
Harmonisation of Bach chorales

KBS project report

Martin Elmer Jørgensen, årskort 951174,
Søren Tjagvad Madsen, årskort 961701.

This report contains 31 pages.

Daimi, University of Aarhus
August 2002

Contents

1 Introduction 1
1.1 Harmonisation . 1

1.1.1 Complexity of the chorales 1

2 Existing work on automatic harmonisation 3
2.1 GAs in harmonisation . 3
2.2 Expert systems for chorale harmonisation 4
2.3 Neural networks in chorale harmonisation 4

2.3.1 Harmonic structure . 4
2.3.2 Chord skeleton . 5
2.3.3 Ornamentations . 5

2.4 Summary and discussion . 5

3 Our thoughts on automatic harmonisation 6
3.1 GA approach with hardcoded Bach-weighted rules fitness evalu-

ation. 6
3.2 EA approach with neural net fitness evaluation 8
3.3 Neural network prediction of chords 8

4 Data and preprocessing 8
4.1 Weeding . 8
4.2 jMusic . 9
4.3 Extracting a data set . 9

5 Neural net setup 10
5.1 Network layout and training . 11
5.2 Data representation for the neural network 11

5.2.1 Representation 1: Absolute soprano pitch, voice intervals 11
5.2.2 Representation 2: Soprano pitch class, voice intervals . . . 12
5.2.3 Representation 3: Voice intervals only 12
5.2.4 Representation 4: Unary pitch class 12
5.2.5 Representation 5: Unary absolute pitch, trimmed (UAPT) 12
5.2.6 Representation 6: UAPT, larger windows 13
5.2.7 Representation 7: Chord prediction 13
5.2.8 Representation 8: Chord type analysis, prediction 14

6 Experimental results 14
6.1 Representation 5: EA using NN fitness 15

6.1.1 Neural net training . 15
6.1.2 EA setup . 15
6.1.3 Evaluation of the results 17

6.2 Representation 6: EA using NN fitness 18
6.2.1 Neural net training . 18
6.2.2 EA setup . 18

i

6.2.3 Evaluation . 19
6.3 Representation 7: NN prediction 19

6.3.1 Neural net training . 19
6.3.2 Evaluation . 19
6.3.3 Generation with Bach input 22

6.4 Representation 8: analysis and prediction 22

7 Discussion 23
7.1 Conclusion . 24
7.2 Room for improvement . 24

7.2.1 Preprocessing and simplifying 24
7.2.2 Interpretation of prediction network output 25
7.2.3 EA improvements . 25

A Midi files 26
A.1 List of four-voice files used for training 26
A.2 List of rejected files . 29

A.2.1 Not four parts . 29
A.2.2 Overlapping phrases . 30
A.2.3 Incomplete rests . 30

ii

1 Introduction

This project is an attempt to produce intelligent machine harmonisation of
chorales. The goal is to harmonise melodies in the style of J.S.Bach; we wish to
find tendencies and perhaps rules that Bach may have followed consciously or
unconsciously.

We have chosen a GA approach to construct the new harmonisations. We
discuss the use of rule-based evaluation and proceed to make experiments that
are based on neural net fitness evaluation after training on a set of Bach chorales.

1.1 Harmonisation

Chorales are originally one voiced melodies from the German reformed church’s
singing tradition, started by Luther.

In the beginning it was very different kinds of melodies, which were used
in church, but today the word chorale means a homophonic, often 4 part vocal
movement. It is a harmonisation of the melody, with a new harmony for each
new melody note.

In the music, there a lot of conventions have evolved about what sounds
good and less good (for instance Bach’s conventions), and these conventions
can be collected as a set of “rules” for the music. The rules apply in different
places and circumstances in the music, e.g. there are rules for voice leading and
harmony.

Chorale harmonisation in general as in [1] is a generalisation of many years
of development in western art music – a development which still changes, but
is well studied by composers and music analysers. It can therefore be seen as a
craft, and indeed as an introduction to the major-minor tonal music which has
been developed in the western music tradition.

The chorales of Bach are much more complex than the simple style found
in [1], but also Bach’s techniques can be made rather concrete. Bach composed
around 30 and reharmonised around 400 melodies, so we have quite a large
material to search through.

Consequently, you could learn to make a well working harmonisation af a
melody, by adding three notes to the soprano voice, and with a couple of extra
tricks, you could make it sound like Bach.

So the task is to make that valid harmonisation, which meets the condidions
on voiceleading and harmony. The hard part is to do both at the same time.

1.1.1 Complexity of the chorales

A chorale can be split into phrases of the melody. Each phrase is a musically
coherent unit. On the phrase ends there is often a fermate 1 A phrase can start
in one key and modulate to another (related) key. However, chorales almost
always begin and end in the same key.

1An interpretation mark, for prolonging of the chord (unfortunately not written in the
midi-files).

1

Bach uses a fixed harmonisation rythm, so each 1/4-beat has a new harmon-
isation (repetitions do occur). Each voice can eventually shift to another tone
on these beats, and you hear the harmonic progression as a regularly shifting
stream of chords.

Bach chorales are however more complex than described. The voices are
often ornamented with “turning notes” and “going through” notes with smaller
rhythmic values. These are mostly just ornamentations, but also affect the
underlying harmonic progression. This affects our ability to make analysis on the
chords directly on the 1/4 beats, since sometimes the real or intended harmony
for that beat is displaced by 1/8. We try not to care about this in the beginning,
and just hold on to harmonising the quaver beats. For an example of this
problem read section 4 on preprosessing.

You can split the harmonisation ideals in two, those concerning voice leading,
and those concerning harmony.

The voice leading rules ensure that the melodies are singable for the hu-
man voice. Moreover, they emphasize sounds we like, but also forbid certain
interrelative movements of the voices, which sound bad.

For example we aim for countermovement in the outer voices, and we don’t
like the sound of a parallel fifth. Other rules are about dissonance treatment:
If a dissonant tone is on the way, it should sound on a stressed beat, and be
resolved downwards on the next unstressed beat. Furthermore the dissonant
tone should be prepared in the chord before (in the same voice). This very old
way of dissonance treatment (which Bach could have learned from Palestrina)
consequently involves three consecutive chords.

Concerning harmony, there is also a strong tradition. We like to hear
subdominant-dominant-tonic cadences – a strong harmonic connection, which
is all over in our western music tradition. On the other hand it is most un-
likely to find dominant-subdominant-tonic cadences in the music of Bach (but
indispensible in blues).

The tonic is an expression for the triad2 you can make from the key root.
The dominant is the triad on the fifth scale step and the subdominant is the
triad on the fourth. Major-minor tonal music consists roughly speaking of an
alternation between triads on different scale steps.

By adding tones, which don’t belong in the scale you can make triads that
don’t belong to the key. It can be used as a coloration, but is also an opportunity
for moving to other keys. This is called a modulation. Modulations often end in
related keys (keys whose scales have many scaletones in common). The order ef
the chords is of great importance, since there is this logical connection between
them.

