the following, we will look at variations of our two
submissions, to see how important their different components
are, and also investigate some unexpected behaviors.

A. Submission bulbul

Figure 3 shows AUC results for the bulbul architecture,
including both the submission preview scores and cross-
validation scores. The leftmost entry shows the architectural
variant yielding the highest preview score on the test set
(88.76%). Leaving away the denoising preprocessing step con-
siderably degrades performance on both the cross-validation
and preview scores (85.51%). As expected, computation with-
out any augmentations (especially the cyclic shifting) also
impairs both scores, with the preview at 85.15%. Omitting
just the spectral shift augmentation still has a notable impact
on the cross-validation score, without much effect on the
preview score (88.32%). Many of the audio examples exhibit
silence, clicks, etc. at the beginning of the files, obviously
from switching on the recording device. A preprocessing step
for clipping these noises was introduced, not improving the
results though (preview score 88.03%).

It must be noted that details of the audio preprocessing
can have a crucial impact on the result. We discovered that
the choice of algorithm for resampling the audio signal to
22 kHz can be responsible for a significant degradation of
bird detection performance, potentially lowering AUC by some
2%.8 This causes a considerable portability issue. The reason
seems to be the type of low-pass filter employed prior to the
resampling. In the context of our problem, a (usually deemed

8The conversion software ffmpeg 2.8.10-0ubuntu0.16.04.1 as used by
QMUL in comparison to our avconv version 9.18-6:9.18-0ubuntu0.14.04.1
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Fig. 4. Results for variants of the sparrow architecture.

‘bad’) shallow filter slope works better than a ‘good’ steep
(brick-wall type) filter. The effects could be shown by arti-
ficially imposing a comparable frequency attenuation on the
outcome of the latter filter, recovering half of the performance
loss. At this time, though, we cannot fully pinpoint why the
spectral characteristics are not sufficiently straightened by the
batch normalization step.

B. Submission sparrow

Figure 4 shows results for the sparrow architecture. The
leftmost entry denotes the system as described in the previ-
ous section, obtaining a preview score of 88.41%. Omitting
the noise augmentation lowers the preview score (87.87%)
without affecting the cross-validation score on the training
data. Conversely, omitting the pitch shift augmentation lowers
the cross-validation score without affecting the preview score.
Surprisingly, omitting both augmentations lowers the cross-
validation score and raises the test set preview score to
89.30%. Without access to the test set labels, we are unable
to explore the reason.

While the scores confirm the hypothesis that bird calls are
local events that can be detected with a small receptive field,
a larger receptive field might allow the network to better
adapt to the specific recording conditions and noise floor of a
file, which vary wildly between recordings and data sources.
However, increasing the field from 103 (1.5 s) to 139 frames
(2 s) (by extending the 9×1 convolution in Table II to 13×1)
does not change the scores compared to the base system,
and increasing it further to 265 frames (3.8 s) even reduces
the preview score. Looking at the networks’ local predictions
(before taking the maximum over time), we find something
curious: For most bird calls, the predictions contain two peaks,
half a receptive field before and after the event (see Figure 2).
Investigating further, we find that these peaks are merged in
the early stages of training, and become separated afterwards.
The most likely explanation are mislabeled training examples:9

When a training example has a negative label, but contains a

9Manual inspection of errors on the validation set revealed many mislabeled
files. For example, the file shown in Figure 2 has a negative label.



bird, the network will be trained to reduce the prediction at
its current maximum, possibly leaving two side lobes. Once
split, there is no incentive to rejoin the peaks. When changing
the train/validation splits or the augmentation, some double
peaks are merged, confirming the dependency on training data.
Changing the training hyperparameters did not have any effect.

Finally, we investigated whether taking the maximum over
local predictions is the correct approach. During training, it
means the network is only updated for the maximal predic-
tion per recording,10 increasing it for positive examples and
decreasing it for negative examples. For a file of a single bird
call, this seems optimal. For a file full of bird chatter or devoid
of birds, this possibly wastes information. For comparison,
we thus modified the base system to take the mean over
local predictions instead. This updates the network for all
local predictions during training. As shown in Figure 2e,
this leads to larger predictions on ambient noise, weakening
discrimination between birds and background. Consequently,
it reduces scores both on the validation and test set (85.45%).
As a compromise between max and mean pooling, we can
add a sliding average in front of the global maximum, or train
on shorter excerpts (so the maximum is taken over a partial
recording only). This keeps the validation score high, but also
severely reduces the preview score.11

C. Comparison

Looking at the architectures again (Tables I/II), both net-
works mainly use max-pooling over time to reduce a long
sequence of input features (the mel spectrogram) into a single
prediction: bulbul interleaves pooling with feature processing,
sparrow defers most pooling to the end. Both variants seem
to be equally effective on the test set, with bulbul performing
slightly better on the development set. Investigating validation
files the networks classify differently, we find many difficult
and mislabeled examples, but no systematic difference be-
tween the classifiers. A possible positive aspect of late pooling
is that sparrow can localize calls in time, but the given datasets
lack annotations to assess this quantitatively. Combining the
best results of both systems by taking the mean of their
predictions for each file, we obtain a preview score of 89.68%.

V. CONCLUSION

We have presented two deep learning based approaches
for detecting bird calls in audio recordings. Despite using
different network architectures, they perform very similarly.
Moreover, they perform on par with other top submissions
to the QMUL bird audio detection challenge (AUC 88.7%
for our bulbul system, and 88.5%, 88.2%, 88.1%, 88.1% for
the next four contestants), all of which use neural networks
on spectrograms. This could indicate a glass ceiling: without
fundamental changes to the training procedure, no further
improvement may be possible.

10Since the output only depends on the maximal prediction, the gradient
of the output with respect to any non-maximal prediction is zero.

11This is what the official sparrow submission to the competition did.

A promising way forward is to take into account the specific
acoustic characteristics of the test data. Our clustering reveals
a possible grouping of examples into different sources that
we could tap into. Training the network to become invariant
to the source characteristics, such as by unsupervised domain
adaptation [9] or specialized data augmentation, may reduce
the gap between performance on the development and test set.
Respective preliminary experiments have shown that this is
not easily successful, though.

In any case, the first step should be to investigate whether
there is room for improvement at all. To establish an estimate
for an upper bound, a subset of both training and test files
should be labeled by multiple annotators (see [10]). Given the
amount of mislabeled examples we found in the training set,
we suspect that we have already reached the limit for this part
of the data.
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