Towards an episodic memory for companion
dialogue

Gregor Sieber and Brigitte Krenn

Austrian Research Institute for Artificial Intelligence
Freyung 6/6, 1010 Vienna, Austria
http://www.ofai.at

Abstract. We present an episodic memory component for enhancing
the dialogue of artificial companions with the capability to refer to, take
up and comment on past interactions with the user, and to take into ac-
count in the dialogue long-term user preferences and interests. The pro-
posed episodic memory is based on RDF representations of the agent’s
experiences and is linked to the agent’s semantic memory containing the
agent’s knowledge base of ontological data and information about the in-
terests of the user.

Keywords: dimensions of intelligence, cognition and behavior; autobi-
ographic episodic memory; relating memory and dialogue

1 Introduction

Recently, research on artificial companions has come more and more in focus.
They are artificial agents (virtual or robotic) that are intended to support the
human user in aspects of everyday life. Application areas may range from virtual
agents that assist their users in accessing information from the Internet in ac-
cordance with the users’ interests, preferences and needs , up to assistive robots
in home environments that support the elderly in mastering their life at home.

As regards the dialogue capabilities of companions, approaches are required
that allow the agent’s mental models and memories to be connected to its expres-
sive behaviour [3], and where natural language dialogue is semantically grounded
[1]. Companions need to be aware of their own history and past interactions with
their individual users, so that the single user can believe that her/his companion
knows “what it is talking about”. This is particularly important for creating
acceptable long—term interactions.

To account for this kind of requirements, we propose a communication com-
ponent for companions where autobiographic episodic memory, semantic memory
and dialogue are closely connected.

2 Related Work

Episodic memory (EM) has first been distinguished from other memory types
by [9]. Implementations have e.g. been used in artificial life agents [7], in story-
telling agents [5], and for non-player characters in games [2]. Since our memory



2 Episodic Memory & Dialogue

component is realized as an RDF graph, neither nearest—neighbour search nor
retrieval by keywords directly apply. The Adaptive Mind Agent by [6] and Gos-
sip Galore [10] describe companion systems able to answer questions on domain
data encoded in RDF. Both agents only have limited knowledge of their own
past and do not use it for dialogue. Thus they cannot ground dialogue in their
own experiences, and are unable to employ knowledge about user preferences
for providing more interesting dialogue. [4] describe a companion system for
helping users plan a healthier lifestyle. Dialogue is driven by a daily exercise
plan. Our system aims at a more open kind of dialogue which does not revolve
around a plan model. This leaves the companion in a situation where much less
expectations can be made towards the next user utterance.

In the remainder of this contribution, we will concentrate on the interplay be-
tween episodic memory and dialogue. In particular, we describe how the episodic
memory is represented, how episodes are retrieved (Sec. 3.1), and how episodic
memory is used in the dialogue manager (Sec. 4). For an account of how natural
language output is generated from memory content, see [8].

3 Episodic Memory

An episodic memory component for companion dialogue needs to provide ad-
equate knowledge representation in connection with the cognitive model and
the tasks of the agent. RDF-based! data stores are widely used for represent-
ing domain knowledge as well as common sense knowledge (e.g. the Open Mind
Common Sense Database?, or ConceptNet?). Accordingly, we have developed an
episodic memory component for artificial companions that stores and operates
on episodes as RDF graphs, and that is interfaced with the agent’s semantic
memory which must be also composed of RDF triples, making both memories
interoperable. We employ a Sesame® repository for hosting the data stores.

Our implementation of episodic memory is realized using the Elmo® frame-
work, which provides Java to RDF mapping and persistence. A persistence
framework such as Elmo significantly reduces the amount of plain RDF data
that needs to be generated and parsed within the application. The domain data
stored within the episodes is independent of the memory implementation.

For episode retrieval, we propose three different mechanisms, each suited to
a different function of episodic memory in our companion.

3.1 Episodes

Episodes store the time of their creation in epoch time, the actors involved in
the episode, and an episode ID. Input episodes additionally store the user input

! http://www.w3.org/RDF/

2 http://commons.media.mit.edu/en/

% http://conceptnet.media.mit.edu/

4 http://www.openrdf.org/doc/sesame2/2.3.1/users/index.html
® http://www.openrdf .org/doc/elmo/1.5/



Episodic Memory & Dialogue 3

string and its analysis in the form of a set of triples, along with a label describing
the function of the utterance, such as wh-question or assertion. The analysis of
user input is composed of concepts, individuals and relations from the domain
ontologies.

