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ABSTRACT

A fundamental question that always arises in cognitive modeling is how to
combine two contradictory constraints: the model should be as flexible as
possible (to reflect human flexibility) and at the same time it should be
maximally efficient. The decision proposed in this paper is the following. The
space to be searched has to be restricted for computational reasons, but this
restriction should not be done in advance. It should be dynamic and should
reflect the particular situation encountered, i.e. it should reflect the
dynamically evolving context. In this way making the computations context-
sensitive they will be both flexible and efficient.

A multi-agent cognitive architecture is proposed consisting of hybrid
(symbolic/connectionist) micro-agents. The behavior of the system at the macro
level emerges from the collective behavior of the micro-agents. The symbolic
computation performed by the system emerges from the symbolic micro
computations performed by the agents, while their “power” or “rate” depends
on their connectionist activation levels. The activation distribution over the
agents reflects the particular context. This architecture allows for a greater
flexibility of the cognitive system while at the same time decreasing the
complexity of computation.

1. Introduction

A fundamental question that always arises in cognitive modeling is how to
combine two contradictory constraints: the model should be as flexible as
possible (to reflect human flexibility) and at the same time it should be
maximally efficient. Each model is a trade-off between these two
requirements.

The problem is that the greater flexibility makes the space to be explored
larger therefore reduces the efficiency. Moreover, in most cases it makes the



computation intractable. This problem is usually solved by restricting the
problem space in advance in a way facilitating the search for the appropriate
knowledge for completing the particular task or set of tasks the system is
designed to accomplish. However, this restricts the system’s flexibility: it
makes the use of the model in other tasks (where the solution is outside the
restricted problem space) impossible. In technical applications this is not a
problem, because the most important feature there is efficiency, moreover,
different systems could be designed for different cases. However, in cognitive
modeling a single model of the cognitive process should be able to account for
people’s behavior under various circumstances.

Let’s consider the following example. In an analogical reasoning task,
relations from two subject domains should be put into correspondence. The
set of possible pairings of relations is enormous large and it is impossible to
search it in real time. That is why every model (proposed so far) restricts the
search in a particular way. Thus Gentner5,6 pairs only identical relations (this
is a quite extreme restriction, but even in that case a large space of possible
pairings remains, especially when the same relations are used several times
in the problem description). This restriction, however, makes even the
simple analogy between the following cases impossible: on(vase, desk) and
over(tablecloth, table) - here, on  and over  are not identical, but are
semantically similar. Holyoak and Thagard10, 15 solve the same problem
allowing two relations which have an immediate common super-class to be
paired - so, in the above example an immediate common super-class of on
and over  might be above . However, even in this case a severe restriction is
made: only relations with immediate  common super-class are paired, e.g.
on(vase, desk) and supports(desk, computer)  cannot be put into
correspondence using this mechanism, although humans will do it because
both relations have a common super-class at a more abstract level. The
restriction to immediate  super-classes is made only for computational
reasons, otherwise an exhaustive search is needed.

The decision proposed in this paper is the following. The space to be searched
has to be restricted for computational reasons, but this restriction should not
be done in advance. It should be dynamic and should reflect the particular
situation encountered, i.e. it should reflect the dynamically evolving context.
In this way making the computations context-sensitive they will be both
flexible and efficient.

2. DUAL – A Context-Sensitive Multi-Agent Cognitive Architecture

DUAL is a multi-agent architecture, i.e. it consists of a large number of micro-
agents, each of which represents some specific declarative and/or procedural



knowledge. The agents are relatively simple - they do not have their own
goals or reasoning mechanisms. They are some kind of specialized
computational devices.

Each micro-agent is hybrid – it has a symbolic and a connectionist part called
L-Brain and R-Brain, respectively. The symbolic part represents a piece of
knowledge, while the connectionist part - its relevance to the current context.
If, for example, the L-Brain of an agent represents the fact that “the Bulgarian
state was established in 681” then the activation level established by its R-
Brain represents its relevance to the current context and determines its
accessibility at that moment. If, on the other hand, the L-Brain of an agent
represents the procedural knowledge about a particular symbolic operation,
such as marker passing or structure mapping, then the activation level
established by its R-Brain determines whether this operation is allowed at
that moment and what is its priority or rate. The former case allows only a
small fraction of the knowledge base (KB) represented by the L-Brains of the
agents to be searched at every particular moment and the latter case allows
particular operations to be supported or suppressed depending on the context.
This allows for a greater flexibility of the cognitive system while at the same
time decreasing the complexity of computation.

All the micro-agents may act in parallel, but at each particular moment only
the active agents are working together and competing or cooperating with
each other. Moreover, every agent acts at its own rate (in an asynchronous
manner) depending on its activation level. In this way the behavior of the
system at the macro level emerges from the collective behavior of the micro-
agents, i.e. the symbolic computation performed by the system emerges from
the symbolic micro-computations performed by the micro-agents, where the
particular set of agents taking part in the computation process as well as their
competitive power depends on their activations which reflect the particular
context.

