Entish: Agent Based Language for Web Service Integration

Stanislaw Ambroszkiewicz *
Institute of Informatics
University of Podlasie
al. Sienkiewicza 51, PL-08-110 Siedlce

Poland, email: sambrosz@ipipan.waw.pl

Abstract

A new simple minimum language Entish is
proposed for automatic web service integra-
tion. The integration is done by autonomous
software agents. The new language is fully
declarative although it corresponds function-
ally to WSFL, XLANG, XAML, and DAML-
S which are procedural languages. This is
achieved by separating the essential data of
the integration process (agent) from execu-
tion and reasoning machinery (that must
be realized procedurally), and moving it
outside Entish to a dedicated service (i.e.,
BodyService). The essential data are ex-
pressed in Entish (as agent soul) and serve
as control data of the agent process respon-
sible for web service integration. Entish
is implemented on HTTP+SOAP, however,
it may be also implemented on the top of
SOAP+WSDL4UDDI stack if the syntax of
WSDL is adopted. The idea of agent soul
gives rise to introduce a new concept of agent
architecture.

1 Introduction

Our project aims at creating a simple minimum lan-
guage that is necessary for joining applications as web
services on the one hand and for integrating and in-
voking them by agents (on behalf of their users) on
the other hand. As this minimum we propose the lan-
guage Entish, and its intended semantics.

Agent mental attributes (i.e., goal, intentions, com-
mitments, knowledge) constitute the core of Entish.
This gives rise to a new concept of agent architec-
ture. The idea of the architecture is that agent i1s a
temporal process created and dedicated to a particu-
lar task realization. The agent is responsible only for
constructing and executing a workflow that integrates
services needed for the task realization. The archi-
tecture is distributed because planning and reasoning
capabilities as well as the capability to perform ac-
tions are delegated to special dedicated services that
are located outside the agent.

*The work was done within the framework of KBN
project No. 7 T11C 040 20.

Tomasz Nowak
Institute of Computer Science
Polish Academy of Sciences
al. Ordona 21, PL-01-237 Warsaw

Agent reasoning in minimized. Agent actions are re-
stricted to communication with services and possibly
migration to another host over the Internet. All the
essential data of agent functioning are stored in its
mental attributes. These attributes form agent soul
that is separated from agent mind responsible for de-
cision making, and from agent body responsible for
action execution and environment perception.

One of the main advantage of the new architecture
is that, due to the soul concept, the agent process may
be closed at any time, and then reconstructed. Since
the soul 1s independent from mind and body, it can be
moved to another place and given another mind and
body (i.e., agent process can be fully reconstructed)
in another place. This gives rise to introduce soul
migration as the new agent mobility form.

Since our agents are supposed to invoke web services
and integrate them if it is necessary, let us start with
web services.

2 Web services

What are Web services? Perhaps the best definition
can be found in IBM’s tutorial [10]:
Web services are self-contained, self - describing, mod-
ular applications that can be published, located, and
wnvoked across the Web. Web services perform func-
tions that can be anything from simple requests to com-
plicated business processes ... Once a Web service is
deployed, other applications (and other Web services)
can discover and invoke the deployed service.
What infrastructure and what standards are neces-
sary to realize this vision? It is clear that simplicity
and ubiquity are the key factors here. From a service
provider’s point of view, if they can setup a web site
they can join global community. From a client’s point
of view, if you can type, you can access services. Let
us see what solutions are proposed by the prominent
vendors: IBM, Microsoft, Sun, HP, and others.

Web services are getting to mean just UDDI,
WSDL, and SOAP.
SOAP (Simple Object Access Protocol) is a standard
for applications to exchange XML-formatted messages
over HTTP. WSDIL (Web Service Description Lan-
guage) describes what a web service does, where it
resides, and how to invoke it. WSDL is a general pur-
pose XML language for describing the interface, pro-

A A Ulllulllén alild vl uctllu‘ylllcllh dvdliln UL 1L uvvul v
services. UDDI (Universal Description, Discovery and
Integration) is a standard for publishing information
about web services in a global registry as well as for
web service discovery.

Does the stack of standards mentioned above pro-
vide sufficient means for automatic service invocation,
composition, and integration? The problem is hard.
UDDI provides a mechanism for automatic service dis-
covery of potential business partners. At the moment,
it is supposed that after discovery, programmers affil-
iated with the business partners program their own
systems to interact with the services discovered.

Automatic Web service integration requires more
complex functionality than SOAP, WSDL, and UDDI
can provide. The functionality includes: Transactions,
workflow, negotiation, management, and security.

There are several efforts that aim at providing such
functionality, for example, WSCL, WSFL, XLANG,
BTP, and XAML. All these languages are based on
SOAP+WSDL+UDDI stack. There is a consensus be-
tween prominent vendors that SOAP+WSDL4+UDDI
is the basic standard stack for automatic web ser-
vice discovery. However, there is no agreement what
should be the next standard in the stack necessary for
automatic service composition and integration. The
efforts are a basis for realizing the idea of new emerg-
ing technology: B2Bi. The current B2Bi standards
initiatives include: RosettaNet, BizTalk and .NET,
ebXML, Sun ONE and many others.