Action episodes are a subclass of episodes that represent the actions the
agent is capable of. These are: AnswerQuestion: the agent uses domain knowl-
edge to answer a user’s question. AssertStatement: The companion attempts to
assert user input using the domain knowledge. FindSimilar represents deliberate
remembering, i.e. actively searching for similar situations. ExecuteModule: this
action is stored when the companion uses one of the modules in the dialogue
manager. RetrieveContext is generated when the companion retrieves data from
a previous episode to add it to the current input, because it could not be pro-
cessed otherwise. SendOutput can either convey the results of a query, results
of remembering, or details about the situation of the agent, which encompasses
e.g. reporting errors or the incapability to solve a certain problem.

Output episodes store the domain data sent to the user, and the name of the
template used for output generation, if any.

Finally, evaluation episodes represent positive or negative feedback on pre-
vious actions. They are crucial for the agent to be able to learn from its past
actions. If an evaluation is available, the agent can decide based on its memo-
ries whether a past solution should be repeated or not. Not all episodes have an
evaluation. Evaluation values can either come from direct user feedback, internal
feedback such as empty query results or failure to retrieve a query result, as well
as from an emotional model integrated in the agent.

In order to be able to find the right associations and memories, the agent is
capable of translating the time stored in the episodes into relative time categories
such as morning, noon, afternoon, yesterday, and so on. This allows the agent to
relate episodes to human—understandable fuzzy time categories when receiving
input, but also when generating output.

As the retrieval of memories is bound to become inefficient once the episode
store grows too big, we have implemented a forgetting mechanism. In our case,
forgetting means deleting those episodes that have not been retrieved for a long
time. This is similar to deleting the least activated memory, as described in [7].
This approach still bears some risk of losing important memories of situations
that are rarely encountered. As an alternative, we consider a blending mechanism
for combining redundant or similar information into one episode for our future
work, and integrating a model of emotions which could help in deciding which
episodes are more important than others.

The retrieval of episodes in our RDF-based model of EM is performed using
queries on the RDF store that are able to use properties of episodes, the user
model and the domain data, as well as the structural information of the data such
as the class hierarchy. Since there are different applications of EM in our system,
we present three different retrieval mechanisms: retrieval by similarity, retrieval
using patterns in memory, and retrieval of parts of the context for resolution of
references in the input.



4 Episodic Memory & Dialogue

Retrieval of similar episodes allows an agent to avoid past mistakes, to re-
peat successful strategies, and to connect and refer to past interactions. Input to
retrieval by similarity consists of the set of triples representing the current situa-
tion, as stored in short—term memory. First, the memory is searched for identical
episodes: a query is generated that searches for episodes that contain the same
triples as the input. Additionally, queries using combinations and subsets of the
instance set and the set of relations present in the user utterance are issued. For
instance, given a popular music gossiping scenario, if the user asks a question
about Michael Jackson and Janet Jackson, the agent searches its memory for
previous episodes involving both artists, but also using the individual artists, in
order to connect to and take up previous discussions. Further broadening the
search, the structure of the domain data is used to generate queries containing
the classes of the individuals in the utterance. The class hierarchy can be ap-
plied, as long as the class is in the domain of the property in the query. For
example, talking about the birthday of an Artist, the companion can relate this
input to episodes about birthdays involving its superclass Person, but not for
episodes involving its superclass Entity, since the class Entity has no birthday
property.

The episodes retrieved by the queries described above are ranked to retrieve
the most similar episode. Ranking is performed by temporal distance and the
number of overlapping properties, individuals and classes. Evaluations are found
by searching the episodes temporally following each of the episodes until either
an evaluation or the next user input is found in memory.

In addition to actively searching episodes identical or similar to the current
situation, the companion has a second mode of retrieval that matches patterns
in memory. This retrieval mode is used by the dialogue manager to generate
output based on the content of episodic memory in combination with the user
model, domain knowledge, and the current input.

