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Abstract

The Self-Organizing Map (SOM) is a powerful tool for exploratory data
analysis which has been employed in a wide range of data mining applications.
We present a novel approach to reveal the inherent hierarchical structure of
data using multiple SOMs together with heuristics which optimize the sta-
bility. In particular, we address shortcomings of the Growing Hierarchical

Self-Organizing Map (GHSOM) regarding the decision which areas in the hi-
erarchical structure need to be represented by a finer granularity and which
areas do not. We introduce the Tension and Mapping Ratio extension to ex-
ploit specific characteristics of the SOM based on the topology preservation.
As a main result, in contrast to the GHSOM, the inherent hierarchical struc-
ture of the data is revealed without requiring the user to define a threshold
parameter which controls the map sizes of the individual SOMs. We evaluate
our approach using data from real-world data mining projects in the music
domain.
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1 Introduction

With the increasing amount of data available digitally the potential of intelligent
data analysis techniques has risen. The field of applications covers simple data
surveys as well as sophisticated summaries for decision support. One important
aspect of data analysis is to understand the inherent structure and organization
of the data. Furthermore, algorithms which reveal the data structure are valuable
tools in the automatized organization of digital libraries containing, for example,
text-documents or pieces of music. One prominent algorithm with such capabilities
is the Self-Organizing Map (SOM) [16] which is frequently employed in the field of
data exploration.

The SOM maps high-dimensional data to a 2-dimensional map display in such
a way that similar data items are located close to each other on the map. Two of
the main advantages of the SOM are the computational efficiency and the intuitive
way the results are presented to the user. However, the basic SOM lacks the abil-
ity to extract the hierarchical structure of the data. This has been addressed for
example in [31] where the results of the SOM were used as input for hierarchical
agglomerative clustering algorithms. Other alternatives include, for example, the
hierarchical SOMs [18, 19, 24]. A top-layer SOM organizes the data into a few
categories which are further refined on SOMs in sub-layers. However, the user is
required to predefine the granularity of the individual SOMs as well as the overall
depth of the structure.

The Growing Hierarchical Self-Organizing Map (GHSOM) [6] addresses this
problem through a flexible structure which grows to fit the data. A quality measure
based on the variance of the data together with threshold parameters are used to
decide which granularity is appropriate for a specific SOM, and which areas of the
SOM are promising candidates for further hierarchical expansion.

In this paper we identify shortcomings of the GHSOM using illustrative examples
and present a new extension to overcome these. The Tension and Mapping Ratio
(TMR) extension is based on two new measures which analyze the topological and
cluster stability of the SOM. The result is an algorithm with improved decisions
regarding the necessary granularity to represent the inherent hierarchical structure
of the data and requires the user to adjust fewer parameters.

In the following two sections the SOM and the GHSOM algorithms are reviewed.
In Section 4 the TMR extension is introduced. In Section 5 we apply the GHSOM-
TMR to two real-world datasets both from the music domain and evaluate the
results. Conclusions are drawn in Section 6.

2 Self-Organizing Maps

The Self-Organizing Map (SOM), as proposed in [13] and described thoroughly
in [16], is one of the most distinguished unsupervised artificial neural network mod-
els. The SOM maps high-dimensional input data to a usually 2-dimensional map
display in such a way that similar data items are located close to each other on the
map. The SOM consists of an ordered set of units i, which are often arranged on a
rectangular grid. Each unit i is assigned a model vector mi in the high-dimensional
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data space. A data item xk is mapped to the best matching map unit ck with the
smallest distance between mi and xk defined by

ck = arg min
i

‖xk −mi‖ . (1)

Two basic training methods exist to adapt the model vectors to fit the data.
The SOM algorithm in its original form is an online algorithm which takes one data
item per iteration as input and makes small adaptations sequentially. On the other
hand, the batch-SOM [14] algorithm takes all data items as input per iteration and
thus makes bigger adaptations. Here we will review the batch-SOM algorithm. A
detailed discussion of the online algorithm can be found in [16].

The model vectors are adapted iteratively in two steps. In the first step ck

is calculated for all xk according to Equation 1. In the second step each model
vector is adapted to better fit the data it represents. To ensure that each unit i
represents similar data items as its neighbors, the model vector mi is adapted not
only according to the assigned data items but also with respect to those assigned to
the units in the neighborhood. The neighborhood relationship between two units
i and j is usually defined by a Gaussian-like function hij = exp(−d2

ij/2r2
t ), where

dij denotes the distance between the units i and j on the map, and rt denotes the
neighborhood radius which is set to decrease with each iteration t. The second step
can be formulated as

m∗
i =

∑

k hick
xk

∑

khick

, (2)

where m∗
i is the updated model vector. An efficient implementation is to first

calculate the mean x̄i of the xk which are mapped to mi and then calculate m∗
i as

follows

m∗
i =

∑

j njhij x̄j
∑

j njhij

, (3)

where nj denotes the number of items mapped to unit j, which is basically a
weighted sum of all data vectors in the neighborhood parameterized by the radius
rt.

