
FP6-IST-027596

R A S C A L L I

RESPONSIVE ARTIFICIAL SITUATED COGNITIVE AGENTS LIVING AND LEARNING ON THE INTERNET
Instrument: Specifically Targeted Research Project (STReP)
Thematic Priority: Information Society Technology
D6.f Final Version of RASCALLI Platform
Christian Eis (ARC/RSA)

Due date of deliverable: October 2008

Actual submission date: October 2008

Start date of project:
January 1, 2006

Duration: 3 Years

Organisation name of lead contractor for this deliverable: ARC/RSA

Revision [final]

	Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

	Dissemination Level

	PU
	Public
	

Contents
2Contents

2Executive Summary

3Platform Features

4Platform Architecture

4Infrastructure Layer

4Framework Layer

4Agent Management

5User Management

5Event Handling

5Communication

5Other Services and Components

5Agent Layer

Executive Summary
This document gives a brief overview of the RASCALLI platform, the basic software environment of the RASCALLI system used to execute the RASCALLI agents
. The core feature of the platform is a component-based development and execution model, allowing for the modular composition of different kinds of agents from a set of building blocks. The platform is implemented as a layered architecture comprising an Infrastructure Layer, a Framework Layer and an Agent Layer.
Platform Features
The current implementation of the RASCALLI platform was motivated on the one hand by a set of requirements derived from the general project objectives, and on the other hand by practical constraints discovered during the first half of the project during which a simpler technical approach to an agent platform has been investigated. The requirements are:

· Support the execution of various agents, belonging to different users,
· support agent-to-agent and agent-to-user communication,
· allow developers to implement diverse agents based on shared components (this also means that multiple versions of each component can exist at the same time),
· integrate external and legacy components with minimal effort,
· build agents in a modular, component-based fashion,
· build the platform itself in a component-based, extensible fashion, and
· build a system that can be extended and improved dynamically at runtime.

Table 1 gives an overview of the implemented features.
	Feature
	Description

	Multi-agent
	Multiple agents can be executed simultaneously within a single platform instance.

	Multi-agent-architecture
	Different agent architectures can be implemented within the platform and agents of these different architectures can interact with each other.

	Multi-user
	Each agent has a single user – each user owns one or more agents.

	Shared platform
	A single platform environment is shared by multiple agents, users and agent developers.

	Communication
	Agents can communicate with their users and other agents.

	Component-based architecture
	Agents are assembled from reusable components. New agent components and agents can be deployed at runtime.

	Extensibility
	The platform itself is modular and can be extended, even at runtime.

	Multi-version
	Different versions of software components can exist at the same time within a single running platform instance.

Table 1: RASCALLI Platform Features
Platform Architecture

The RASCALLI platform is implemented in three layers (see Table 2): An Infrastructure Layer, which contains the basic development tools and libraries; a Framework Layer, comprising the general platform services and components; and an Agent Layer, which is the actual application layer containing the RASCALLI agents.
	Layer
	Description

	Agent Layer
	Agent architectures, components, definitions and instances

	Framework Layer
	Technical services and utilities (e.g. networking support, RDF support, agent management)

	Infrastructure Layer
	Basic tools and components (e.g. Java, Maven, OSGi)

Table 2: RASCALLI Platform Layers
Infrastructure Layer

The Infrastructure Layer contains basic tools and components used in the RASCALLI project. Specifically, these are Java, Maven and OSGi. In addition, this layer contains custom-made development and administration tools for the RASCALLI platform, such as user interfaces for agent configuration and deployment tools.

The most important feature of the Infrastructure Layer is the use of OSGi
, which implements a dynamic component model on top of Java. This means that components can be installed, started, stopped and uninstalled at runtime. Furthermore, dependencies between components are managed by OSGi in a fashion that allows the execution of multiple versions of a single component at the same time. Finally, OSGi provides a framework for service-based architectures, where each component can provide services to other components, based on Java interface specifications.

The use of OSGi thus enables the platform features multi-version and extensibility, and supports the implementation of a component-based architecture in the upper two platform layers.
Framework Layer

The Framework Layer comprises general platform services and utilities employed by the Rascalli, including agent and user management, communication (user-to-agent, agent-to-agent), event handling, technology integration and various other platform services.

