STS: SigDiff The statistical significance of differences

Computational Approaches to Collocations Vienna, July 2002 Stefan Evert

Collocation identification

- Extract candidate pairs from corpus
 - adjacent word pairs (or pairs within window)
 - Adj+N pairs from NP chunks
 - Obj+V, Subj+V & PP+V from parse trees
- Rank candidates by "association scores"
 - true collocations should obtain high scores
 - using association measures (AMs)
- N-best list of highest-ranking candidates

Test data: AdjN set

- Adjective+Noun pairs
- Corpus of German law texts (800k words)
- Extraction of candidates
 - adjacent adjective+noun pairs, lemmatised
- Criteria for manual identification of TPs
 - intuitive notion of "typical" combinations
 - marked by two annotators
- Frequency threshold: $f \ge 2$

Test data: PNV set

- PP(Prep,N)+Verb pairs
- Newspaper corpus (FR, 8M words)
- Extraction of candidates
 - PP chunks and verbs co-occurring in sentence
 - verbs are lemmatised, but not the PPs
- Criteria for manual identification of TPs
 - idiomatic expression or support verb construction
- Frequency threshold: $f \ge 3$

AdjN data			
total	11 087		
<i>f</i> ≥2	4 652		
TPs	15.84%		
(<i>f</i> ≥2)	= 737		

PNV data			
total	294 534		
$f \ge 3$	14 654		
TPs	6.41%		
(<i>f</i> ≥3)	= 939		

Evaluation procedure

Evaluation procedure

Evaluation procedure: N-best lists

14 true		Rank	Candidate pair	t-score
positives		1. 2.	zuständig Behörde mündlich Verhandlung	17.391 17.239
6 false		3. 4. 5. 6. 7	entsprechend Anwendung personenbezogen Datum deutsch Mark gesetzlich Vertreter bürgerlich Gesetzbuch	17.171 13.853 13.656 13.387 13 171
⇒ precisio 14/20 = 70	n: %	8. 9. 10. 11. 12. 13	geltend Vorschrift erst Rechtszug schwer Fall andere Ehegatte gentechnisch Arbeit zuständig Stelle	12.832 11.841 10.912 10.868 9.842 9.629
total: 737 TPs		14. 15. 16. 17. 18.	elterlich Sorge juristisch Person sofortig Beschwerde beweglich Sache deutsch Bundespost	9.614 9.459 9.122 8.998 8.979
\Rightarrow recall:		19. 20.	bezeichnet Art andere Teil	8.898 8.857
14/737 = 1	.9%			

Footnote: the F-measure

- F-measure balances precision and recall
- a heuristic solution from information retrieval
- not useful for the evaluation of AMs (often: high precision, but fairly low recall)
- Yeh (2000): More accurate tests for the statistical significance of result differences is mainly concerned with the F-measure and hence not relevant in this context

Evaluation procedure: N-best lists

<i>N</i> = 100	MI	chi-sq.	t-score	log-l.	freq.
Precision	23.00%	37.00%	57.00%	65.00%	51.00%
Recall	3.12%	5.02%	7.73%	8.82%	6.91%
<i>N</i> = 500	MI	chi-sq.	t-score	log-l.	freq.
Precision	23.00%	34.00%	42.00%	42.80%	40.60%
Recall	15.60%	23.07%	28.49%	29.04%	27.54%
<i>N</i> = 1000	MI	chi-sq.	t-score	log-l.	freq.
Precision	21.70%	28.80%	32.90%	35.10%	30.70%
Recall	29.44%	39.08%	44.64%	47.63%	41.66%