The SOM algorithm and some of its properties are illustrated in Figure 1. The
dataset was generated by a mixture of 6 Gaussians with different covariances and
priors. The model vectors of the SOM can be initialized randomly or based on more
advanced techniques such as Principal Component Analysis (PCA) [11]. Figure 1
shows that after 5 iterations with a rather large neighborhood radius the SOM has
roughly adapted to the structure of the data. Note that the model vectors are
located around the center of the dataset because each model vector is representing
many points due to the large neighborhood radius. After 20 iterations with a smaller
neighborhood radius the SOM has spread out over the whole set and has adapted
to the fine structures in the data. The resulting map is a non-linear projection of
the data space where the overall order is preserved. One characteristic of the SOM
is that not all units represent the same number of items. For example, some units
represent no items, and thus are not labeled with a number. These interpolating
units are a result of the neighborhood constraints. The Smoothed Data Histogram
(SDH) visualization [26] utilizes this information to visualize the cluster structure.
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Figure 1: SOM training, mapping and visualization. The plots from left to right and
up to down depict: (1) the probability density function (PDF) of the dataset; (2) the
sample drawn from this density, where each data point is labeled with a number from 1
to 6 indicating the Gaussian it was generated by; (3) the model vectors of a 7×7 SOM
randomly initialized in the data space, where dots depict the model vectors and the lines
connect immediate neighbors on the grid; (4) the model vectors after 5 iterations of the
batch SOM algorithm and (5) after 20 iterations; (6) the map units in the visualization
space, where each unit is labeled with the number corresponding to the Gaussian which
is most frequently represented by this unit; (7) the Smoothed Data Histogram (SDH) and
(8) the U-matrix visualization of the map.

Note that all 6 clusters and their relation to each other can clearly be identified.
Another important characteristic of the SOM is that areas in the data space with
a high density are approximated by more model vectors than sparse areas. Thus,
the distances between model vectors are large in sparse areas and small in areas
with a high density, which is visualized by the U-matrix [30]. The results of the
U-matrix correspond roughly to those of the SDH. Clearly visible are the large
distances between the clusters 1 and 4, 3 and 6, and between the clusters 4 and 6.

The SOM mapping for a less abstract test set is depicted in Figure 2. The
animal dataset consists of 16 animals which are described by several attributes,
such as how many legs they have, if they can swim, hunt, and so forth [16]. The
map and the corresponding SDH visualization reveal that the dataset consists of
three clusters, one larger one on the right representing mammals with a gradual
separation of bigger ones in the upper regions and smaller ones below. On the left
the birds are separated into two clusters.

The SOM has been employed in a wide range of applications, ranging from fi-
nancial data analysis, via medical data analysis, to time series prediction, industrial
control, and many more [5, 16]. It basically offers itself to the organization and in-
teractive exploration of high-dimensional data spaces. One of its most prominent
application areas is the organization of large text archives [17, 22, 29] which scale
up to millions of documents [15, 12].
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Figure 2: 4×3 SOM trained with animal dataset.

Figure 3: Example for a GHSOM architecture consisting of 3 layers. The shaded units
are expanded on the next level.

3 Growing Hierarchical Self-Organizing Maps

The Growing Hierarchical Self-Organizing Map (GHSOM) [6, 7, 8, 23] enhances the
capabilities of the basic SOM in two ways. The first is to use an incrementally
growing version of the SOM, which does not require the user to directly specify
the size of the map before hand, the second enhancement is the ability to adapt to
hierarchical structures in the data. Both issues have been addressed separately by
means of adaptive architectures, e.g. the Growing Grid [9], or the Growing SOM [1],
or hierarchies of independent SOMs, e.g., the Hierarchical Feature Map [24] or the
Tree Structured SOM [18, 19].

The key idea of the GHSOM is to use a hierarchical structure of multiple layers
where each layer consists of a number of independent SOMs. One SOM is used at
the first layer of the hierarchy. For every unit in this map a SOM might be added
to the next layer of the hierarchy. This principle is repeated with the third and any
further layers of the GHSOM. An example of a GHSOM architecture with 3 layers
is depicted in Figure 3.

Table 1 gives an outline of the basic GHSOM algorithm. The training process
starts with a small map of 2×2 units in the first layer which is organized according
to the standard SOM training algorithm. After the model vectors have converged
some decisions are made. Namely, (2A) if a new row or column should be inserted
to improve the quality of the representation on this level, (2B) if the quality of the
representation should be improved on the next hierarchical level by expanding one or
more units, or (2C) if the SOM represents the data well in its current form. These
decisions are the core of the GHSOM algorithm as they control the hierarchical
structure and the shapes of the individual SOMs. In case of 2A a new row or
column is inserted and the training process is repeated. In case of 2B for each map
unit which needs to be expanded a new 2×2 SOM is created in such a way that the
overall orientation is preserved. The training process is repeated for each of these
new maps. Otherwise, (2C) if neither decisions 2A nor 2B are made no additional
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0 Initialize first layer SOM, → 1.