As an example, some patterns allow the companion to talk about when a
certain topic or individual was last discussed. Other patterns allow for detecting
preferences of the user: for example, if a property — such as in our scenario, the
birth place of an artist — appears very regularly in dialogue. Such preferences can
also be extended to include specific values, such as a preference for artists born
in New York City. Detection of preferences enables the companion to provide
information more focused on the interests of the user. For example, the compan-
ion may comment on the fact that a preference is being discussed. Or, it may
automatically add the kind of information covered by the preference to other
answers, if appropriate. Continuing the example from above: a day after being
asked about artists born in New York, the companion might notice while talking
about the albums recorded by Billy Joel that he was also born in New York,
and communicate it to the user. Alternatively, the companion can ask the user
whether she would like to know about other individuals that share this property,
and provide a list.

Finally, patterns can match data not encoded in the episodes, but in the
agent’s knowledge base. For example, consider a dialogue about artists that won



Episodic Memory & Dialogue 5

certain prizes. If some of the last—mentioned artists share a property and its
value with an artist included in the current input — such as being born in the
same city — a pattern that looks for such properties matches, and the companion
is able to provide this information to the user. How these patterns are utilized
in the dialogue manager can be seen in Sec. 4.

Additionally, episodic memories are used by the agent to retrieve information
necessary to understand utterances from the user that make reference to previ-
ous dialogue. Commonly this problem is addressed by maintaining different lists
or stacks of entities and topics. In the following part we present an approach that
requires no additional external storage mechanisms but relies on episodic mem-
ory. While this is by no means a complete resolution mechanism for anaphoric
or elliptic expressions, it does show that it is possible to find candidates for such
a mechanism using episodic memories. As an example, a method for resolving
simple elliptic references in the type of dialogue encountered in our application
scenario is described. For selection of candidates, we use the semantic structure
of the utterances, i.e. their RDF representations.

Consider the following snippet of dialogue, where the agent would not be
able to answer (3) without further inferences, since the information necessary
for generating a query is missing from the input string:

(1) User: When was Charlie Parker born?

(2) Agent: Charlie Parker was born on August 29th 1920.

(3) User: And what about John Scofield?

The agent can extract from the user utterance that some information about the
individual John Scofield is required, but not which information exactly. Using
its episodic memories, the agent can retrieve the missing information from the
context of the dialogue. With context we mean a set of recent episodes that are
relevant to the current conversation. The actual number of episodes to consider
is determined by a heuristic which selects up to a fixed number of episodes
occurring within the previous and current time of day category (morning, noon,
etc.).

Context retrieval is handled in the following way: First, the agent needs
to determine whether or not a user utterance requires completion. The agent
assumes an utterance to be complete if its analysis contains either one or more
full triples, or a triple where one of the nodes is a variable. If a single individual
or a single property is encountered, the agent needs to complete the utterance.
Since a single individual is encountered in step (3) of the example dialogue, the
agent has to complete the utterance. Thus from the input string, the agent only
knows that the user has some question about John Scofield who is an artist.
This artist could either be the subject, or the object of a statement. Thus for
further interpretation of the utterance, the episodic memory is called for. The
retrieval of the episode used for completion is done by evaluating a SeRQL
query that searches for a) the last occurrence of the same class or superclass in
case a property is missing (subject position), b) episodes containing a property
whose rdfs:range covers the individual under discussion (object position). In our
example, the agent looks for the most recent episode that contains the class of



6 Episodic Memory & Dialogue

the individual (in this case, Artist), retrieves the co-occurring property and adds
it to the representation of the current input in the agent’s short-term memory.

In case no such episode is found within the context, the agent can generalize
the query to a superclass of the individual. For example, John Scofield in (3)
is an Artist, just like Charlie Parker in (1). However, if we substitute Salvador
Allende in (1), the agent needs to look for their common superclass, Person, to
be able to retrieve context information.

4 Dialogue Management

Our dialogue manager is a hybrid approach combining rule-based decision and
a scoring approach on a set of modules that search memory and user preferences
for relevant information. The rule-based system is used to cover situations such
as replying to a greeting or feedback, and also for reporting about errors in the
system (e.g. failing to connect to the knowledge base).