Evaluation procedure: N-best lists

<i>N</i> = 100	MI	chi-sq.	t-score	log-l.	freq.
Precision	23.00%	37.00%	57.00%	65.00%	51.00%
Recall	3.12%	5.02%	7.73%	8.82%	6.91%
<i>N</i> = 500	MI	chi-sq.	t-score	log-l.	freq.
Precision	23.00%	34.00%	42.00%	42.80%	40.60%
Recall	15.60%	23.07%	28.49%	29.04%	27.54%
<i>N</i> = 1000	MI	chi-sq.	t-score	log-l.	freq.
Precision	21.70%	28.80%	32.90%	35.10%	30.70%
Recall	29.44%	39.08%	44.64%	47.63%	41.66%

Evaluation procedure: Precision plot

part of significance list (%) [of 4652 candidates]

Evaluation procedure: Precision plot

part of significance list (%) [of 4652 candidates]

Precision against recall

Precision graphs: PNV data

Precision against recall: PNV

Differences between two AMs

What is statistical significance?

- significant = meaningful? substantial?
- Kilgarriff (2001): Comparing Corpora cites a statistics textbook

None of the null hypotheses we have considered with respect to goodness of fit can be *exactly* true, so if we increase the sample size (and hence the value of χ^2), we would ultimately reach the point when all null hypotheses would be rejected. All that the χ^2 test can tell us, then, is that the sample size is too small to reject the null hypothesis.

(Owen/Jones: *Statistics*, 1977, p. 359)

Significance vs. relevance

- we must distinguish between significance and relevance
- significance = Could the observed difference be due to chance, or is there a systematic effect, however small?
- relevance = Is the difference large enough to be of interest for our application?
- we consider only significance in this STS (→ Directions for a combined approach)

Reminder: significance tests (ST)

- **null hypothesis** H₀: observed differences are due to chance
- alternative hypothesis H₁: anything else
- interesting cases = rejection of H₀
 (i.e. sufficient evidence against H₀)
- **significance level** = confidence of rejection (not the ST's confidence in its decision!)

Reminder: significance tests (ST)

- ST can make two kinds of errors:
 - **type I** error = unjustified rejection of H_0
 - **type II** error = failure to reject H_0
- risk of type I error controlled by sig. level
- type I error is highly unlikely in our situation, even if the assumptions of a ST are not met
- power of ST = risk of type II error and the precise meaning of H₀ are of interest

Reminder: significance tests (ST)

- ST can make two kinds
 - type I error = uni
 type II error = fail
 does anybody need to be convinced?
- type I error is highly unlikely in our situation, even if the assumptions of a ST are not met
- power of ST = risk of type II error and the precise meaning of H₀ are of interest

A closer look at H₀

- Null hypothesis = question that ST answers *"Are observed differences due to chance?"*
- What is "chance", intuitively speaking?
- What does a rejection of H₀ mean?
- How are random differences explained?
- A more intuitive and explicit question: *"If we repeated the experiment, would measure A again perform better than B?"*

A closer look at H₀

- A more intuitive and explicit question: *"If we repeated the experiment, would measure A again perform better than B?"*
- this is **not** the same as the first question!
- \rightarrow Directions, for a discussion of possible formulations of the null hypothesis

Program for this STS

Program for the rest of this STS:

- Look at several STs that have been used and/or are suggested by statistics textbooks -
- precise formulation of H₀ (question)
- assumptions and theoretical model
- comparative discussion of ST's power

Siegel (1956): Nonparametric Tests for the Behavioral Sciences Agresti (1990): Categorical Data Analysis

A religious belief

- parametric test vs.
 non-parametric (distribution-free) test
- parametric tests assume specific distribution (e.g. normal) with parameters
- non-parametric tests make weaker assumptions → more general
- when applicable, parametric tests are usually more powerful

A religious belief, but ...