1 Train SOM, → 2.

2 Decide:

A – Insert new row or column, → 3.

B – Expand units on next hierarchical level, → 4.

C – SOM represents data well, → end.

3 Insert new row or column, → 1.

4 For each unit to expand:

Create new 2×2 SOM, preserve orientation, → 1 (using only the

subset of the data mapped to the respective unit).

Table 1: Outline of the GHSOM algorithm.

steps are necessary.

2A – Should a new row or column be inserted?

The intention is to increase the map size until all data items are represented well.
This is measured based on the quantization errors, which describe how well a data
item is represented by its best matching unit.

The first step is to calculate the mean quantization error of each unit i (MQEi),

MQEi =
1

|Ui|

∑

k∈Ui

‖xk −mi‖ , Ui = {k | ck = i}. (4)

Then a summary which describes how well all units together represent the data is
calculated as the mean of all MQEi (MMQE). Alternatively, instead of using the
mean the sum of all MQEi (SMQE) can be used [3]. The MMQE (or SMQE) is
then compared to the mean quantization error of all data items with respect to a
virtual unit with its model vector set to the mean of the dataset. We will refer to
the mean quantization error of the virtual unit as MQE0. If the following inequality
is fulfilled a new row or column of map units is inserted in the SOM,

MMQE > τ1MQE0, (5)

where τ1 is a user defined parameter.
Once the decision is made to insert new units the remaining question is where to

do so. The GHSOM uses a slightly modified version of the Growing Grid heuristic.
First the unit i with the largest MQEi is defined to be the error unit. Then the
most dissimilar adjacent neighbor, i.e., the unit with the largest distance in respect
to the model vector, is selected and a new row or column is inserted between these.

2B – Should map units be expanded on the next hierarchical level?

If the Inequality 5 is not fulfilled, the next decision to be made is whether some
units should be expanded on the next hierarchical level or not. This decision is not
as critical as the previous since it is possible to expand additional units after the
training process, or to remove a subbranch without influencing other branches of
the GHSOM architecture.
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The original GHSOM algorithm checks if the following inequality is fulfilled to
decide whether unit i should be expanded,

MQEi > τ2MQE∗
0, (6)

where MQE∗
0 is the mean quantization error of the whole dataset1 with respect to

the virtual unit located in center of the whole dataset. Again, τ2 is a user defined
parameter. To simplify matters, instead of using Inequality 6, it is possible to use
|Ui| > n as measure [3]. For example, n = 10 would mean that all units with more
than 10 items are expanded.

Note that this will usually not lead to a balanced hierarchy. The depth of the
hierarchy in different branches will rather reflect the diversity in the distribution of
the dataset which should be expected in real-world data collections.

Parameters

The two main parameters of the original GHSOM algorithm are τ1 from Inequality 5
and τ2 from Inequality 6. Generally, the values for τ1 and τ2 are chosen such that
1 > τ1 >> τ2 > 0. The choice of the parameter τ2 is not critical as it is possible to
set it to values smaller than necessary and to decide after the training process how
many layers are sufficient. On the other hand, τ1 leads to decisions which cannot be
undone at later stages without retraining the GHSOM. Setting τ1 to small values
will lead to small maps and a deep hierarchy, while large values will result in large
maps with a flat hierarchical structure. Usually the user will train and manually
evaluate several maps until an appropriate value for τ1 is estimated.

Orientation

Without further precautions no relationship between different sub-branches of the
hierarchical structure would exist, other than the relationship defined by the par-
ent map which they have in common. For example, in Figure 3 the maps of the
second layer could have an arbitrary orientation (i.e., they could be rotated in any
direction), and thus would not allow to draw conclusions on the similarity of the
3rd layer map to any of the other two 2nd layer maps, other than the relationships
represented by the first layer map. A simple solution to this is to enforce a specific
orientation on the sub-layer SOMs through initializing the model vectors of the 2×2
SOMs in such a way that they correspond to the orientation of the parent map.
For example, the 4 model vectors could be initialized with the means of the model
vector of the parent unit and each of its 4 immediate neighbors. For units located
at the border of the SOM we use the existing units to interpolate a virtual unit
based on the assumption that the map can locally be approximated by a linear
hyper-plane [3]. For example, if the unit i is to be expanded which is located on the
left border, then the unit to its right j is used to create a virtual unit vij′ beyond
the left border mij′ = mi + (mi −mj).

Example

Figure 4 depicts a flat representation of the GHSOM trained with the same animal

1In contrast to MQE0, which is the mean quantization error of the data items in the respective
sub-branch of the GHSOM.
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Figure 4: GHSOM trained with the animal dataset (τ1 = 0.5 using SMQE).

dataset illustrated in Figure 2. The dataset is split into 6 clusters on the first level
separating the mammals into three groups of large herbivore, medium predators,
and large predators on the left, and birds on the right. The cluster representing
all birds but the Eagle is further refined on the second level. Note that Owl and
Hawk are located closer to the Eagle than for example Dove and Chicken, which is
a result of initializing the orientation of the sub-layer according to the orientation
of the parent-layer.