Compared to other hybrid systems1, 2, 4, 7, 8, 16, DUAL is hybrid at the micro level
rather than at the macro level. That is, instead of having separate modules
implemented according to the symbolic and connectionist paradigms each
modeling a particular cognitive process (or a particular stage of it), it consists
of a large set of small hybrid agents contributing to all cognitive processes. In
this way both symbolic and connectionist aspects are considered important for
every aspect of human cognition.

Compared to multi-agent systems such as the Blackboard architectures there
are a number of differences:
• The agents themselves are part of the blackboard, i.e. there is no separation

between data structures being placed on the blackboard and agents acting



on them and representing particular procedures. Instead, agents might by
treated as data structures from other agents, while at the same time
actively processing some other agents.

• The working memory is not a global base accessible for all agents, but
instead every agent “sees” only a small fraction of the blackboard - the
specific part connected with its functioning, i.e. there is only local
processing: the agents are connected with each other (some of the links are
permanent, others are dynamically created and removed) and every agent
exchanges information only with its neighbors.

• All agents act in parallel, each of them at its own rate proportional to its
activation level. This makes the computation context-dependent and
allows competition between agents.

Another cognitive architecture close to DUAL is the one proposed by
Hofstadter and his group3, 9. It is a multi-agent architecture with Codelets
acting in parallel as agents over the blackboard (the Workspace consisting of
data structures) and influenced by the activation levels of the nodes in a
semantic network (called Slipnet). In this architecture, however, procedures
and data structures are separated (in Coderack and Slipnet and Workspace,
respectively) and different mechanisms (“urgencies”, activation levels, and
strengths) are used for their control. Agents are able to observe the whole
Workspace and in this way they act as global processors. The parallel work of
the Codelets is simulated by a stochastically constructed sequence of its
running with probabilities corresponding to their “urgencies”.

3. Internal Structure of DUAL Micro-Agents

Each DUAL agent consists of two highly interrelated processors – the L-Brain
and the R-Brain. The L-Brain is designed according to the symbolic paradigm,
whereas the R-Brain – according to the connectionist paradigm. The R-Brain
of an agent acts as an power supply for the corresponding L-Brain. Thus,
although all the L-Brains can potentially work in parallel, in each particular
moment only a small fraction of them has the necessary energy supplied by
the corresponding R-Brains for actual working. On the other hand, all the R-
Brains are continuously working in parallel calculating the activation levels
of the agents, i.e. their power supply.

3.1. L-Brains: The Symbolic Part of the Micro-Agents

The L-Brain of an agent represents a combination of declarative and
procedural knowledge about a particular object/situation, a generic concept,
or a given action. For this reason a frame-like representation scheme is used.



An example of a frame in the DUAL architecture is presented in Figure 1. The
slot fillers are simply pointers to other frames or their slots and no special
language is used for their description. The links between the agents
correspond to these pointers and represent various semantic links. This leads
to a highly distributed representation of the knowledge and keeps the
symbolic processors quite simple.

Frame <G1>

is-a:
instance-of:
c-coref:
c-procedure:
d-procedure:

<G15.slot1>

<G12.slot7>
<Lisp-code>
<Lisp-code>

< >

Slot7

is-a:
instance-of:
c-coref:
c-procedure:
d-procedure:

<G15.slot3>

<G12.slot2>
<Lisp-code>
<Lisp-code>

< >

Slot1
instance-of:

c-coref:

<>

<G12>

d-procedure: <Lisp-code>

is-a: <G15>

c-procedure: <Lisp-code>
...

Figure 1.
An example of a frame in the DUAL architecture.

The is-a and instance-of links define the concept as a specialization of or as a
particular instance of a class. Every two agents linked to each other by a c-coref
link (short for “conceptual coreference”) represent one and the same entity in
the world possibly from two different points of view. This allows for multiple
descriptions of one and the same object, concept, situation, etc. The c-
procedure  and d-procedure represent the procedural knowledge and
correspond to “procedures to be called” and “demons”, respectively.

The L-Brains are specialized symbolic processors (Figure 2). They have
permanent memory for all outgoing links (pointers to other frames and labels
of the semantic links) as well as temporary memory for markers (structures
containing pointers to other, possibly non-neighboring nodes) and other local
data. All L-Brains have the ability to receive and send markers and to
differentiate links with different labels (e.g. to pass the markers only along
links with specific label). In addition, the L-Brains of some agents are able to
perform specific hard-wired programs (c- and d-procedures) corresponding to
some possible actions of the cognitive system. Some examples of such
specialized agents are the agents able to initiate a marker-passing process, the
agents able to construct new agents (node constructors), the agents able to
initiate a mapping between two descriptions, the agents able to establish local
correspondence between two structures, etc.