- many tests which assume a distribution with parameters are considered non-parametric
- even χ^2 test! (based on normal distribution)
- precisely: parametric tests assume specific distribution of a numerical property *in the population*, while non-parametric tests at most assume that a certain proportion of the population has a particular feature
- we use only non-parametric tests

Other classification criteria

- asymptotic vs. exact test (less important, since we have large samples)
- continuous vs. discrete data (same as above)
- scale of measurement:
 interval ↔ ordinal (ranking) ↔ nominal

related vs. unrelated samples

 (tests for independent data are usually less
 powerful when applied to related samples)

A practical criterion

- the **strength** of a significance test, giving a rough scale from strong to weak
- **strong** test = requires more evidence (perhaps too much) to find significant diff.
- weak test = detects significant differences more easily, but may overestimate them
- note that a strong test is *less* powerful
- strength is an intuitive notion \neq applicability

General classification of STs

General classification of STs

Pearson's χ^2 test

tbl	t-score	frequency
TPs	322	283
FPs	678	717

number of TPs and FPs for 1000-best lists

> chisq.test(tbl)

• p-value = $0.064 \rightarrow$ difference not significant

Pearson's χ^2 test

- we usually apply χ^2 test at 95% confidence level (significance level α =0.05)
- *either* perform χ^2 test for an "interesting difference" determined from the plot
- or compute χ^2 test for various *N*-best lists and add results to precision graphs
- cannot easily mark significant differences in precision-against-recall plot

Precision graph with χ^2 test

Multiple comparisons

- for introduction, see e.g. Cohen (1996):
 Getting What You Deserve from Data
- at 95% confidence level, as many as one in twenty test applications will randomly report a significant difference (type I error)
- therefore, even if there are no systematic differences between the two AMs, we must expect some red triangles in the plot

Multiple comparisons

- we do have multiple comparisons, but the results are highly correlated (because they are parts of the same rankings)
- it is unclear, if and how to correct for multiple comparisons (\rightarrow Directions)
- no problem for pre-defined *N*-best list
- single χ^2 test for "interesting difference" \rightarrow multiple comparisons by eye

Confidence intervals

- instead of markers for significant differences, we can also display confidence intervals around precision graphs
- confidence intervals mark differences that can be explained by random effects
- ranges are obtained from binomial test (at 95% confidence level) and differ slightly from results of χ^2 test

Confidence interval graphs

Pearson's χ^2 test: the details

- theoretical model: association measures A and B choose candidates for each *N*-best list independently; measure A selects TP with probability p_A measure B selects TP with probability p_B
- null hypothesis H_0 : $p_A = p_B$
- *N*-best lists are assumed to represent independent samples

Pearson's χ^2 test: problems

- χ² test assumes that p_A and p_B are constant for the N highest-ranking candidates
 → not consistent with precision graphs
- N-best lists are in truth related samples (re-rankings of the same candidate set)
- intuitively: AMs have fewer "opportunities" to make different choices than predicted → strong test (probably too strong)
- more appropriate: paired classification test

McNemar's test

tbl	– t-score	+ t-score
– freq	610	46
+ freq	7	276

- + = in 1000-best list = not in 1000-best list
- ideally: all TPs in 1000-best list (possible!)
- H₀: differences between AMs are random

McNemar's test

tbl	– t-score	+ t-score
– freq	610	46
+ freq	7	276

+ = in 1000-best list - = not in 1000-best list

- > mcnemar.test(tbl)
- p-value < 0.001 \rightarrow highly significant

McNemar's test: discussion

- McNemar's test only considers data where the two association measures differ
- null hypotheses: when A and B differ, A is just as likely as B to make the right decision
- no further assumptions about classification \rightarrow seems to be the most appropriate ST
- McNemar uses normal approximation; substitute binomial distribution for exact test

McNemar's test: discussion

- McNemar's test might consider differences for a few exotic cases significant
- even if the AMs perform equally badly for the candidates common to both *N*-best lists
- hence, McNemar is likely to overestimate differences and is a very weak test
- idea: use McNemar as lower threshold, \triangle and χ^2 test as upper threshold \blacktriangle