4 Tension and Mapping Ratio Extension

The Tension and Mapping Ration (TMR) extension of the basic GHSOM algorithm
introduced here addresses in particular Decision 2A: Whether new units should be
inserted and in which row or column they should be inserted. As pointed out in
the previous section this is the most critical part of the GHSOM algorithm.

The TMR extension has two main effects on the GHSOM algorithm. First of
all, the quality of the individual SOMs is improved by inserting new units where
they are really needed. Furthermore, the appropriate map sizes are determined au-
tomatically without requiring the user to guess a suitable value for the τ1 parameter
which controls Decision 2A.

Decision 2A is a model selection problem. In general selecting the model which
best fits the data and avoids overfitting to noise in the data is a unsolved prob-
lem. Several different techniques for model selection exist and have been applied
to complexity selection of SOMs, e.g. [21]. However, the problem of Decision 2A
is more subtle than it might appear on first sight since the aim is not necessarily
to have a low quantization error on each layer, or to minimize, e.g., the Minimum
Message Length [32] necessary to decode the SOM and the data of a particular
layer. Instead, the goal is to hierarchically cluster the data with clearly separated
clusters on the top-layers and low quantization errors on the lower levels. Further-
more, for computational efficiency it is of interest to take special characteristics of
the SOM into account, such as the neighborhood relationships between units. The
TMR extension addresses these issues.

The two principles of the TMR are straightforward. The first principle is to
ensure stable mappings between two neighboring map units i and j. The stability
is measured by inserting a virtual unit vij between the units i and j with its model
vector mij = (mi + mj)/2. If a large number of items which are mapped to the
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units i and j would better be represented by vij then the arrangement is instable,
on the other hand, if only a very small ratio of items would prefer vij then the
relationship is stable. We refer to this ratio as Mapping Ratio (MR).

The second principle is to ensure a stable structure of the neighborhood topology.
The topology is stable if there is little Tension (T), i.e., if the distances between
all neighbors are about the same. In particular, we calculate the Tension to avoid
a disproportional ratio between the average pairwise distances between all adjacent
rows and all adjacent columns.

Given a trained SOM the following 7 steps are executed before making the
decision where to insert units is finalized.

Step 1, the 4 virtual units for each unit i are defined. For border units the same
approach introduced for preserving the orientation of sub-layers is applied, i.e., the
virtual units are linearly interpolated based on the assumption that the map can
locally be approximated by hyper-planes.

Step 2, for all xk ∈ Ui the best matching unit is selected from the 4 virtual
units and the original unit. The number of items which are best represented by
the original unit i is denoted as ni(i), the number of units mapped to the virtual
unit vij as ni(vij ). Note that this information can later be reused in case unit i is
expanded on the next layer, or in case a new row or column is inserted next to the
unit.

Step 3, the Mapping Ratio MRij of each virtual unit vij is calculated as

MRij =
ni(vij)

ni(i)
+

nj(vij )

nj(j)
. (7)

Virtual units located beyond the border are calculated as MRij′ = ni(vij′ )
/ni(i),

where i denotes a border unit. Higher MR values correspond to less stable mappings
since a relatively large amount of items is mapped between the map units.

Step 4, the decision if the growth process should be continued or not is made.
The sum of all MRij (SMR) is calculated. If the map is bigger than 2×2 and the
SMR value has increased compared to the SMR of the previous, smaller map, then
the current map is rejected and the growth process is terminated. Otherwise, the
process is continued.

Step 5, for each row and column of virtual units z the average Mapping Ratio
AMRz is calculated as the median of all MRij in the respective row or column.

Step 6, the Tension is calculated. First, the Average Distance ADz is calculated
as the median of the distances between the neighboring model vectors which define
the row or column of the respective virtual units, i.e, for all vij belonging to z,
ADz = median(‖mi − mj‖). Furthermore we calculate ADr as the median of all
ADz where z represents a row, and ADc as median of all ADz where z represents
a column. Then the Tension Tz for each z representing a row is calculated as
Tz = ADz/ADc and analogous for each z representing a column Tz = ADz/ADr.
For example, if a map with an equal number of rows and columns is trained on a
2-dimensional dataset with a high variance in the direction fitted by rows and a
low variance in the direction fitted by the columns, then ADr would be higher than
ADc and Tz for a row would be higher than for Tz for a columns. The Tension
for rows and columns of virtual units beyond the borders of the map is set to the
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value of the respective row or column just before the border. Note that we use the
median preferably because it is more robust towards outliers, however, using the
mean will yield the same results for most applications.

Step 7, we multiply the Tension Tz with the respective average Mapping Ratio
AMRz and select the row or column of virtual units z with the highest value as
location for new units. The reason why we combine the Tension and Mapping Ratio
by multiplication is that both become scale independent, higher values of one of the
two will increase the outcome, and vice versa. Furthermore, both the Mapping
Ratio and the Tension are considered of equal importance for the stability of a
SOM.