Besides the soprano, which sings the melody, the bass is also an important
voice, since the note of the triad in the bass is of great importance.

Chords can consist of 3 or 4 different notes, and it is possible to double notes
from time to time. Rules for doubling exists. Root doubling of a tonic is very
common, but you are never allowed to double the third in an dominant.

2A stack of three notes in third distance

2

The melodies are by far the most in major and minor keys, and since there
are 12 possible beginning tones, we are dealing with chorales in 24 keys. There
are in the litterature different rules for harmonising in major and minor, but the
starting note (key) is not important. A triad has different meaning in different
keys, so it is easier to use the expressions introduced above to describe the
relations of the chords. The point is, that the musical events are not dependent
on pitch. So to have all these informations could reduce the problem by a factor
12.

Unfortunately this is not a simple task to do. It can depend on many delicate
factors in the music. [2] describes an algorithmic approach to study this problem.

2 Existing work on automatic harmonisation

Harmonisation has been studied from several angles.
[3] discusses how much expressive power is necessary to represent simple

harmonic progressions and concludes that Markov models are sufficient to learn
harmonic progressions, although other aspects of music require more intricate
abstractions.

2.1 GAs in harmonisation

[4] and [5] are two articles about the same project, where a GA is used to har-
monise melodies. The individual chromosomes are harmonisations, and fitness
is evaluated according to basic rules - the sort of rules you would learn in an
introductory course on chorale harmonisation. The idea is that a large part of
music can actually be described by a relatively small number of rules.

Chromosomes are initialised with randomly generated chords with the cor-
rect note in the soprano voice. It is worth pointing out here that the chromo-
somes are initialised from the start, then, with real chords, i.e. major or minor
triads, which are the only chords allowed.

Harmonisations are reproduced in several ways. There are the usual GA
crossover and mutation operators (called splice and perturb respectively), but
also musically meaningful reproduction operators are used: Rechord changes one
chord to another; PhraseStart forces the chromosome to begin with a tonic on
a stressed beat, and PhraseEnd forces the chromosome to end on a chord with
the root note in the bass.

The harmonisations output by the GA have been rated by a music teacher
as scoring between 30% and 50% according to the criteria used for 1st year
undergraduate students’ harmony. It turns out that no matter how long the
evolution process is being run, the harmonisations produced are never flawless.

The authors conclude that the search space is very rough. For example,
changing a single note in a harmonisation can break a lot of rules at once and
deteriorate the quality of the harmonisation substantially.

Musically speaking, a non-specialised crossover operation is almost certainly
doomed to failure. Two harmonisations may each be so well formed that making

3

even a very minor change will ruin both. In other words, two good, partial
harmonisations will only rarely combine to anything meaningful.

To sum up: ([5], p.6)

. . . the problem is due to a multimodal fitness landscape, charac-
terised by many local optima in basins of attraction which are sepa-
rated by very high barriers [. . .]. Before the GA can move from one
basin of attraction to another, multiple factors leading to a fitness
penalty need to be changed. Such a simultaneous change is very
unlikely to occur.

2.2 Expert systems for chorale harmonisation

In [6], a harmonisation GA is compared to a rule-based, or expert, harmonisation
system. The expert system contains a knowledge base with the ideals of chorale
harmonisation, and an inference engine. This is implemented as a constraint
programming problem, using Prolog.

A number of comparative tests show that the expert system is clearly better.
The larger contexts, such as harmonic progression, are best handled by the rule-
based system, but also voice leading is more succesful.

Chorale harmonisation seems to be a problem well suited to algorithmic or
constraint programming solutions, which is not surprising, since these techniques
are closer to the way the craft of harmonisation is done.

2.3 Neural networks in chorale harmonisation

[7] and [8] present the use of “sequential neural nets for real-time harmoniza-
tion”, which means that the only information used for harmonising at time t

is whatever happened up to time t and thus uses no global information on the
continuation of the melody line. The sequential net includes e.g. a sub-net that
interprets metric organisation.

[9] presents HARMONET, a neural net for harmonising chorales in the style
of J.S.Bach, which is evaluated by “an audience of music professionals” as per-
forming “on the level of an improvising organist”. The problem is divided into
subtasks:

2.3.1 Harmonic structure

The Bach chorales are abstracted to a series of quarterbeat harmonies. The
network is trained using a sliding time window technique where it is shown, at
each time step (or quarter beat position) t:

• The soprano or melody voice at times t − 1, t and t + 1

• The harmonies at times t − 3 up to t

• t’s position relative to the beginning or end of a musical phrase

4

• Whether or not t is a stressed quarter beat

Nets with different window sizes are used in parallel and vote for which
harmonic function should be chosen at each new time t.

[9] stresses the importance of the choice of pitch encoding. “A note s is
represented as the set of harmonic functions that contain s”. Notes that are
harmonically close are also close in this representation space, whereas notes
that are neighbours by pitch are distributed into separate parts of the space.

2.3.2 Chord skeleton

Chosing the harmonic function gives the bass voice, so now the alto and tenor
voices should be filled in. All possible positions that are consistent with the
soprano voice and the chosen harmony. These possible chords are then evaluated
according to standard harmonisation rules.

2.3.3 Ornamentations

At last, another net is trained to output the set of eighth notes by which a given
chord may be augmented. Again, the input is a window including some of the
surrounding context.

2.4 Summary and discussion

We have found no acceptably succesful examples of GA chorale harmonisation.
The problem seems to be that it is very difficult to combine different parts of a
solution. Even including musical knowledge in the reproduction operators, the
GA didn’t solve the problem satisfactorily.

How much domain knowledge should be encoded? David B. Fogel (see [10])
takes the extreme view that the machine should be allowed to learn by itself
what is good and what is not; it should not be led away from the question by
what we think it should know.

The GA approach has a weakness when it comes to harmonisation in a
greater context. It has no means of controlling the harmonic progression. For
example, it is impossible to know if the harmonisation will end in the same key
as it started in, which is very desirable.

On the other hand, even though it is possible to find good results in chorale
harmonisation using an algorithmic or rule-based approach, this is still a deter-
ministic method and plain hard work to encode the knowledge or the algorithms
to be used. In our view, it would be more interesting to have a system that may
learn a way of harmonising from a set of examples.

A neural net could perhaps fulfill this wish, being trained on the Bach
chorales and then in turn used to harmonise melodies on its own. The HAR-
MONET project shows that this is possible. The hope is to find a balance where
the net is able to produce good sequences of harmonies in the style of the train-
ing material but also to generalise to other good combinations of harmonies.

5

3 Our thoughts on automatic harmonisation

This section presents some initial thoughts on possible approaches to the prob-
lem.

3.1 GA approach with hardcoded Bach-weighted rules fit-

ness evaluation.

Our first idea was to construct harmonisations using a genetic algorithm. Given
a melody, the GA would search for a solution to fit it by constructing random
harmonisations, evaluating them and recombining the better ones. As pointed
out by [5], one GA problem is that harmonisation search spaces may have un-
related basins of local optima that are hard to escape.

