A Cognitive Architecture Theory of Comprehension and Appraisal: Unifying Cognitive Functions and Appraisal

> Bob Marinier John Laird University of Michigan ACE: April 18, 2006

Overview

- Introduction
- Emotion Process
- Cognitive Functions
- Unification

Introduction

- Have independent theories of emotion and cognitive functions
 - Emotion: Appraisal Theory
 - Cognitive Functions: Allen Newell's PEACTIDM
- Each of these is incomplete
- Emotion and cognition are tightly integrated in humans via appraisal
- How can we unify cognitive functions with appraisal?

What's missing?

- When are appraisals generated?
- Why are the appraisals generated then?
- How are appraisals generated?
- How do appraisal and emotion impact behavior (in detail)?

Cognitive Functions: Allen Newell's PEACTIDM

An agent must be able to perform the following functions

sıng	Perceive	Raw perception	
oces	Encode	Create domain-independent representation	
nt Pr	Attend	Chose stimulus to process	
g Evel	Comprehend	Generate structures that relate stimulus to goals and can be used to inform behavior	
essin	Tasking	Perform goal maintenance	
Proc	Intend	Chose an action	
Response	Decode	Decompose action into motor commands	
	Motor	Execute motor commands	

What's missing?

- What does Encode generate?
- How does Attend pick a stimulus?
- What does Comprehend generate?
- How does Tasking work (e.g. what information does it require?)

Unifying Cognitive Functions and Appraisal

Event Processing

Perceive	Raw perception	
Encode	Domain-independent representation	
Attend	Chose stimulus to process	
Comprehend	Generate structures that relate stimulus to goals and can be used to inform behavior	
Tasking	Perform goal maintenance	
Intend	Chose an action	

Appraisal Consumers Event Processing: Desirable Properties

- Domain independent
- Limited working memory
- Happens over time
- Incremental
- Supports immediate comprehension
- Supports hierarchical comprehension
- Supports prediction
- Influenced by external processes

Encode and Event Structure

- Encode generates domain-independent structures from the raw Perceptual information
 - Fast, parallel process
- Possible structure
 - Simplification of Talmy (1975)
 - Actor Bob
 - Action Walking across street
- Also includes Novelty information (e.g. is this a common event, did it occurred suddenly, etc)

Attend

- Multiple events may occur simultaneously, all of which are Encoded
- Attend uses Novelty information from Encoded structure to pick one to Comprehend next

Comprehension Process

- Goal: To create data structures that inform behavior
- Key: Process *sequences* of events
- Process
 - Observe some sequence of events
 - Match partial sequence to known complete sequence
 - Use complete sequence to predict next event
- Only work on one event or sequence at a time (i.e. processing is local)
- Since the event structures are domain independent, this process is also domain independent

Abstract Events, Sequences and Subgoals

- An event sequence can be abstracted to represent a single event in a more abstract sequence
- Example:
 - Step down from curb
 - Take a few steps
 - Step up onto curb
 - ...this is just the "Cross the Street" event, which may be just one event in the "Get from Car to Office" sequence, which may be one event in the "Go to Work" sequence...which may be just one event in the "Living My Life" sequence.
- Abstract events can be thought of as subgoals

Event Knowledge Hierarchy

Event Processing: Desirable Properties Revisited

Domain independent	Events are domain-independent		
Limited working memory	One interpretation at a time		
Happens over time	Events occur over time		
Incremental	Attend to one event at a time; Local processing		
Supports immediate comprehension	Can always guess at complete sequence based on event		
Supports hierarchical comprehension	Sequences can be abstracted to events		
Supports prediction	Next event can be read from guessed complete sequence		
Influenced by external processes	Ambiguity resolution can be biased by current goal, emotion, memory activation, etc.		

Unifying Cognitive Functions and Appraisal Revisited

	Perceive	Raw perception
	Encode	Domain-independent representation
	Attend	Chose stimulus to process
	Comprehend	Generate structures that relate stimulus to goals and can be used to inform behavior
rocessing	Tasking	Perform goal maintenance
	Intend	Chose an action

Appraisal Generators

Response

Tasking Process

- Goal: Update current (sub)goals as necessary
- Key: Emotion automatically signals with status (goal threatened, situation alterable) and how to fix it (e.g. whose fault is it, etc)

Process:

 Determine how to proceed based on implications of emotion

Tasking Process Details

Intend Process

- Goal: Determine next action to execute
- Key: In general, there may be many paths from the current situation to the goal, so Intend must pick one
 - Also has to compete with action tendencies (e.g. automatic responses)
- Process:
 - If urgency is high, "automatic" responses win
 - Otherwise, walk event hierarchy to find path to goal

Unification

Scherer 2001	Generated By	Required By	
Novelty: Suddenness	Perception		
Novelty: Familiarity	Encoding	Attend	
Novelty: Predictability			
Intrinsic pleasantness		Tasking (via Feelings)	
Goal/need relevance			
Cause: agent	Comprehension		
Cause: motive			
Outcome probability			
Urgency			
Discrepancy from expectation		Comprehension	
Conduciveness		Tasking (via Feelings)	
Control			
Power			
Adjustment			
Internal standards compatibility			
External standards compatibility			

Predictions

- Agent will be interruptible
- Partial ordering constraint on appraisal generation
- Different emotions may require different amounts of processing
- Time constraints may lead to errors in Comprehension (and thus emotion)

Summary: Unification of Cognitive Functions and Appraisal

- Structural appraisal theories define only the critical data used to drive behavior
- PEACTIDM defines critical functions, but not how they are achieved
- In general, appraisals are:
 - Generated by Perceive, Encode and Comprehend
 - The information needed by Attend, Comprehend, Tasking and Intend

Event Knowledge Hierarchy 2