4.1 Illustrations

Figure 5 illustrates an example where the SOM mapping is unstable. The 2×2
SOM is trained on the dataset consisting of 6 Gaussian clusters. Each of the 4 units
represents 1.5 clusters, in particular the 2 units in the upper row share 3 clusters
and the units below as well. Thus inserting a new column between these units
would solve the problem. However, the GHSOM bases its decision on the error
unit, which is the unit in the upper-left, and on the most dissimilar neighbor, which
results in the insertion of a new row. In the fine tuning phase of the SOM algorithm
each model vector is adapted to best fit the items it represents which leads to the
suboptimal topology structure depicted in the upper-right subplot of Figure 5. On
the other hand, the TMR extension correctly inserts a new column of units which
results in the stable topology illustrated in the lower-right subplot.

Furthermore, using the TMR extension it is possible to analyze the global effects
an insertion has while the original GHSOM draws its conclusions based merely
on local observations. An illustrative example where the global effects need to be
considered is depicted in Figure 6. The data is generated by 12 Gaussians with equal
covariances which are arranged on a rectangular 6×2 grid with a local disruption in
the center. The GHSOM identifies the error unit and its most dissimilar neighbor,
in this case the most dissimilar neighbor has the second largest mean quantization
error. Both units are very unstable as their model vectors lie in between clusters.
From a local point of view inserting a new unit between them would increase the
cluster quality. However, inserting a new row of units will effect the structure of
8 other units which represent their items very well. The result is depicted in the
center-right subplot, where the overall topology does not correspond well with the
data. On the other hand, when applying the TMR extension the effects on all units
in the row or column are analyzed. Specifically, the average benefit of the new units
inserted in a particular row or column is calculated and the highest average benefit
is selected. In this example, where obviously the mapping ratio is largest between
the two center units the TMR extension decides to add a new column instead since
all other units would not benefit from a new row.

Another advantage of the TMR extension is the improved decision regarding the
required number of units for an individual SOM. To illustrate this we use two 2-
dimensional datasets, both generated by Gaussians with equal covariances located
on a rectangular grid so that two immediate neighbors have unit distance. The
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2x2 2x3

2x2 3x2

Figure 5: A wrong decision on the local level. The GHSOM is trained with the dataset
presented in Figure 1. As in Figure 1 the model vectors which are adjacent neighbors
are connected by lines. The larger circles around each model vector represent the mean
quantization error. The first row represents the original GHSOM, the second row the TMR
extension. In the upper-left subplot the error unit is marked by a circle with double lines
(upper-left unit), the most distant neighbor with a simple circle (lower-left). The dotted
line indicates where a new row of units is inserted, the second subplot in the first row
presents the results after the GHSOM has been trained with the new row. The lower-left
subplot depicts the factors influencing the decision of the TMR extension. The locations of
the virtual units are marked as squares, the thick lines illustrate the ratio of items mapped
to the respective virtual unit (MR). For example, many of the data items mapped to the
unit in the upper-left would better fit the virtual unit located above. On the other hand,
for example, hardly any of the items mapped to the unit in the upper-right would better
fit the virtual unit located below it. Based on the TMR a new column is inserted, which
is marked by the dotted line, and results in the map in the lower-right subplot.

first dataset was generated by 4 Gaussians, the second by 16 Gaussians. Thus,
the best hierarchical SOM model would have 4 and 16 units at this level of detail
while any number beyond could be interpreted as overfitting. However, if each of
the Gaussian clusters is generated by a mixture of other Gaussian distributions,
the structure of these would need to be represented on the next hierarchical level.
Figures 7 and 8 show the behavior of four different quality measures on these two
datasets respectively. We compare the sum of all Mapping Ratios (SMR) to the
MMQE, SMQE, and to the Davies-Bouldin (DB) cluster validation index [4]. The
curves depict the measured error for a 2×2 SOM initialized with PCA into which
subsequently new columns or rows of units are inserted based on the TMR extension.

The DB index is used to determine the optimal number of clusters (for related
indexes see, e.g., [2]). Given the number of map units C and using the mean
quantization errors the DB index can be calculated as

DB =
1

C

C
∑

i=1

max
i,j 6=i

(

MQEi + MQEj

‖mi −mj‖

)

. (8)

For example, in the Figures 5 and 6, the Davies-Bouldin (DB) index would be large
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PDF Sample (N=600)

5x2 5x3

5x2 6x2

Figure 6: A wrong decision on the global level. The GHSOM is confronted with a situation
in which the map generally fits the data quite well, except for a local disturbance. The first
row depicts the probability distribution and the sample drawn from it. The second row
presents the original GHSOM results and the third row the results of the TMR extension
analogous to Figure 5.

where the circles, which indicate the MQE, are close to each other or even overlap,
and small if the circles are separated clearly.

Note, that neither the DB index nor the SMR can be calculated for a single
cluster. This limitation does not apply to the MMQE or SMQE. However, we argue
that comparing the SOM which is under consideration with a bigger SOM leads to
more reliable decisions whether the map size should be increased than comparing
it with a one unit SOM (MQE0).