The services on this layer provide the basis for the multi-agent, multi-agent-architecture, multi-user and communication features of the platform.
Agent Management

From the platform's point of view, Agent is a very generic concept. An Agent is a specific instance of an Agent Definition, and has a defined state and behavior. The Agent Manager service is responsible for loading Agent State from external persistent data storage, creating the Agents, starting and stopping them, and updating the Agents' state if it changes in the external data storage (e.g. if a user changes an Agent's configuration).
Agent State includes the Agent Configuration (persistent data specifying a particular

Agent, provided by the user via a configuration user interface), the Agent Profile (persistent data generated during the Agent's life-time, e.g. the agent’s interaction history or acquired knowledge) and the Runtime state (non-persistent data that the Agent keeps in memory while it is running).

The Agent Manager service is built on a modular, service-based design allowing for multiple sources of Agent Configurations.
User Management

A basic service for user management has been implemented within the platform, allowing for users to be created via the RASCALLI web interface.
Event Handling

The RASCALLI platform makes use of an Event Service to dispatch asynchronous events between components running inside the platform. The service is quite generic and is used, for example, to inform an agent when its user connects to the platform or sends a message via the 3D client interface.
Communication

Agent-to-user:

We have implemented three channels for agent-to-user communication:

· 3D (Nebula) Client: This interface is used for multi-modal online communication with the user.

· Jabber instant messaging integration: This interface gives the agent a presence on the internet, allowing it to contact the user pro-actively when new interesting information is available.

· Web interface integration: In addition to being the configuration interface for the user, the web interface allows the agent to post information for later retrieval by the user.

Agent-to-agent:

Agent-to-agent communication has been implemented on top of the Event Service. Agents can send special events to each other and thus realize arbitrary communication scenarios. Other possible implementations include Java method invocations and Jabber instant messaging.
Other Services and Components

In addition to the major services described above, the Framework Layer comprises a number of services and utilities, such as configuration management, RSS feed management and various technical utilities.
Agent Layer

The Agent Layer is the application layer of the platform and contains the implementation of the actual agents. It is designed to support the development and execution of multiple agents of different kinds as required by the project objectives. This layer consists of the following sub-layers:
· Agent Architecture Layer: An agent architecture is a blueprint defining the architectural core of a particular type of Rascalli. More precisely, it sets the roles of agent components and provides means for defining and assembling a specific agent. The architecture can also contain implementations of common components shared by all agent definitions.
· Agent Component Layer: Contains implementations of the roles defined on the Agent Architecture Layer.
· Agent Definition Layer: An agent definition is an assembly of specific components of the Agent Component Layer of a specific agent architecture. Different agent definitions for the same agent architecture might contain different components for certain roles.
· Agent Instance Layer: Contains the individual agent instances. Each Rascallo is an instantiation of a specific agent definition.

Note that these sub-layers are not technically enforced by the platform, which would be quite impossible. Instead, they are conceptual guidelines which, if adhered to, lead to a modular agent implementation well suited for component re-use and simple assembly of agents.

Figure 1 gives a (simplified) example of an agent architecture (the Mind-Body-Environment architecture, see deliverable D6g “Final versions of applications”). The Agent Architecture Layer defines two roles, Mind and Tool, and implements an agent component (Action Dispatcher) shared by all agent definitions. The Agent Component Layer contains two implementations of the Mind role, as well as two Tools. Based on this architecture, two agent definitions combine each of the Mind implementations with the available Tools and the Action Dispatcher into different kinds of agents. Finally, a number of agent instances are shown on the Agent Instance Layer.

[image: image2.jpg]Agent

Instance [[Hay | [Saly | Romeo | [Juliet
Layer I 1 i I
g g g g
5
1 1 1 1
Agent efinition» «definition»
Definition Simple Music Companion | |DUAL Music Companion
Layer contains| contains
1
[Ininiaiaiad e i |
i | |
Agent - v v
Component «component»| [«component component | [«component»
T Simple Mind | | DUAL Mind |i T-MMG T-QA
ayer
I
Agent - /
Architecture «rolen «component» «role»
Layer Mind Action Dispatcher Tool

Figure 1: The four sub-layers of the Agent Layer, with a few selected components of the Mind-Body-Environment agent architecture.
� For a more detailed elaboration, including related work and additional technical information, we refer to Christian Eis’s diploma thesis, which can be downloaded from http://www.ofai.at/rascalli/publications/publication_docs/eis_thesis_2008.pdf.

� http://www.osgi.org

RASCALLI D6.f

1