Since there exists a standard set of harmonisation rules, it was natural to
think of a rule-based fitness evaluation. But even though many of these rules
are derived in part from the harmonisation practices of Bach, he also breaks
some of the rules from time to time. If we had a complete set of harmonisation
rules, we could learn from our Bach chorales which rules he is most prone to
break and weight them accordingly.

As a small example, running through all the midi files and checking har-
monic movements from one chord to another by way of two simple hand coded
rules3, we found that Bach breaks both rules from time to time.

Total number of chord pairs=20340

Rule 0 broken 556 times

Rule 1 broken 116 times

Contrary outer movements: 7365

Chord repetitions: 2214

Rule 0 checks for parallel movement of two voices that are positioned with
an interval of 0, 7 or 12 semitones between them. Rule 1 similarly checks for
hidden parallels in the outer voices. Following common harmonisation practice,
contrary outer movement is an embellishment to be strived for.

Each voice follows a melody, or a “path in note space”, jumping up this many
semi-tones and down that many semi-tones successively. We have counted the
intervals jumped up and down by the soprano, alto, tenor and bass voices in
the chords extracted from the 328 Bach chorales used.

Figure 1 shows tendencies in the voice making. The alto and tenor have quite
similar graps, corresponding to the similar tasks they fulfill in the harmonisation.
They are allowed to jump up to a fifth (7 half tones), (at least by [1] p. 19) but

3Rules forbidding parallels and hidden parallels

6

Figure 1: Voice interval jumps over 328 midi files with ChordFinder resolu-
tion=1.0 (quarter notes)

should strive to always go the shortest way (smallest jump) to the next note.
The concentration of repeating and semi- and whole tone jumps shows this.

The bass is more “spread out”. It is allowed to jump up to a fifth (7 semi-
tones), but also a sixth and (8-9 semitones) an octave (12 semitones). Again the
figure reflect this. About the soprano, one could say that stepwise and repeating
is widely used in German singing traditon. (Remember, that a diatonic scale is
made entirely from semitone and wholetone steps, so −2,−1, 1 and 2 all count
as stepwise).

Please notice that the 6 semitones jump has almost completely been avoided.
This is the tritone interval – the most dissonant interval from this period.

The greatest problem with the rule-based approach seems to be the lack of
coded rules - we need to encode a knowledge base of harmonisation rules, which
is a time-consuming process. Many of the more advanced rules require harmonic
function analysis of the music in order to be applied. The basic analysis is not
hard to construct, but a thorough and correct analysis is worth a study in itself.

We could have tried to learn a knowledge base of rules from the Bach
chorales. Instead of learning logic rules, we decided to try a neural network.

7

3.2 EA approach with neural net fitness evaluation

Taking a point from the problems with GA harmonisation (see Section 2.1), we
have narrowed our use of evolutionary methods down to an EA used as a search
heuristic for individual chords. Evolving chords individually and sequentially
from beginning to end of the melody avoids some of the recombination problems
with GAs described above. Chords evolved this way are evaluated in conjunction
with preceding chords by a neural network trained on the Bach chorales.

In [11], a comparison is made of neural net critics and handcoded rule-based
critics for the genetic evolution of “musicians”, i.e. small programs that produce
a melody in response to a call melody. The conclusion is that the neural net is
not sufficient in itself and benefits noticeably by making a joint evaluation of
the programs together with the rule critic. Still, we could hope that a network
recognising chord progressions may do a better job than a network evaluating
the output of “musician” programs in a GA.

3.3 Neural network prediction of chords

Another possibility is to produce the harmonisations in the style of HAR-
MONET, where the neural nets output harmonies on the basis of preceding
chords an additional musical information.

4 Data and preprocessing

We chose to learn from a set of 440 midi files with J.S.Bach chorales that
are available at ftp://jsbchorales.net/sets/jsb403.zip. This section de-
scribes the preprocessing done to create our current data set from these midi
files.

4.1 Weeding

Unzipping the archive with the midi files, there are two files that exist in two
copies. We included only the first copy of each. A first run through the remain-
ing 438 midi files revealed that some of them had fewer or more than four voices
(see Table 1); e.g. some files contained several copies of the soprano voice. We
chose to weed out these and concentrate on the 348 files that had exactly four
voices.

Another set of files were removed from the data set because they contained
overlapping phrases, allowing possibly more than 4 simultaneous voices.

For the purpose of neural net training, we decided to transform the midi
files into progressions of 4-voice chords. Here we found that some files contained
chords with only 3 voices (i.e. one voice had a rest on such occasions). We call
this an incomplete rest, since not all voices are resting at the same time. These
files were weeded out because it is not clear what role an incomplete chord plays
in a 4-voice harmonic progression. The files were a sort of extended version of
chorales (rythmic variations) – too complex for our first experiments.

8

Number n of voices Number of n-voice files
0 0
1 1
2 0
3 3
4 348
5 40
6 6
7 11
8 29
9 0
10 0

Table 1: Count of voices in files

After weeding, we were left with a set of 328 4-voice midi files. A complete
list of the accepted files and of the files that were weeded out can be found in
Appendix A.

4.2 jMusic

Instead of using Java’s own midi library, we found a sound library called jMu-
sic which is able to handle midi files in a standard music score notation. This
means that once a midi file is loaded, the notes played within it may be han-
dled abstractly as notes, half notes, quarter notes etc. disregarding performance
related irregularities such as expressive timing and loudness. Certainly expres-
sive performance of notated scores is as musically relevant as the composition
of the score, but the Bach chorales are interesting composition works obeying
a number of rules which may be studied purposefully without considering any
performed interpretation of the works.

The jMusic java sound library can be found at:
http://jmusic.ci.qut.edu.au/

4.3 Extracting a data set

A four part chorale can be seen as a harmonic progression, i.e. a sequence of
quarter note length four-voice harmonies. This of course is a simplification,
since the four voices also play longer and shorter notes as ornamentations and
rhythmic alterations to the fundamental quarter note progression. Moreover,
the voices may have rests such that not all harmonies contain all four voices.

We have chosen to simplify the chorales by extracting only the harmonies,
or chords, happening on quarter note beats. Thus ornamentations and rhyth-
mic alterations are ignored completely. The resulting sequence of chords is a
sequence of snapshots of what notes were sounding on the quarter note beats.

9

Figure 2: The 3 first measures of BWV 87, original and preprosessed with
resolution quarter note.

The issue of rhythm in the individual voices, and their rhythmic interplay,
could be studied separately or perhaps in some relation to our study of harmonic
progressions. The ChordFinder java class that performs the chord extraction
can be set to find chords with another resolution, e.g. extracting a sequence of
all chords sounding on eigths og sixteenths, which is a higher resolution than
the fundamental quarter note chord progression. Thus the (short-note, or high-
resolution) ornamentations are also captured in the extracted sequence. But on
the other hand, longer notes will appear several times in successive chords as
the same note, since they will be sounding throughout several snapshots.