Precision graphs with both tests

Precision graphs with both tests

Interpretation of the combined test

- Iower threshold (McNemar): when the AMs differ, A is systematically better than B
- upper threshold (χ² test):
 A *always* makes systematically better choices than B, rather than agreeing with B's mistakes
- McNemar only considers choices for TPs, whereas χ^2 test considers all choices

Local vs. global tests

- *still* have problem of multiple comparisons
- esp. McNemar's test has high risk of type I error for two very similar AMs
- multiple comparisons are a problem for all local tests, based on single *N*-best lists
- try global tests, which compare full rankings (ranking of TPs for test of performance)
- STs for related ordinal data (ranking tests)

Rank correlation coefficients

- e.g. Spearman's rank correlation or Kendall rank correlation (Siegel, 1956)
- test whether high-ranking TPs from AM A are also assigned high ranks by B
- problem: if measure A ranks TPs much higher than measure B, but in the same order, tests report a strong correlation
- not useful for our purposes

Walsh sign test (cf. Siegel, 1956)

- answers the question whether measure A systematically ranks TPs higher than B
- ranks for each TP are compared: + / -
- H_0 : + and occur equally often
- problem: imagine measures A and B, where A puts each TP exactly one rank higher than B
- only +'s \rightarrow A considered significantly better
- but there will be no difference in performance

Wilcoxon signed ranks test (Siegel)

- considers size of differences between ranking
- paired test: compares rankings for each TP
- H₀: the (absolute values of) positive differences (A ranks higher than B) are on average as large as those of negative differences (B ranks higher than A)
- this corresponds to our intuition that a large difference in ranks is more important

Wilcoxon signed ranks test (Siegel)

- note that Wilcoxon test is based on ranking of (the absolute values of) rank differences
- need two parallel lists (vectors) giving the ranks of all TPs according to A and B, e.g.
 rank.TP.tscore and rank.TP.freq
- p-value < 0.001 \rightarrow highly significant
- should we compare actual rank differences?

Mann-Whitney test (Siegel, 1956)

- similar to Wilcoxon, but tests whether measures A and B rank TPs equally high on average (for unrelated samples)
- can be computed with same R function
- p-value < 0.022 \rightarrow not significant
- seems to be stronger than Wilcoxon test, less sensitive to small systematic rank differences

Summary

Directions for the future

- fill the gap between χ^2 test and McNemar (generally: related and unrelated samples)
- the problem of multiple comparisons
- significance and relevance
- What is the question?

Filling the gap

- STs for unrelated samples seem too strong, tests for related samples seem too weak
- goal: ST that estimates how often A could (& should) have made a better choice than B
- or are we mixing confidence & relevance?
- perhaps answer two questions separately: How many differences are there between A and B Is A systematically better on these differences?

Multiple comparisons, again

- correcting for multiple comparisons is an open question for local STs
- global STs do not have this problem, but:
- status of global tests is not entirely clear (i.e. their strength compared to local tests)
- practical problem: global tests require manual annotation of entire candidate set
- there are still multiple comparisons in a pairwise evaluation of *k* AMs

Significance and relevance

- combine significance and relevance for a practical evaluation of AMs
- null hypothesis: no relevant difference
- alternative: there is a relevant difference,
 e.g. measure A is at least 50% better than B
- need to define what "50% better" means
- can we apply non-parametric tests?
- similar to estimation of confidence intervals

What is the question?

- all STs we have considered test the null hypothesis, that differences are due to chance
- STs differ in what "random differences" are
- make H0 more explicit (esp. for Wilcoxon and Mann-Whitney test) and compare to intuition
- our intuitive question was: *"If we repeated the experiment, would measure A again perform better than B?"*

What is "repeat the experiment" ?

- which parameters may change?
 - type of collocation & precise definition
 - domain & text type
 - pre-processing & extraction methods
 - text source (e.g. newspaper vs. newsgroups)
 - size of source corpus
 - different segement of same source corpus
- can we obtain empirical results?