In Figure 7, the MMQE error depicted is drastically reduced when 4 units are
used instead of 1. Knowing that the correct number of clusters is 4 this could lead to
the false assumption that it is sufficient to find the number of units after which the
MMQE does not decrease significantly. The reason why this assumption is wrong
is illustrated in Figure 8. Although there are 4 times as many clusters present the
run of the curve is basically the same. Hence, trying to guess the optimal number
of cluster from the MMQE is quite impossible.

On the other hand, the SMQE curve reflects the actual cluster structure better.
However, to obtain the optimal number of clusters would require 1 ≤ τ1 ≤ 0.38
(see Equation 5) in the case of 4 clusters, and 0.27 ≤ τ1 ≤ 0.19 in the case of
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Figure 7: Relative errors for a dataset consisting of 4 clusters. The errors are normalized
so that the maximum value equals 1.

16 clusters. Thus, although both datasets are only 2-dimensional and consist of
Gaussian clusters with equal covariances, it is not possible to use the same parameter
setting for τ1 to obtain appropriate results.

The DB index responds better to the cluster structure than the SMQE. For
example, in the case of 4 clusters, the index indicates that 4 units are a better
approximation than 6 or 9 units, which would be sufficient information to terminate
the growth process. However, in the case of 16 clusters the DB index does not have a
local minimum at 16 units, although the index indicates only slightly better results
for 20 units.

In the case of 4 clusters the SMR in the range of 4 to 50 is smallest for 4 (cf.
Figure 7). Note however, that if the number of units approaches the number of
data items in the dataset, then all 4 error measures will converge towards zero,
since all items can be represented without any error. In the case of 16 clusters (cf.
Figure 8) the SMR rapidly decreases until the map size reaches 16 units, and then
increases again to an error level more than two times higher than the minimum at
16 units. Thus, the SMR outperforms the SMQE and the DB index, while we have
shown that the MMQE is an insufficient measure to determine the correct number
of clusters.

To round up this section the GHSOM with TMR extension trained with the
animals dataset is presented in Figure 9. On the first level the animals are clus-
tered into 3 groups, namely large mammals, medium mammals, and birds. On the
second level the large mammals are further distinguished into carnivore and herbi-
vore mammals. The hierarchical clustering result appears to have a slightly better
quality than the one obtained from the original GHSOM. Results obtained from
real-world data are reported in the next section.
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Figure 8: Relative errors for a dataset consisting of 16 clusters. The errors are normalized
so that the maximum value equals 1.
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Figure 9: GHSOM-TMR trained with animal dataset.

5 Applications

In this section we will present two applications of the GHSOM with TMR extension.
The first application is the content-based organization of a music archive. The
second application is the identification of distinctive sequences in multi-variate time-
series data representing musical performance strategies.

5.1 Content-Based Organization of Music Archives

The first dataset stems from the project Islands of Music2 whose goal is to create
intuitive interfaces to music archives by automatically analyzing, organizing, and vi-
sualizing pieces of music based on their perceived acoustic similarities [25, 27]. The
pieces are given in compressed-MP3 format and are decoded to the raw audio signal.
From the time domain the signals are transformed into the frequency domain where

2http://www.oefai.at/˜elias/music
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Figure 10: GHSOM of a music archive.

the specific loudness sensation per frequency band is calculated based on psychoa-
coustic models [35]. The loudness fluctuation of the loudness amplitudes in each
band are analyzed using a Fourier transformation. Furthermore, filters are applied
to emphasize specific patterns. Finally, each piece is represented by 1200 low-level
features describing the dynamic patterns of the loudness in frequency bands. Other
than this data no additional information on musical styles, instruments, or musical
content is given to the system.

Figure 10 shows the hierarchical organization of a music collection consisting
of 77 pieces with a total playing time of about 5 hours. On the first level the
training process has resulted in the creation of a 2×3 map, organizing the collection
into 6 major styles of music. The upper-right represents mainly classical music,
while the lower-left mainly represents a mixture of Hip Hop, Electro, and House
and specifically music by Bomfunk MCs (bfmc). The lower-right and center-right
represent mainly Disco music such as Rock DJ by Robbie Williams (rockdj), Blue by
Eiffel 65 (eiffel65-blue), or Super Trouper by A-Teens (supertrouper). The upper-left
represents Pop music while the center-left represents more aggressive Rock music.
Please note that the organization does not follow clean ‘conceptual’ genre styles,
splitting by definition, e.g. Hip Hop and House, but rather reflects the overall sound
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similarity.
Most of these 6 first-level categories are further refined on the second level. For

example, the upper-right unit representing classical music is divided into 4 further
sub-categories. Of these 4 categories the upper-left represents slow and peaceful
music, mainly piano pieces such as Für Elise (elise) and Mondscheinsonate 1st
movement(mond) by Beethoven, or Fremde Länder und Menschen by Schumann
(schumann). The lower-right represents, for example, pieces by Vanessa Mae (vm),
which, in this case, are more dynamic interpretations of classical pieces played on the
violin. Other pieces located in the cluster are the end credits of the film Back to the
Future III (future) and the slow love song The Rose by Bette Middler (therose), and
the Brandenburg Concertos by Bach (branden). Note that the third level refinement
of the upper-left cluster separates the piano pieces from the slow violin piece Air
from orchestra suite #3 by Bach (air) and the Ave Maria by Schubert (ave maria).
The 3rd level refinement in the lower-right distinguishes for example the two love
songs Three Times a Lady by Lionel Richie (threetimesalady) and Love Me Tender
by Elvis (lovemetender) from the other orchestra pieces.