5 Neural net setup

We have used the SNNS 4.2 package for simulating neural networks. SNNS is
available for download at

http://www-ra.informatik.uni-tuebingen.de/SNNS

10

5.1 Network layout and training

We have used simple, fully connected feed-forward networks with one input
layer, one hidden layer and one output layer. Brief experiments with two hidden
layers showed no serious improvement over the networks with only one hidden
layer. The number of units in the input and output layers have varied according
to the data representation as described in 5.2, and the number of hidden units
has varied between 50 and 200, settling on 100. The nets were trained using
backpropagation.

5.2 Data representation for the neural network

Finding a suitable data representation for the neural network turned out to be
one long series of experiments. In a first group of approaches (representations
1-6, see below), we wanted the network to classify chord pairs or successions
as good or bad. Inspired by [11], we trained the network with a set of positive
instances and a corresponding set of negative instances generated from each of
the positive examples in one of the following ways:

• mutating the positive example by stepping one or more randomly chosen
voices a random number of semitones up or down

• mutating the positive example by interchanging two randomly chosen
voices, repeating this a random number of times

• creating a completely random new sample

The positive instances had target output 1 and the negative instances had target
output 0.

A second group of representations (7-8) focused on chord prediction instead
of classifying chord pairs as good or bad.

5.2.1 Representation 1: Absolute soprano pitch, voice intervals

[8 number inputs, 1 output]
Sliding a window over the extracted chord progressions, we generated data as
chord pairs (c1, c2). Each chord was represented as four numbers:

• the absolute midi pitch value of the soprano voice

• the interval between soprano and alto

• the interval between alto and tenor

• the interval between tenor and bass

These eight numbers (four in each of the two chords) were fed to the network
along with 0/1 target values. Results were very disappointing.

11

5.2.2 Representation 2: Soprano pitch class, voice intervals

[8 number inputs, 1 output]
A second attempt was almost identical, except the soprano voice was represented
modulo 12 to allow the network to recognise different notes with octave intervals
as members of the same pitch class. This was no improvement at all.

5.2.3 Representation 3: Voice intervals only

[6 number inputs, 1 output]
As a third attempt, we omitted the pitch data and gave only information on
the relative inter-voice intervals (soprano-alto, alto-tenor, tenor-bass). No im-
provement could be observed.

5.2.4 Representation 4: Unary pitch class

[96 boolean inputs, 1 output]
At this point we had to try something different. Changing to a unary pitch
class representation helped a lot. Each of the eight voices in the chord pairs was
encoded modulo 12 as 12 bits, 11 of which were 0, and the bit corresponding to
the appropriate pitch class was 1. At this, the network actually began learning
something.

5.2.5 Representation 5: Unary absolute pitch, trimmed (UAPT)

[190 boolean inputs, 1 output]
Feeling that we excluded too much information by modulating all pitches to
pitch classes, we made a unary encoding of the absolute pitches of all notes. In
principle, this gives 128 bits per note in a unary encoding. But since chorale
voices fall in restricted intervals (there are bounds on what a human voice can
sing), we could trim this representation to the number of possible notes for
soprano, alto, tenor and bass respectively. Running through the Bach chorales,
we found that the voices are restriced to:

• soprano ∈ [60; 81]

• alto ∈ [53; 74]

• tenor ∈ [48; 69]

• bass ∈ [36; 64]

where 60 represents the middle C. These bounds are inclusive, so we ended up
with 95 bits per chord.

12

5.2.6 Representation 6: UAPT, larger windows

[95 bits/chord, 3-4 input chords, 1 output]
The “95 bits per chord”-representation seemed reasonably good. Inspired by
the HARMONET encoding (see [9]), we enlarged the sliding window to include
more chords. The neural net was thus trained to classify chord successions as
good or bad.

5.2.7 Representation 7: Chord prediction

[95 bits/chord, 3 input chords, 1 output chord]
Keeping the unary encoding approach, we tried to predict the next chord based
on the preceding chords. This gave rise to another question: how to interpret
the output of the net as a chord? The neural nets with a single output between 0
and 1, we interpreted as whatever number was closest: 0 or 1. But the prediction
networks yield a number between 0 and 1 for every output unit, i.e. 95 decimal
numbers. A typical output can be seen in Table 2 and its corresponding target
output in Table 3 .This example was taken during training.

0.03533 0.02832 0.06512 0.02282 0.02102 0.02887 0.12558 0.00614 0.05689 0.75492

0.08691 0.02489 0.2459 0.00099 0.0101 0.00133 0.06755 0.00343 0.00768 0.01585

0.02396 0.01485 0.02055 0.01877 0.03843 0.0151 0.04214 0.01931 0.0064 0.18088

0.02622 0.05187 0.3197 0.16376 0.02844 0.00362 0.12577 0.00469 0.06975 0.07287

0.00369 0.01607 0.01225 0.02186 0.02229 0.0146 0.02614 0.02202 0.0462 0.06793

0.04082 0.36754 0.00048 0.30422 0.0048 0.00905 0.11816 0.01513 0.04006 0.08143

0.03444 0.02393 0.0009 0.01417 0.02082 0.02127 0.00803 0.00793 0.07309 0.00784

0.04245 0.12278 0.01828 0.00421 0.03094 0.10847 0.04376 0.10241 0.02434 0.00444

0.06928 0.23163 0.0159 0.37061 0.01004 0.00389 0.00922 0.02299 0.03583 0.01292

0.02165 0.01267 0.01129 0.01519 0.02041

Table 2: Example of typical prediction output

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0

Table 3: Target output for example

As can be seen, the 1’s at positions (10,1), (7,6), and (2,8) have a fairly high
output value (which they should), while the 0’s at positions (2,6), (3,4), and
(4,9) also have a high output value (which they should not).

The simplest way to interpret this output as a chord is to chose the unit
with the highest output value for each voice predicted. In the above example,
the first 22 values represent the 22 possible notes that the soprano might sing
in this chord (from midi value 60 to 81, inclusive). Of these, 0.75492 at position
(10,1) is the highest, thus a value of 60 + (10 − 1) = 69 should be chosen for
the soprano, which is an A. As discussed in 7.2.2, this interpretation could be
subject to further development.

13

In the experiments, we have used a version of this representation where the
soprano of the fourth chord was given in the input, and only alto, tenor and bass
voices where predicted, since when harmonising a given melody, the soprano is
given and cannot be changed.

5.2.8 Representation 8: Chord type analysis, prediction

[60 bits/chord, 3 input chords, 1 output chord]
In this representation, would like to incorporate harmonic analysis. Each chord
gets analysed, so that the key, type (major, minor etc.) and which tone of the
scale, each of the voices (not soprano) are singing. The scale is a 7 step diatonic
scale with the steps: prime, second, third, fourth, fifth, sixth and seventh. The
steps are implicitly defined from the chord type, ie. in a major scale the third
is the 4th half note and in a minor scale it is the 3rd.