For each turn in dialogue the dialogue manager generates a set of modules
that encode the kind of recency- and preference-driven patterns exemplified in
Sec. 3.1. Modules are generated by inserting information from the user model
into pre-fabricated queries. Each module has a unique ID and contains the labels
of the templates to be used for generating output. The basic scores of modules
are set depending on the complexity of the query and the importance of the
user preference. Modules are executed in parallel, and those are discarded for
which the query does not finish before a certain temporal threshold, in order to
keep the response time limited. Penalties are applied to the modules that have
successfully matched, one for each recent occurrence of the module, and one
for each negative evaluation. The dialogue manager then executes the action
contained in the module and sends the output to the user, possibly requiring
feedback for further actions.

5 Conclusion

We have presented an RDF-based episodic memory component for enhancing
dialogue with the user and grounding domain knowledge in interaction experi-
ences. As a result of our model and implementation, the companion is not only
able to retrieve situations similar to the current one from its memory. By search-
ing for patterns in memory, it also can detect and comment on preferences of the
user, and automatically provide information relevant to the user. In addition, we
have shown how episodic memory can be used to find candidates for resolving
references in dialogue necessary to understand the user’s input.

Retrieval of episodes is accomplished by using a set of SeRQL queries. Our
model shows how the contents of past interactions and their relation to cur-
rent dialogue can be employed by a companion for selecting the next dialogue
move and generating dialogue content. In addition, the connections between the
episodic memory and the knowledge base by means of RDF graphs allow for a
grounding of knowledge in the experiences of each agent.



Episodic Memory & Dialogue 7

Acknowledgments The work presented is supported by the Austrian Min-
istry for Transport, Innovation and Technology (BMVIT) under the programme
“FEMtech Women in Research and Technology” grant nr. 821855, project C4U.
The Austrian Research Institute for Artificial Intelligence (OFAI) is supported
by the Austrian ministries BMVIT and BMWF.

References

10.

. Benyon, D., Mival, O.: Scenarios for companions. In: Austrian Artificial Intelligence

Workshop (2008)

Brom, C., Lukavsky, J.: Towards virtual characters with a full episodic memory ii:
The episodic memory strikes back. In: Proc. Empathic Agents, AAMAS workshop.
pp. 1-9 (2009)

Castellano, G., Aylett, R., Dautenhahn, K., Paiva, A., McOwan, P.W., Ho, S.:
Long-Term Affect Sensitive and Socially Interactive Companions. In: Proceedings
of the 4th International Workshop on Human-Computer Conversation (2008)
Cavazza, M., Smith, C., Charlton, D., Zhang, L., Turunen, M., Hakulinen, J.: A
"companion’ ECA with planning and activity modelling. In: AAMAS ’08: Proceed-
ings of the Tth international joint conference on Autonomous agents and multiagent
systems. pp. 1281-1284 (2008)

Ho, W.C., Dautenhahn, K.: Towards a narrative mind: The creation of coherent
life stories for believable virtual agents. In: IVA ’08: Proceedings of the 8th in-
ternational conference on Intelligent Virtual Agents. pp. 59-72. Springer, Berlin,
Heidelberg (2008)

Krenn, B., Skowron, M., Sieber, G., Gstrein, E., Irran, J.: Adaptive mind agent.
In: IVA ’09: Proceedings of the 9th International Conference on Intelligent Virtual
Agents. pp. 519-520. Springer, Berlin, Heidelberg (2009)

Nuxoll, A.: Enhancing Intelligent Agents with Episodic Memory. Ph.D. thesis,
Univ. of Michigan, Ann Arbor (2007)

Sieber, G., Krenn, B.: Episodic memory for companion dialogue. In: Danieli, M.,
Gamback, B., Wilks, Y. (eds.) Proceedings of the 2010 Workshop on Compan-
ionable Dialogue Systemsi (ACL 2010). Association for Computational Linguistics
(ACL), Uppsala, Sweden (Jul 2010)

Tulving, E.: Episodic and semantic memory. In: Tulving, E., Donaldson, W. (eds.)
Organization of Memory, pp. 381-403. Academic Press, New York (1972)

Xu, F., Adolphs, P., Uszkoreit, H., Cheng, X., Li, H.: Gossip galore: A conversa-
tional web agent for collecting and sharing pop trivia. In: Filipe, J., Fred, A.L.N.,
Sharp, B. (eds.) ICAART. pp. 115-122. INSTICC Press (2009)



