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Abstract. In this paper, we will examine the importance of music com-
plexity as a factor for melody recognition in multi-voiced popular music.
The assumption is that the melody (or lead instrument) will contain
the largest amount of information – that it will be the least redundant
voice. Measures of melodic complexity calculated from pitch and timing
information are proposed. We test the different complexity measures and
different prediction strategies, and evaluate them on the task of predict-
ing which track of a MIDI file contains the main melody. Filtering out
melody tracks can be useful when searching large databases for simi-
lar songs. 108 melody track annotated pop songs were included in the
experiment.

1 Introduction

Locating the melody in music is a trivial listening task. Human listeners are
very effective in (unconsciously) picking out those notes in a – possibly complex
– multi-voiced piece that constitute the melodic line. Current work of ours de-
scribes an automatic method for locating the notes constituting a likely melody
throughout a piece of classical music stored in a MIDI file [1]. Reflecting the fact
that the melody can change between the voices present, the algorithm is able to
construct the melody of predicted notes from different voices in the music.

In this paper we assume that the melody role will be taken by a single
instrument throughout the piece. This assumption is expected to hold in popular
music. We address the problem of finding the single track of a MIDI file that
holds the main melody of a pop song. The goal is to evaluate the importance of
one single factor in solving this problem: music complexity. Different complexity
measures are proposed and evaluated.

Melody track identification is useful in systems that indent to change aspects
of the melody in a MIDI file, e.g. changing the instrument or muting the melody
in order to create a file suitable for karaoke. Melody is also an important as-
pect in music-related computer applications, for instance, in Music Information
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Retrieval (e.g., in music databases that offer retrieval by melodic motifs [2] or
Query by Humming [3]).

2 Complexity and Melody Perception

The basic motivation for our model of melody track identification is the obser-
vation, which has been made many times in the literature on music cognition,
that there seems to be a connection between the complexity of a musical line,
and the amount of attention that will be devoted to it on the part of a listener.
A voice introducing new or surprising musical material will potentially attract
the listener’s attention. However, if the new material is constantly repeated, we
will pay less and less attention to it and become habituated or accustomed to
the stimulus. Less attention is required from the listener and the voice will fall
into the background [4]. The notion of musical surprise is also related to the
concept of ‘expectation’ as it has been put forth in recent music theories [5, 6].
If we assume that the melody is the musical line that commands most atten-
tion and presents most new information, it seems natural to investigate melodic
complexity measures as a basis for melody detection algorithms.

Indeed, the idea of using information-theoretic complexity measures to char-
acterise aspects of musical development is not at all new. For instance, to cite
just two, in [7], a measure of Information Rate [8] computed over a piece of music
was shown to correlate in significant ways with familiarity ratings and emotional
force response profiles by human subjects. In [9] it was shown that kernel-based
machine learning methods using a compression-based similarity measure on au-
dio features perform very well in automatic musical genre classification.

3 Related Work

Current work of ours indicates that in classical music, the complexity or informa-
tion content of a sequence of notes may be directly related to the degree to which
the note sequence is perceived as being part of the melody [1]. The algorithm
described predicts at any point in the music the notes expected to belong to
the melody by comparing the complexity of each voice, when looking locally at
the immediately preceding notes (the algorithm requires the music to be divided
into tracks or voices). The complexity is measured in terms of entropy of notes
in the musical surface.

The melody track identification problem addressed in this paper is somewhat
similar. The melody is now expected not to change between the tracks, so a
single track must be predicted. This calls for a different prediction strategy. In
addition to local measures of complexity, also global complexity measures based
on entropy and compression of entire tracks are examined. A different evaluation
data set is required as well – we have tested our hypothesis on popular music,
assuming the melody is less likely to change between the tracks.

Melody track identification has recently been examined as a melody/accompa-
niment classification problem [10, 11]. Statistical properties (features) of tracks



and of note material (pitches, intervals, and note durations) from melody and
non-melody tracks can be learned and used to build a classifier. This approach
seems to work quite well. We consider our contribution to be able to fit very well
into or extend these models, by providing a few very significant features.