Specialized symbolic processes:
(c-procedures and d-procedures)

Common symbolic processes:
(local marker-passing ability)

Temporary memory
for its local data

Temporary memory
for markers

Permanent memory for representing semantic links to other frames

Figure 2.
The L-Brains of the agents.

3.2. R-Brains: The Connectionist Part of  the Micro-Agents

The R-Brains of the micro-agents in DUAL represent context and relevance.
Context is represented by the relevance factors of each agent to the current
situation. The degree of connectivity of each element with all other elements
of that situation is chosen as a particular measure of relevance and is
represented by the activation level of the corresponding agent. Thus the
activation level of the agent computed by its R-Brain within the connectionist
aspect represents the relevance of the description corresponding to the agent
within the symbolic aspect.

The links between the agents within the connectionist aspect have no labels
and reflect only the strength of the associative relations between them, i.e.
how often the two agents appear in the same context. All the links which
have some semantic interpretation within the symbolic aspect are used also
by the connectionist aspect ignoring their specific semantic interpretation. In
addition the a-links (short for "associative links") represent arbitrary
associations which are ignored by the symbolic aspect. They are not
recognized by the symbolic processors and are used only by the connectionist
aspect of the architecture.

Perception and system’s goals are sources of activation. That is the R-Brains of
agents corresponding to entities being perceived at the moment as well as of
agents corresponding to the current goals of the cognitive system
continuously emit activity.

The R-Brains are connectionist processors (Figure 3) calculating the activation
values and outputs of the nodes on the basis of their input values and current
activity running. They work in parallel in a discrete synchronous manner in
order to simulate the continuous process of spreading activation. They have
permanent memory for all outgoing links (pointers and weights) and
temporary memory for their net input, activation value, previous activation
level, and output.  They have hard-wired programs calculating the activation
and output functions as well as programs for weights learning.



Connectionist processes
activation output learning

current
net input

current
activation

level

previous
activation

level

current
output

connection
weights

Temporary memory Permanent
memory

Figure 3.
The R-Brains of the agents.

4. An Example of a Context-Sensitive Computation
Performed by DUAL

Let us consider an example of performing context-sensitive computations
which demonstrates the use of DUAL in a fragment of an analogy-making
task. Let’s have two simple propositions: The pot  is  on the  plate, and The
immersion heater is  immersed in the water . A correspondence between on
and is  immersed in  is being searched. This problem cannot be solved using
the techniques of Gentner5, 6 or Holyoak and Thagard10, 15  as this two relations
are neither identical nor have an immediate common superclass. So, to solve
the problem we have to allow searching for common superclasses at any
level. However, this leads to enormously enlarging the search space which
will made the computations untractable. In DUAL this search is performed by
a marker-passing mechanism, i.e. by a highly parallel process, but this is still
not enough to reduce the search process to reasonable complexity. However,
the marker-passing process is performed by the micro-agents and that is why
only active agents can take part in the process. This reduces enormously the
search space restricting it to the active part of the memory – the Working
Memory (WM). The search within the WM is already a quite effective task. In
this way DUAL combines the flexibility of being able to find common
superclasses at any level of abstraction with the efficiency of searching only
the currently active paths.

Moreover, if several paths are concurrently active and therefore several
solutions are concurrently possible a natural criterion for preference exists in
DUAL. Instead of using some fixed predefined criterion as “the shorter path”,
or “the path crossing nodes with lower fun outs”, or any combination of
these7 a more flexible and more natural criterion is used – the more active
path is selected as the path which is more relevant to the current context. It
may happen that this is the shorter path (and probably this will occur more



frequently), but it could also happen that this is the longer path (which may
be a rare situation but allows interesting and deep analogies).

There is an additional flexibility in the system: its behavior becomes context-
sensitive, i.e. in different contexts - different concepts will be active and
therefore different paths will be followed by the markers (Figure 4) and as
result different correspondences will be found. This is especially important in
cognitive modeling as it is well-known that human cognition is context-
sensitive11, 12.

5. Conclusions

Models based on the DUAL architecture demonstrate high flexibility and
variability in their behavior thereby reflecting the dynamic context-sensitive
nature of human cognition. On the other hand they demonstrate high
efficiency restricting all searches to small parts of the knowledge base.

The DUAL architecture has been used in modeling similarity judgements13

and analogical reasoning14.
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Figure 4.
Context-Sensitive Marker-Passing.

Depending on the particular memory state – the distribution of activity over the network

(presented by the filling patterns of the nodes) –  different ways will be followed by the

markers (the white and black small circles)  and consequently different correspondences will be

established.
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