Some interesting insights into the music collection which the GHSOM reveals
are, for example, that the song Freestyler by Bomfunk MCs (lower-left) is quite
different from the other songs by the same group. Freestyler was the groups biggest
hit so far and unlike their other songs has been appreciate by a broader audience.
Generally, the pieces of one group have similar sound characteristics and thus are
located within the same categories. This applies, for example, to the songs of Guano
Apes (ga) and Papa Roach (pr), which are located in the center-left of the 6 first-
level categories together with other aggressive rock songs. However, the song Living
in a Lie by Guano Apes (ga-lie) is another exception (upper-left). Listening to this
piece reveals that it is much slower than the other pieces of the group, and that this
song which is about the end of a relationship matches very well with, for example,
Addict by K’s Choice which is about addiction to drugs.

5.2 Identification of Musical Performance Strategies

The second dataset stems from a large data mining project3 whose goal is to study
fundamental principles of expressive music performance [33, 34]. Performances by
concert pianists are measured with respect to timing and dynamics (loudness) fluc-
tuations; the goal is to find characteristic patterns that give insight into typical
interpretation strategies used by pianists.

The dataset used for this particular experiment consists of performances of a
piano piece by Frédéric Chopin (the Etude op.10 no.3), played by 22 skilled pi-
anists [10]. Each performance is characterized by two series of numeric values that
represent the measured tempo and loudness, respectively, over the course of the
performance. A visualization of one such time series in the form of a trajectory in
the two-dimensional tempo-loudness space is shown in Figure 11, with tempo on
the vertical axis and dynamics (loudness) on the horizontal axis (see [20] for details
of this form of performance representation). The various trajectories were then cut
into a total of 184 segments (according to bars) each represented by 80 attributes

3http://www.oefai.at/music
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Figure 11: Part of a trajectory corresponding to an expert performance of the Chopin
etude op.10/3. The loudness and tempo curves are smoothed. The bar boundaries are
indicated through the black sections (this trajectory covers bars 4-19). The time dimension
is visualized through the thickness and the shading of the trajectory, the most recent bars
are represented by lighter shadings and a thicker line, while bars played in the past are
represented by darker shadings and a thinner line.

Figure 12: The top-level 2×2 SOM of the GHSOM trained on the music performances.

and subjected to our GHSOM-TMR algorithm. The purpose of the whole procedure
is to find out whether there are indeed characteristic and interpretable classes of
tempo/dynamics strategies that pianists apply consistently, and to quantify these.

The results are shown in Figures 12 and 13, where the model vectors are visual-
ized. The direction of the trajectory segments in time is indicated by a dot marking
the end point. The shadows indicate the variance of the data items mapped to the
specific model vectors.

At the top level (Fig. 12), four distinct classes emerge which have a clear musical
interpretation: The upper two clusters are typical strategies used by pianists at the
beginnings of musical phrases: a speeding up (accelerando – movement from left to
right in this space) is accompanied by a slight increase in loudness (crescendo); the
cluster in the lower left represents the opposite tendency of ending a phrase with a
slowing down (ritardando) and a decrease in loudness; and the cluster in the lower
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Figure 13: All levels of the GHSOM trained on the music performances.

right shows the typical way of shaping the middle part of a phrase, with a typical
loudness maximum around the musical climax (the ‘apex’) of the phrase. All this
conforms well with current musicological theories of expressive performance.

At more detailed levels (Fig. 13), these classes of elementary behavior are broken
down into a number of interesting sub-categories. In the ‘apex class’ (lower right
quadrant), a clear distinction between upward (towards the apex) and downward
(after the apex) motions becomes visible — the crescendo and decrescendo parts
of a typical phrase arch. Similarly, the ‘phrase start’ patterns in the upper two
quadrants are now discriminated into accelerando-crescendo patterns and phases
of ‘stagnation’ where the pianists keep tempo and loudness more or less constant
(see the six classes in the upper right corner4). Untypical category members are
collected in a separate set of subclasses (lower left in upper left quadrant, and lower
right in upper right).

In summary, these results are highly intuitive and conform with current mu-
sicological theories. The hierarchical breakdown gives a nicely interpretable set
of elementary performance strategies, at various levels of granularity — a sort of
alphabet of elementary patterns that can be related to various types of musical
structure, and out of which complex performances can be built [34].