4 Music Complexity Measures

Shannon’s entropy [12] is a measure of randomness or uncertainty in a signal. If
the predictability is high, the entropy is low, and vice versa. We will apply this
measure to music in a suitable encoding. Let X be a discrete random variable on
a finite set X = {x1, x2, . . . , xn} with probability distribution p(x) = Pr(X = x).
Then the entropy H(X) of X is defined as:

H(X) = −
∑

x∈X

p(x) log
2
p(x) (1)

X could for example be the set of MIDI pitch numbers and p(x) would then
be the probability (estimated by the frequency) of a certain pitch. In the case
that only one type of event (one pitch) is present in the current time window,
that event is highly predictable or not surprising at all, and the entropy is 0.
Entropy is maximised when the probability distribution over the present events
is uniform.

4.1 Entropy of Musical Dimensions

We are going to calculate entropy of ‘features’ extracted from sequences of notes.
We will use features related to pitch and duration of the notes. A lot of features
are possible: MIDI pitch number, MIDI interval, pitch contour, pitch class, note
duration, inter onset interval (IOI) etc. (cf. [13]). We will test the following three
basic ones:

1. Pitch class (PC): consider the list of notes as a list of pitch class events
(the term pitch class is used to refer the ‘name’ of a note, i.e., the pitch
irrespective of the octave, such as C, D, etc.);

2. MIDI Interval (Int): encode the list of notes as a list of melodic intervals
between consecutive notes (e.g., minor second up, major third down, . . . );

3. Inter onset interval (IOI): encode the list of notes in terms of inter onset
interval classes, where the classes are derived by discretisation (a IOI is
given its own class if it is not within 10% of an existing class).

Each encoding then yields a sequence of events from a given sequence of notes,
and entropies can be calculated from the frequencies of these events resulting
in the following three basic measures: HPC , HInt, and HIOI . Two weighted
combinations of the basic features will also be tested: HPC,IOI = 1

2
HPC + 1

2
HIOI

and HPC,Int,IOI = 1

4
(HPC + HInt) + 1

2
HIOI .

Entropy is also defined for a pair of random variables with joint distribution:



H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log
2
[p(x, y)] (2)

We will test two joint entropy measures: Pitch class in relation to IOI (HPC×IOI)
and interval together with IOI (HInt×IOI). These are expected to be more spe-
cific discriminators.

4.2 Compression by Substitution

The entropy function is a purely statistical measure related to the frequency of
events. No relationships between events are measured. For example, the events
abcabcabc and abcbcacab will result in the same entropy value. However, if
we were to remember the first string we would probably think of something like
three occurrences of the substring abc – we infer structure. According to Snyder,
we perceive music in the most structured way possible [4].

To account for this, complexity measures based on compression could be con-
sidered. Music that can be compressed a great deal (in a lossless way) can then
be considered less complex than music that cannot be compressed. Shmulevich
and Povel [14] have examined methods for measuring the complexity of short
rhythmic patterns which are supposed to repeat infinitely. Tanguiane’s measure
[15] is based on the idea that a rhythmic pattern can be described as elaborations
of simpler patterns. Methods exist that substitute recurring patterns with a new
event, and store the description of that pattern only once, e.g. run-length encod-
ing or LZW compression [16]. This idea has been discussed in several musical
application contexts (e.g., in Music Information Retrieval [9] or in automated
music analysis and pattern discovery [17]).

LZW compression is not well suited for compressing short sequences – we
will examine compression of entire tracks as a melody prediction method in
section 5.3.

5 Prediction Models

We are going to test three prediction models, which will predict a melody track,
when presented with a MIDI file. The methods will be tested with several encod-
ings of the music, in order to see which variations result in the highest prediction
correctness.

Some assumptions about MIDI files have to be made. We require voice infor-
mation to be present in the file. MIDI files can be structured into tracks where
each track contains the events from an instrument (voice).3

If all events belong to the same voice, the melody track prediction task is
trivial. However, the more general problem of extracting the melody from such

3 Voice information can also be encoded as events belonging to different channels
within a track.



files is a hard, but interesting one, which might require automatic stream sep-
aration (adding voice information to the events) before predicting the melody.
Stream separation is a music analysis problem on its own. Although recent work
of ours indicates that this can be solved quite effectively via heuristic search
[18], we will use files containing voice information, in order not to mix different
factors in our investigation. After all, the voice information is part of the ground
truth of the experiment.