Each chord is then represented as follows: The soprano modulo 12 (12
nodes). Alto, tenor and bass are represented as sclalesteps (prime, second,
third . . . , 3×7 nodes) and a direction up or down (2 nodes for each voice) from
the pitch in the last chord. The key is also represented as 12 nodes, and in our
implementation, we so far use 9 different chord types. With the 9 chord types,
we are able to analyse 88.733% of all chord we found in the Bach files.

Keep in mind, that the chord types, we are not able to analyse are a product
of voiceleading. The sound of the chord makes perfectly sense in the Bach file,
but since we have to chop the file into small bites we sometimes lose the overall
picture.

Then on 3 chords in this encoding and the soprano modulo 12 in the fourh
chord, the network has to learn to output the next chord type and key and
which scalesteps the soprano alto and bass are going to sing, and also if they
should jump up or down (or stay if possible) to that step.

The hope is that the neural network eventually will learn some connection
between all these things: chord type, key, note doubling and voice leading.

6 Experimental results

This section describes some results obtained by generating harmonisations using
the trained neural nets. Representations 1-4 showed so bad results just training
the neural nets that we did not go any further with them. For the remaining
representations, some results have been saved in midi files that are available
from the web page:

http://www.daimi.au.dk/∼elmer/harm

Please note that the generated midi files are slower than the original Bach
chorales and also simpler because of the preprocessing. The tempo could have
been adjusted to the original tempo, but it is easier to listen to the slower
versions. To justly compare the generated harmonisations to the original ones,
compare to the preprocessed Bach files instead of the original Bach files.

14

6.1 Representation 5: EA using NN fitness

6.1.1 Neural net training

First of all, a neural net was trained to recognise good chord pairs. The ex-
periments shown here used a training set of 10000 patterns and a validation
set of 5000 patterns, corresponding to approximately one fourth and one eighth
of all available patterns after preprocessing the entire Bach collection to this
representation.

The Bach chorale on which the midi files were generated was neither included
in the training examples, nor in the validation examples. The net consisted of:

• 190 input units (2 chord input)

• 1 hidden layer with 100 units

• 1 boolean output

Figure 3 shows the mean square error of the training set (lower, black line)
and the validation set (upper, red line). The harmonised midi files have been
generated using nets saved after training 0, 1, 2, 3, 5, 10, 20... epochs etc.

Figure 3: Mean square error training/validation.

6.1.2 EA setup

For each chord to be generated throughout a melody, an EA was used to search
through the space of possible chords. Fitness evaluation of each candidate was
done by feeding the pair (preceding chord, candidate chord) to the neural net

15

and using the single output value in [0;1] as a fitness value, 0 for bad, 1 for
good. As an example, see the evolution of the highest and mean fitnesses in the
population in Figure 4.

• Population size: 100

• Generations: 20

• 80 % of next generation created by tournament selection

• 10 % of next generation created by crossover

• 10 % of next generation created by mutation

Crossover of two chords is done by selecting the four voices in the child at
random from the two parents. This is a crossover that does not make much
musical sense and thus, we think, produces strange jumps in the search space.
The crossover operator in this setup therefore has the role of making wild new
guesses to probe for new and interesting areas in the search space.

The mutation operator, on the other hand, adds a small positive or negative
number δ of semitones to the value of one of the voices in the chord. At δ = 1,
this should produce a musically somewhat meaningful small alteration of the
chord. At greater values of δ, it is more uncertain what effect this has.

Brief experiments with larger populations or longer runs (more generations)
showed no compelling improvements on results. Generally the highest fitness
settles on a number between 0.6 and 1.0, often ending above 0.95.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14 16 18 20

highest fitness
mean fitness

Figure 4: EA fitness evolution while searching for one chord

16

One could object that using an EA to search for the best chord successor
is overkill, because the search space is not that large: 22 × 22 × 29 = 14036
and we could have just searched through the entire space, making 14036 fitness
evaluations per chord. With a population of 100 and running 20 generations, we
have made only 2000 fitness evaluations for each chord, but more importantly,
we would like the non-determinism of the EA in a harmonisation program.

6.1.3 Evaluation of the results

The web page presents different harmonisations of the file 008707b .mid after
training for 0, 1, 2,... etc. epochs. Please consult the web page to hear the
results. The following is an informal discussion of what we can hear from these
results.

The untrained network not surprisingly gives an awful sounding random
harmonisation.

After one epoch, we note a number of (unwanted) tritone jumps in the bass.
The first chord is hard to guess, because the network only has an empty chord
as the predecessor to guess from. The same chord is easier to guess at in the
repetition of the initial melody.

After twenty epochs, the result seems to improve a little, but there are many
places where two voices cross each other, to the effect e.g. that the alto jumps to
a note higher than the soprano. Besides breaking a fundamental harmonisation
rule, this makes it difficult to hear the melody, which we would normally think
of as the highest note throughout the chorale.

After 40 epochs we tend to think there are a little fewer strange dissonances,
but some chords that sounded alright earlier have now gone awry, e.g. in the
repetition.

80 epochs: we still have a lot of voice crossings, although perhaps there is a
little overall improvement in the choice of chords.

This tendency continues after 160 epochs; there are more true chords, but
still, they don’t fit together to form a cadence. This is perhaps the best harmon-
isation we have from this representation, and it is clearly unacceptable. After
320 epochs, we find that the number of good chords has decreased again, and
the overall harmonisation is rubbish.

Consulting Figure 3, one should perhaps think that the best harmonisation
would be made using the net saved at the minimum of the validation graph,
say, around 10 epochs. Based on the above observations, we disagree with this.
The early attempts, before 20 epochs, are simply too ugly in our ears.

The longer the neural net had been trained, the less likely the EA was to
improve in best fitness. Rather, the best fitness immediately settled on a level
that was either very close to 0 or very close to 1. This we take to mean that
the overfitting of the net to our training set destroyed the smoothness of the
fitness landscape and so deteriorated the EA’s ability to gradually climb to other
maxima.

17

6.2 Representation 6: EA using NN fitness

This set of experiments is set up much like the experiments with Representation
5. The changes are briefly listed below.

6.2.1 Neural net training

The neural net has twice as many inputs:

• 380 input units (4 chord input)

• 1 hidden layer with 100 units

• 1 boolean output

Figure 5: Mean square error training/validation.

6.2.2 EA setup

The EA seemed to have difficulties increasing the highest fitness, so we doubled
the crossover and mutation parameters:

• Population size: 100

• Generations: 20

• 40 % of next generation created by tournament selection

• 30 % of next generation created by crossover

• 30 % of next generation created by mutation

18

6.2.3 Evaluation

Sadly, we don’t find much to discuss in these results. If we’d had a dog, we
would have spared it the bad experience of listening to these harmonisations.
The repetition doesn’t seem to get better than the first occurrence of the initial
melody line, and we generally have difficulties even hearing the melody.