4Note that the segments were not normalized, so that absolute position of a segment within
the tempo-loudness space is significant (after all, absolute tempo and loudness are also relevant
performance characteristics) — hence the rather high number of classes being distinguished here.
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5.3 Qualitative Evaluation

The general problem of evaluating clustering algorithms is that for quantitative
comparisons the true clusters in the data need to be known. This is usually the
case in typical classification problems, or in artificial datasets. The former, as the
name indicates, are not typical clustering problems, the latter can be tuned in such
a way that any algorithm could outperform any other algorithm.

The main field of application for the GHSOM is exploratory data analysis.
Thus, to evaluate the TMR extension we applied both the original GHSOM and
the GHSOM-TMR to explore the 2 datasets mentioned above. In both cases the
true cluster structure was unknown and the objective was to explore the data and
gain new insights. Furthermore, in both cases any structure found in the data can
easily be evaluated by either listening to music, or viewing 2-dimensional plots.

In general, the first step to validate any results obtained from visual clustering
techniques including the GHSOM-TMR is to compare the results to the results ob-
tained from other techniques and even to the same technique with different random
initializations. This is necessary to ensure that the structure perceived to be signif-
icant is not only caused by some local minimum in an error function. In a second
step the new insights gained from the clustering techniques need to be tested on
new data.

For our evaluation both algorithms, i.e. the GHSOM with and without TMR
extension, the first layer SOM was initialized equally using Principal Component
Analysis to ensure equal starting conditions. Furthermore, the neighborhood radius
rt for the batch-SOM training was set generously to ensure best possible convergence
and to avoid randomly falling into local minima specific for the particular dataset.

In particular, we first trained the original GHSOM and searched for values of τ1

that lead to good hierarchical representations of the data. We found that the results
were best when the GHSOM parameter controlling the size of the individual maps
is set to τ1 = 0.6 in the case of the music archive and to τ1 = 0.7 for the musical
performances when using the SMQE. We then trained the GHSOM-TMR (with
the same τ2; no τ1 needs to be determined for the GHSOM-TMR) and obtained
the same quality level. Achieving significantly better results would have been a
big surprise since, for example, the results obtained from the second dataset had
previously been carefully analyzed and optimized manually [28]. Thus, we would like
to emphasize that the TMR extension is capable of creating the same hierarchical
structures which were fine-tuned manually by GHSOM experts using the original
algorithm.

Determining appropriate values for τ1 requires the user to understand the GH-
SOM algorithm, and even a GHSOM expert will need to calculate several maps and
evaluate these manually before guessing the best value for τ1. On the other hand,
with the TMR extension the appropriate map sizes are determined automatically
and the user does not need to worry about setting τ1 which simplifies the use of the
GHSOM.

The computational load of the TMR extension is about twice as high as the
original GHSOM algorithm. The main reason for this lies in the ‘look ahead strat-
egy’ of the TMR extension. However, the original GHSOM algorithm requires the
user to make additional runs to test and understand the parameter setting. The
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evaluation of these additional runs usually requires more time than the training
process.

6 Conclusions

We have presented the Tension and Mapping Ratio extension (TMR) to reveal
the inherent hierarchical structure in data based on Growing Hierarchical Self-
Organizing Maps (GHSOM). The TMR addresses several shortcomings of the GH-
SOM with respect to decisions made in the growth process. Using simple 2-
dimensional datasets we have shown in which cases the GHSOM-TMR can out-
perform the original GHSOM. In particular, we were able to show that the TMR
improves the decision where to insert units on a local as well as on a global level.
Furthermore, the TMR outperforms other quality measures used to select the ap-
propriate map size.

In practical applications of the GHSOM we came to the conclusion that the main
advantage of the TMR extension is its ability to automatically determine the ap-
propriate granularity within certain areas of the hierarchical structure representing
the data, thus the user is no longer required to manually determine the threshold
parameter τ1.

Furthermore, we have presented two interesting applications of the TMR ex-
tension in the music domain. The two datasets used as well as a Matlab tool-
box of the original GHSOM algorithm and TMR extension are available from
http://www.oefai.at/˜elias/ghsom.
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[16] T. Kohonen. Self-Organizing Maps, volume 30 of Springer Series in Informa-
tion Sciences. Springer, Berlin, 3rd edition, 2001.

21



[17] T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, J. Honkela, V. Paatero, and
A. Saarela. Self-organization of a massive document collection. IEEE Trans-
actions on Neural Networks, 11(3):547–585, 2000.

[18] P. Koikkalainen. Fast deterministic self-organizing maps. In Proceedings of the
International Conference on Neural Networks, Paris, France, 1995.

[19] P. Koikkalainen and E. Oja. Self-organizing hierarchical feature maps. In
Proceedings of the International Joint Conference on Neural Networks, San
Diego, CA, 1990.

[20] J. Langner and W. Goebl. Representing expressive performance in tempo-
loudness space. In Proceedings of the ESCOM 10th Anniversary Conference on
Musical Creativity, Liège, 2002.
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