The methods we apply to the tracks assume that the tracks are more or
less single-voiced (do not contain chords). Methods for reducing a polyphonic
track into a representative monophonic sequence of notes where no notes are
overlapping in time, are often referred to as skyline-algorithms. Some variants
are suggested by Uitdenbogerd and Zobel [19]. Stream separation might also
be useful for this task. We do not require total monophony of the tracks, but
a simple reduction step is adopted. Notes having onsets separated by no more
than 35 ms are assumed to onset at the same time and are treated as a chord. For
every chord in every track, only the highest pitched note is taken into account.

5.1 Entropy-based Local Prediction

This method considers the note material through a sliding window. The window
is advanced from the beginning to the end in steps of 200 ms. Notes sounding
simultaneously with any part of the window are considered to be present in that
window.

For each track present in a window, a complexity value calculated on the
features extracted from the ‘sky-lined’ note sequence is calculated (e.g. HPC ,
entropy of the pitch classes of the events). The track yielding the highest entropy
value is the ‘winner’ of that window. Summing the winners over all windows gives
an estimate of which track contains the most complex voice for the longest time.
This voice will be predicted as the melody.

Different window sizes of 6, 9, 12, and 15 seconds will be examined, each in
combination with the 7 feature encodings presented in section 4.1.

5.2 Entropy-based Global Prediction

A simple variant of the local prediction method is to calculate the entropy of all
events in each track, and predict the track with the overall greatest complexity.
This will also be done in the 7 different encodings of the music.

5.3 Compression-based Global Prediction

This model predicts the track that can be compressed the least with an imple-
mentation of the LZW algorithm [16].

Sequences of events are transformed into strings of letters – one letter for each
event type. The size of the string s before and after compression is recorded, and
a compression ratio r = size(lzw(s))/size(s) is calculated. The track resulting



in the highest compression ratio – the track believed to be the most complex
voice – is predicted as the melody.

Applying the compression algorithm to short strings is likely to actually
expand the string (r > 1.0), giving misleading results. Simply ignoring all non-
compressible tracks proved to be an unfruitful strategy. Instead tracks with less
than 100 events were given an artificial ratio of zero – taking them out of com-
petition for the melody selection.

We examine the following encoding possibilities of the events in the tracks:
Pitch Class, Interval, IOI, Pitch Class × IOI, and Interval × IOI.

6 Experiments and Results

We want to test the hypothesis that we tend to listen to the most complex
voice at all times, and that this voice is experienced as melody. Popular music
in indeed often made in such a way that many accompanying instruments play
a pattern or a figure most of the time. All our prediction models are designed
to predict the least redundant voice. If the melody really is less repetitive than
the accompaniment, our methods will exploit this.

6.1 The Data

The prediction algorithms have been tested on two data sets compiled of MIDI
files found on the Internet. The first is a set of popular songs from the 70’s to the
90’s (‘Traditional’) – 79 files of pop and rock music hits, film themes etc., (e.g.
‘Africa’ (Toto), ‘Can’t Help Falling In Love’ (UB40), ‘Country Roads’ (John
Denver), ‘Blueberry Hill’ (Fats Domino)). The second set (‘Modern’) contains
29 songs downloaded from an Internet MIDI file download site – all were found
among the most popular songs in September 2006 (artists like 50 Cent, Britney
Spears, Evanescence, Linkin Park, and Maroon5).

All files were manually annotated by a trained musicologist, and a single track
was annotated as the melody (however, in case of more tracks representing the
melody in unison, all these tracks were annotated). More files were originally
downloaded, but some were found not to contain voice information and then
discarded as trivial (as discussed in section 5). In a few cases the melody was
found to be shifting so much between different tracks, that the annotator was
not able to decide which was the main melody. It was decided to omit such files
since they contain ambiguous ground truth.

The files in the Traditional data set contain each between 3 and 24 tracks
with notes – 9.05 on average per file. The files in the Modern data set contain
each between 5 and 21 tracks with notes – 11.0 on average. A theoretical baseline
for the classification task can be calculated by averaging the number of melodies
(in unison) per file divided by the number of tracks per file. This tells us that by
random guessing we would be able to achieve 15.3% of the melody tracks correct
in the Traditional data set, and 10.6% correct in the other.