We obtained a slightly better, but still unacceptable, result by training a
similar net for 1000 epochs on a training set of all 43304 available 4-chord
successions extracted from the Bach chorales, including the five files harmonised
afterwards (see and listen to the web page). The result on 008707b .mid is
clearly better than those above. Our guess is that this is due not to the longer
training but to the larger training set and the fact that the harmonised files
themselves were included in the training set.

6.3 Representation 7: NN prediction

In these experiments, we have harmonised melodies from the Bach chorales using
only the neural net to predict the next chord. As described in section 5.2.7, the
output of the network can be interpreted in several ways. We have used the
simplest, choosing for each note the output with the highest value.

6.3.1 Neural net training

The training set consisted of 20000 patterns and the validation set of 1254
patterns, totalling all 21254 patterns available after preprocessing all the Bach
chorales.

• 307 input units (3 chord and soprano input)

• 1 hidden layer with 50 units

• 73 boolean output units (predicted alto, tenor and bass)

6.3.2 Evaluation

We shall resort to the same informal evaluation of the harmonisations of the file
008707b .mid. We have produced harmonisations on four other melodies, but
the overall conclusion we think holds for all five.

After only one epoch, this net is able to produce a lot of true chords and
some reasonable chord transitions, aspiring to real cadences. We were surprised
at how well this harmonisation stays on the same chord when the melody stays
on the same note. The chords are simple compared to those produced after
40-80 epochs, but at least they are chords. There is one clear problem, which
appears also in the next harmonisations, after 17 seconds, where the melody
jumps 3 semitones up. Let’s call it the “up-3-problem”.

After two epochs, we note more voice crossings. There are some good ca-
dences, however, and these progressions proposed by the net are different from
Bach’s own. The up-3-problem remains.

19

Figure 6: Mean square error training/validation.

After three and five epochs, the nets seem to lose some variation in the choice
of chords for the first half of the 008707b .mid chorale. Epoch 10 has a nice long
cadence in the end. Epoch 20 produced a good start but was generally worse
because it introduced more strange or dissonant chords. The up-3-problem
remains.

After 40 epochs, we observe to our satisfaction that the net has found some
sort of solution to the up-3-problem. Unfortunately, it does not repeat the
success in the repetition of the melody, where things get more messy. Note the
nice resolved dissonance after 28 seconds. We will take a closer look:

20

Note the 4th, 5th and 6th chords. They make a well prepared dissonanse in
the alto on the first beat of measure 8, and is resolved downwards on the next
beat. Just as the literature describes. That is: the alto on d stays on d and is
resolved to the db (which is really a c#) to form an A-major chord. It would
have been much better to continue with a D-minor chord, but instead it chooses
a Bb-major7. The two chords have 3 notes in common. A d in the bass could
have done the difference.

On the first three chords, we however don’t know what is going on. There
is no musical connection: F-major, F-major with an added fourth in the bass
(nonsense), C7 with the added seventh in the bass. A seventh in the bass
should always continued downwards, but not this time. Instead we have an
third doubled D-minor, which fits very well the next chords as described.

The program now tend to change chord more often, than after only a few
training epochs.

The increase in complexity also holds true after 80 epochs. The up-3-problem
is still solved on the first occurrence, but this harmonisation is generally messed
up in the repetition. We still think of it, however as one of the best overall
attempts with only a very few ugly non-chords.

After 160 epochs, we observe more voice crossings. It seems as though the
net has become more bold, or daring, succeeding sometimes in finding new and
intricate chord changes, improving also on the up-3-problem solution, but at
other times it fails and produces some awful dissonances that don’t fit anywhere.

The 320 epoch version is noticeably worse. There are problems with individ-
ual chord changes, but also, the earlier quite good connection with the melody
seems to be lost to this harmonisation. The up-3-problem is not solved any
longer.

21

Generally speaking, the neural nets trained on Representation 7 do not try
to make chords which are far away from the general key, but sometimes add
some unappropriate notes.

6.3.3 Generation with Bach input

On the web page is another set of files that were created by cheating. We
generated them by predicting chords on the basis of Bach’s own harmonisations.
In other words, the three chords given as input to the network were the original
Bach harmonies, and the output is thus free of accumulated error from prediction
based on other error-prone predictions. The files generated in this way are better
than the files generated on the basis of their own output, but of course, they
have had more help than should be expected when harmonising a melody. Still,
they give an idea of how good the network is when given the perfect input. Even
then, it makes errors and some strange chords now and then.

6.4 Representation 8: analysis and prediction

The neural network has been trained to output the values 0 or 1, in each group
of information (the a,t and b steps, up and down, key and chord type) we would
like to recognise. For interpreting the result, we have chosen simply to take the
output node in each group with the largest value.

So given the chord type, key, voicesteps and directions it is easy to make
the next chord. However it was necessary to make sure that each voice stays in
it’s pitch range, so sometimes we have to overrule the up and down directions
given.

As an example, the following output from the program shows the deciding
process (the up and down is omitted):

making chord # 9

sop%12=9

aStep=8, with value: 0.7042

tStep=5, with value: 0.43065

bStep=8, with value: 0.95173

root=5, with value: 0.44757

chordType=0, with value: 0.81529

new chord is a: 5-dur

The chordType 0 is a major (3 notes), and the key should be 5 (an f). The
soprano mod 12 is 9, that is the note a – a third in the f-major. The alto and
bass are going to sing the key tone (8 is not the pitch here) which is f, and the
tenor the fifth which is c. So totally that gives us a perfect keynote-doubled
F-major.

Unfortunately, that is not always the case. In the next example we do not
get a real chord back.

making chord # 10

sop%12=11

22

aStep=5, with value: 0.39717

tStep=5, with value: 0.40925

bStep=8, with value: 0.55927

root=5, with value: 0.27421

chordType=0, with value: 0.52679

new chord is a: ?

Soprano: h, alto: fifth in f major is a c, the same as the tenor, and the bass:
f. that is alltogether not a chord found in major-minor tonality. We can not
analyse it, and the network which have been trained on real chords must have
problems with recognising and using it as input for making the next chord.

The music from this representation is not impressive at all. It is not below
acceptable. We tried severel network structures, but the network does not seem
to learn which chord types, keys and soprano notes that make sense.

To help the network we have tried to make a dataset which is made from
chords in a row, which we everyhing about (that we are able to analyse in the
way described). We removed everything else. In this way, we don’t get wrong
information from chords we are not able to analyse. This didn’t seem to help
either, but experiments are still going on.

This representation was supposed to be the “musical” representation, giving
the neural network all the information a chorale maker would care about, so we
expect this one to be able to do a little better with some changes.

The next representation will be with the key note and the soprano repre-
sented in relative steps to the previous chords. Then we are totally independent
of the key, and the information the network will have to learn should be reduced
by a factor 12, since all chord connections and voice behaviours are treated with
no relations to pitch.

7 Discussion

The capabilities of the neural network have to be learned by experimenting. In
the beginning we used very simple representations and hoped, that the network
easily could see what was going on. That was not the case. The network has to
be used in the right way.

A first improvement was to use more output nodes than one. The chord
prediction in stead of chord evaluation led to the more proper use of the networks
capabilities.

Our best results come from the network which was trained to recognise the
chord progression copied directly from somewhere in the Bach chorales (Rep-
resentation 7). The trained network then in a way represents some standard
cadences in the Bach files, controlled by the melody. The network is quite
successful in doing this. However we have no knowledge of whether the net-
work have properly generalised Bach in the parts of the music, it has not been
trained on. An algorithmic way of generating the chord progressions (for exam-
ple a lookup in the files) is a more direct way to do what the network does. But
this approach would not give a result if the chord progression is not found in

23

the files. So our network of course does generalise – the question is the degree of
success. The effect of training on Representation 7 is very audible, if one hears
the midi files on the web page. There is a clear improvement after each of the
first epochs of training.

In our representations, we still are not able to represent that two voices are
singing the exact same note in pitch or the same note in octave(-s) distance.
The network of course remembers it all as patterns. Another representation
could therefore be to represent the chords as all notes possible to sing by the
human voice (piano-like representation), and then simply let “1” indicate that
a voice is singing this note and “2” if two voices are singing the same note.

7.1 Conclusion

Chorale harmonisation is a difficult problem.
We have not obtained any truly good results. If the HARMONET results

may be compared to an improvising organist, our best Representation 7 results
might be compared to a drunk improvising organist whose nose is itching all
the time.

The harmonisation problem should be solved using some amount of domain
knowledge. The GA approaches have had trouble because it is hard to encode
the knowledge in GA operators that still permit a flexible search. Neural net
critics as fitness evaluators are not good enough and fare better with the support
of rule-based critics. The HARMONET project had successful results, but that
setup included dividing training sets into musically relevant categories and also
dividing the overall task into smaller problems that were musically separable.
In this way the structuring of the experimental setup included some amount
of domain knowledge implicitly. Our attempts to use a fairly unbiased neural
network evaluator or predictor have had only moderate success, and the inclu-
sion of harmonic analysis in the generation of training sets should improve the
results considerably.

7.2 Room for improvement

7.2.1 Preprocessing and simplifying

As mentioned in 4.3, we have completely ignored the issue of rhythm in the in-
dividual voices, and their rhythmic interplay, which could be studied separately
or perhaps in some relation to our study of harmonic progressions. Much of the
tension of dissonances in the music are heavily dependent on the accentuations
of the music. Therefore we cannot get real structure in our music. The melody
has to make it all.

Bach has the habit of using the 1/8 notes also as stressed and unstressed,
and he often uses 1/8 notes to resolve dissonances. To get a closer look on
Bach, we must take into consideration the effect of the 1/8 notes. They form
the harmonic progression in all details, and indeed the melodic lines for the
voices. As mentioned our dataset is a simplification of Bach, since we don’t get

24

the in-between harmonics, so we don’t expect our program not to make some
mistakes!

7.2.2 Interpretation of prediction network output

This interpretation could be enhanced by using the chord analysis to evaluate a
number of combinations of the most plausible notes (i.e. the outputs with the
highest values).

7.2.3 EA improvements

We could have introduced musically meaningful or even smart crossover and
mutation operators, e.g. mutating to a chord that is close by on the circle of
fifths. But including musical knowledge in the operators also involves the danger
of restricting search to certain areas of the search space.