6.2 Results

The prediction algorithms are evaluated in terms of percentages of the files in
the data set that had the melody track correctly predicted.

Table 1 shows the prediction results from the classification experiments based
on entropy. For each data set, we list local window-based prediction (see 5.1)
for four window sizes, and the results of the global classification via entropy of
the entire track (see 5.2). In each experiment (column) the value of the most
successful predictor has been highlighted.

Correctness (%), Traditional Correctness (%), Modern

Measure 6 s 9 s 12 s 15 s track 6 s 9 s 12 s 15 s track

HPC 25.3 24.1 29.1 30.4 22.8 27.6 27.6 27.6 27.6 13.8
HInt 27.8 29.1 29.1 26.6 24.1 20.7 20.7 24.1 24.1 10.3
HIOI 48.1 49.4 51.9 50.6 34.2 62.1 58.6 58.6 55.2 37.9

HPC,IOI 48.1 48.1 48.1 46.8 35.4 55.2 51.7 51.7 51.7 37.9
HPC,Int,IOI 43.0 48.1 49.4 49.4 41.8 51.7 55.2 51.7 51.7 37.9
HPC×IOI 32.9 41.8 48.1 49.4 34.2 41.4 48.3 58.6 58.6 37.9
HInt×IOI 30.4 39.2 43.0 43.0 39.2 31.0 37.9 51.7 51.7 41.4

Pi 50.6 45.6 44.3 43.0 36.7 34.5 34.5 34.5 34.5 20.7

Table 1. Entropy-based prediction results. Correctness is the percentage of the files
in the data set that had the melody track correctly predicted by using the respective
measure.

The numbers in the last row (Pi) correspond to a baseline experiment using
just the average pitch as a measure instead of entropy (predicting the highest
pitched voice in each window/track). This simple strategy can compete with
the other strategies in the Traditional data set, but is not of much use when
estimating the melody track in the Modern collection.

Table 2 lists the results of the compression based approach explained in 5.3.
When looking at the tracks globally, LZW compression of events seems to be a
better strategy than taking the entropy of the events, which in turn is better than
just picking the highest pitched voice – at least under the conditions examined.

Encoding Correctness (%), Traditional Correctness (%), Modern

PC 32.9 20.7
Int 32.9 31.0
IOI 43.0 51.7

PC × IOI 39.2 37.9
Int× IOI 39.2 41.4

Table 2. Compression-based prediction results.



The most significant finding is that the measures based solely on timing in-
formation of the tracks (IOI) are the most successful classifiers. It suggests that
there is a strong correlation between rhythmic complexity and melody percep-
tion. It could derive from the simple fact that the melody in popular music is
strongly related to producing the words of the song, which then might have
a more complex emphasis pattern or just rhythmical interpretation than any
accompanying instruments.

The algorithm is often misled when there is a solo in the music, that can
take over the role of being an alternative melody for a longer while. Instruments
constantly playing small ‘fills’ also attract the attention of our prediction models.
In such cases, it is not our assumption that is wrong, but the evaluation method
that is too coarse.

In some songs the accompaniment is simply more important than the melody
e.g. when the melody is moving ‘slowly’ by sustaining long notes. Again the lyrics
of the song might be an important factor: the melody can be perceived as the
most important voice simply because it expresses meaning through words. We
are not going to catch this kind of complexity from the MIDI file.

7 Conclusion

Methods for measuring complexity in music were proposed, and used as a basis
for melody track prediction models. The different measures and prediction mod-
els were tested on two data sets of popular music. The significance of different
parameter settings of the models was reported.

Although our models do not comprise the entire truth about the concept
of melody (actually it assumes almost no musical background knowledge), our
recognition rates tells us that complexity alone is certainly an important factor.
Besides testing our approach on more data, we expect that the way to continue
is to combine our research with a statistical approach. By using discriminative
machine learning, we can train a classifier to optimise the contribution of com-
plexity and other features (like average pitch) in a melody track prediction task.
Since our approach is not dependent up on any learned values we expect it to
be a valuable addition to these kind of systems.
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