25

A Midi files

A.1 List of four-voice files

used for training

000206b_.mid

000306b_.mid

000408b_.mid

000507b_.mid

000606b_.mid

000907b_.mid

001306b_.mid

001405b_.mid

001606b_.mid

001707b_.mid

001805b_.mid

001805ba.mid

001907ch.mid

002007b_.mid

002011b_.mid

002406bs.mid

002506b_.mid

002806b_.mid

002908ch.mid

003206b_.mid

003604b2.mid

003706b_.mid

003806b_.mid

003907b_.mid

004003b_.mid

004006b_.mid

004008b_.mid

004311b_.mid

004407b_.mid

004606bs.mid

004705b_.mid

004803b_.mid

004807b_.mid

005505b_.mid

005708b_.mid

006005b_.mid

006206b_.mid

006402b_.mid

006408b_.mid

006502b_.mid

006507b_.mid

006606b_.mid

006704b_.mid

006707b_.mid

007007b_.mid

007011bc.mid

007305b_.mid

007408b_.mid

007706b_.mid

007807b_.mid

008008b_.mid

008107b_.mid

008305b_.mid

008405b_.mid

008506b_.mid

008606b_.mid

008707b_.mid

008807b_.mid

008906b_.mid

009005b_.mid

009106b_.mid

009209b_.mid

009307b_.mid

009408b_.mid

009606b_.mid

009906b_.mid

010207b_.mid

010306b_.mid

010406b_.mid

010806b_.mid

011007b_.mid

011308b_.mid

011407b_.mid

011606b_.mid

012206b_.mid

012306b_.mid

012506b_.mid

012606b_.mid

012705b_.mid

013306b_.mid

013506b_.mid

013906b_.mid

014007b_.mid

014403b_.mid

014406b_.mid

014500ba.mid

014505b_.mid

26

014608b_.mid

014806b_.mid

015105b_.mid

015301b_.mid

015305b_.mid

015309b_.mid

015403b_.mid

015408b_.mid

015505b_.mid

015606b_.mid

015705b_.mid

015804b_.mid

016206b_.mid

016406b_.mid

016606b_.mid

016806b_.mid

016907b_.mid

017405b_.mid

017606b_.mid

017807b_.mid

018007b_.mid

018305b_.mid

018400bx.mid

018707b_.mid

018806b_.mid

019406b_.mid

019406bg.mid

019412b_.mid

019705b_.mid

019707ba.mid

019710b_.mid

022602b_.mid

022701b_.mid

022711b_.mid

022902b_.mid

024403b_.mid

024410b_.mid

024415b_.mid

024425b_.mid

024432b_.mid

024437b_.mid

024440b_.mid

024444b_.mid

024446b_.mid

024454b_.mid

024462b_.mid

024511b_.mid

024515b_.mid

024517b_.mid

024522b_.mid

024526b_.mid

024528b_.mid

024537b_.mid

024540b_.mid

024812b2.mid

024823bs.mid

024833b3.mid

024842bs.mid

024846b5.mid

024853b5.mid

024859b6.mid

025200b_.mid

025300b_.mid

025400b_.mid

025500b_.mid

025600b_.mid

025700b_.mid

025800b_.mid

025900b_.mid

026000b_.mid

026100b_.mid

026200b_.mid

026300b_.mid

026400b_.mid

026500b_.mid

026600b_.mid

026800b_.mid

026900b_.mid

027000b_.mid

027100b_.mid

027200b_.mid

027300b_.mid

027400b_.mid

027500b_.mid

027600b_.mid

027700b_.mid

027800b_.mid

027900b_.mid

028000b_.mid

028100b_.mid

028300b_.mid

028400b_.mid

27

028500b_.mid

028600b_.mid

028700b_.mid

028800b_.mid

028900b_.mid

029000b_.mid

029100b_.mid

029200b_.mid

029300b_.mid

029400b_.mid

029500b_.mid

029600b_.mid

029700b_.mid

029800b_.mid

029900b_.mid

030000b_.mid

030100b_.mid

030200b_.mid

030300b_.mid

030500b_.mid

030600b_.mid

030700b_.mid

030800b_.mid

030900b_.mid

031000b_.mid

031100b_.mid

031200b_.mid

031300b_.mid

031400b_.mid

031500b_.mid

031600b_.mid

031700b_.mid

031800b_.mid

031900b_.mid

032000b_.mid

032100b_.mid

032200b_.mid

032300b_.mid

032400b_.mid

032500b_.mid

032600b_.mid

032700b_.mid

032800b_.mid

032900b_.mid

033000b_.mid

033100b_.mid

033200b_.mid

033300b_.mid

033400b_.mid

033500b_.mid

033600b_.mid

033700b_.mid

033800b_.mid

033900b_.mid

034000b_.mid

034100b_.mid

034200b_.mid

034300b_.mid

034400b_.mid

034500b_.mid

034600b_.mid

034700b_.mid

034800b_.mid

034900b_.mid

035000b_.mid

035100b_.mid

035200b_.mid

035300b_.mid

035400b_.mid

035500b_.mid

035600b_.mid

035700b_.mid

035800b_.mid

035900b_.mid

036000b_.mid

036100b_.mid

036200b_.mid

036300b_.mid

036400b_.mid

036500b_.mid

036600b_.mid

036700b_.mid

036900b_.mid

037000b_.mid

037100b_.mid

037200b_.mid

037300b_.mid

037400b_.mid

037500b_.mid

037600b_.mid

037800b_.mid

037900b_.mid

28

038000b_.mid

038100b_.mid

038200b_.mid

038300b_.mid

038400b_.mid

038500b_.mid

038700b_.mid

038800b_.mid

038900b_.mid

039000b_.mid

039100b_.mid

039200b_.mid

039300b_.mid

039400b_.mid

039500b_.mid

039600b_.mid

039700b_.mid

039800b_.mid

039900b_.mid

040000b_.mid

040100b_.mid

040200b_.mid

040300b_.mid

040400b_.mid

040500b_.mid

040600b_.mid

040700b_.mid

040800b_.mid

040900b_.mid

041000b_.mid

041100b_.mid

041200b_.mid

041300b_.mid

041400b_.mid

041500b_.mid

041600b_.mid

041700b_.mid

041800b_.mid

041900b_.mid

042000b_.mid

042100b_.mid

042200b_.mid

042300b_.mid

042400b_.mid

042500b_.mid

042600b_.mid

042700b_.mid

042800b_.mid

042900b_.mid

043000b_.mid

043100b_.mid

043200b_.mid

043300b_.mid

043400b_.mid

043500b_.mid

043600b_.mid

043800b_.mid

A.2 List of rejected files

The following files were weeded out.

A.2.1 Not four parts

000106b_.mid

000603b_.mid

000806b_.mid

001106b_.mid

001207b_.mid

001907b_.mid

002406b_.mid

002606b_.mid

002706b_.mid

002908b_.mid

003006b_.mid

003109b_.mid

003306b_.mid

003405b_.mid

004106b_.mid

004207b_.mid

004507b_.mid

004606b_.mid

005206b_.mid

005605b_.mid

005903b_.mid

006106b_.mid

006404b_.mid

006906b_.mid

006906ba.mid

007011b_.mid

007205b_.mid

007507b_.mid

29

007607b_.mid

007614b_.mid

007903b_.mid

007906b_.mid

009207b_.mid

009501b_.mid

009507b_.mid

009709b_.mid

009801b_.mid

010006b_.mid

010107b_.mid

010506b_.mid

010602ba.mid

010707b_.mid

011205b_.mid

011506b_.mid

011704b_.mid

012008ba.mid

012106b_.mid

012406b_.mid

012805b_.mid

012905b_.mid

013006b_.mid

013606b_.mid

013701b_.mid

013702b_.mid

013703b_.mid

013705b_.mid

013807b_.mid

014001b_.mid

014004b_.mid

014706b_.mid

014907b_.mid

015905b_.mid

016106b_.mid

017106b_.mid

017206b_.mid

017206ch.mid

017206vn.mid

017507b_.mid

017705b_.mid

017906b_.mid

018405b_.mid

018506b_.mid

019007b_.mid

019506b_.mid

022703b_.mid

024310b_.mid

024401bb.mid

024429bb.mid

024503b_.mid

024505b_.mid

024514b_.mid

024805b1.mid

024809b1.mid

024809bs.mid

024817b2.mid

024835b3.mid

024842b4.mid

024864b6.mid

025000b_.mid

025100b_.mid

A.2.2 Overlapping phrases

000707b_.mid

004106bs.mid

011106b_.mid

012006b_.mid

016506b_.mid

024417b_.mid

024828b3.mid

026700b_.mid

026700ba.mid

037700b_.mid

038600b_.mid

A.2.3 Incomplete rests

001007b_.mid

011909b_.mid

022707b_.mid

022709b_.mid

028200b_.mid

030400b_.mid

036800b_.mid

043700b_.mid

30

References

[1] Inge Svendsen. Harmonisering – enkel dur/mol-koral. systime, 1986.

[2] Heinrich Taube. Automatic tonal analysis: Toward the implementation of
a music theory workbench. Computer Music Journal, Winter 1999.

[3] Bradley J. Clement. Learning harmonic progression using markov models.

[4] G. Wiggins, G. Papadopoulos, S. Phon-Amnuaisuk, and A. Tuson. Evolu-
tionary methods for musical composition, 1998.

[5] Geraint Wiggins Somnuk Phon-Amnuaisuk, Andrew Tuson. Evolving mu-
sical harmonisation.

[6] Somnuk Phon-Amnuaisuk and Geraint A. Wiggins. The four-part harmoni-
sation problem: A comparison between genetic algorithms and a rule-based
system.

[7] D.Lehmann D.Gang and N.Wagner. Harmonizing melodies in real-time:
the connectionist approach. In Proceedings of the International Computer
Music Conference, Thessaloniki, 1997.

[8] D. Lehmann D. Gang and N. Wagner. Tuning neural network for harmo-
nizing melodies in real-time. In International Computer Music Conference,
Ann-Arbor, Michigan, 1998.

[9] Wolfram Menzel Hermann Hild, Johannes Feulner. Harmonet, a neural net
for harmonizing chorales in the style of j. s. bach, 1992.

[10] David B. Fogel. Blondie24: Playing at the Edge of AI. Morgan Kaufmann
Publishers, 2001.

[11] Lee Spector and Adam Alpern. Induction and recapitulation of deep mu-
sical structure. In Proceedings of International Joint Conference on Artifi-
cial Intelligence, IJCAI’95 Workshop on Music and AI, Montreal, Quebec,
Canada, 20-25 1995.

31