On the other hand there is an academic and gov-
ernment supported effort DAML-S. Tt is a part of the
larger project DAML (DARPA Agent Markup Lan-
guage) which aims at realizing the idea of Semantic
Web. DAML-S (S for services) is based on semantic
description of services.

3 Troublesome questions

The basic question is whether the proposed technolo-
gies are stmple and ubiquitous, and which one is the
right one. Perhaps the technologies are appropriate
for development of serious large application. How-
ever, 1f a group of students and our friends wants to
present their own applications as web services, invoke
and compose them in an automatic way, do they have
to employ all that heavy and complex machinery?

As we have seen above, the landscape of solutions
for new emerging technology is rich and complex so
that it is not easy to find the right path to the one
common standard. It seems that the path starts with
the basic stack SOAP+WSDL+UDDI, however, it is
not clear how to go further. Perhaps the basic stack
is not appropriate, i.e., it is too complex so that the
next protocols (based on the initial stack) accumulate
the initial complexity.

Are formal ontologies of services necessary for au-
tomatic web service integration ?

We are not going to give simple answers to these
tedious questions. Instead, we suggest going back to
the roots and asking again: What are web services
? Once we grasp the idea of web service properly,

1.0 o Wdiiio o tiiiiiiiiiuaniy PLUUULUI Dudlniv llC\,CDDGzL‘y aliia
sufficient for automatic web service integration.

The following items seem to be important for web
service definition:

1. A way to find and register interest in a service.

2. A transport mechanism to access a service.

3. A way to define what the input and the output
parameters are for such a service.

4. A way for remote applications (services) to locate
and invoke a service.

5. A way to provide transparency between users and
services, 1.e., a user should only formulate a task. The
task performance (i.e., boring and time consuming
Jjobs of discovering, composing, integrating, and invok-
ing the needed services) should be done automatically.

Let us notice that there are two sides to be
connected: Users who formulate tasks, and service
providers who present their services on the Web.
The tasks should be realized by the services. Every
user should express her/his task in a language. On
the other hand, service provider must express what
his/her service can perform. It would be great if both
the users and service providers used the same lan-
guage and agreed on the meaning of that language.
Moreover, service discovery, invocation, and integra-
tion should be done in the same language.

Is it necessary for the users to express the task se-
mantics in a formal way? Is it necessary for a service
provider to present a formal semantic of the operation
performed by his/her service? Do we really need mul-
tiple formal ontologies and translations between them
in order to realize the semantic interoperability, i.e.,
the agreement on the meaning of concepts used in our
language? Our answer is NO. Semantic interoperabil-
ity between service providers and users is realized in
the course of language development, and caused by the
way the language is used. Let us quote L. Wittgen-
stein [9]: Don’t ask what it means, bur rather how it
1s used. Hence, first of all, a simple open and scal-
able infrastructure for language use and development
should be realized. Then, the understanding (i.e., se-
mantic interoperability) will emerge in a natural way.
It seems that this is the core of the original idea of
Semantic Web proposed by T. Berners-Lee in 1998.

Is 1t necessary to introduce actions and process con-
structors to the language (making the language pro-
cedural) in order to realize automatic service integra-
tion? Again, our answer is NO. Let us try to design a
simple fully declarative language for web service inte-
gration by applying the Principle of Least Power (T.
Berners-Lee [4]):

When expressing something, use the least powerful
language you can.

4 Entish

The language is called Entish. Web service is fully
described by its name and the type of operation
it performs. Service name is a URI that determines
the communication address as well as the transport
protocol for providing communication with the ser-
vice in the very similar way as it is done for URL, for

CAG/III}JIC’
a URI where hermes is a transport protocol, ipi-
pan.waw.pl is the name of a host whereas /node/my-
service 1s the path to the service whose short name 1s
my-service. Service names are elements of type Ser-
vice in Entish.

The type of operation (performed by service) is con-
stituted by well specified input condition and output
condition, i.e., operation type is a pair of Entish for-
mulas: form_in and form_out. The pair is an element
of the type Operation_type. Once the formula form_in
is satisfied, the service is invoked, the operation is per-
formed, and the result is that the formula form_out is
satisfied.

What does a service perform? Generally, it pro-
cesses resources, that is, it performs a function on
resources. Variables of that function denote input re-
sources whereas the function value denotes the output
resource. Hence, we must introduce names for func-
tions as well as names for resource types to Entish.

There are spatial and temporal relations to be ex-
pressed in Entish, e.g., ”a resource is in a service by a
time”. We introduce names for expressing time, i.e.,
the type Time defined according to the format date-
time (see www.w3c.org/TR/NOTE-datetime). Since
GMT time is available at any host, let us introduce
the function gmt() that, when evaluated at a host, re-
turns the current GMT time at the host. To express
temporal relations, let us introduce the relation of the
form ”t1 is before (less or equal) t2”, formally (leg,
t1, t2). For example, relation (leq, gmt(), 2001-11-
13T13:15:30) evaluated at a place denotes that the
current GMT time at that place is less or equal 2001-
11-13T13:15:30. This is supposed to be the general
form of timeouts for task and commitment realizations
in Entish.

In order to express spatial relations let us introduce
to Entish the relation symbol ¢s_in, so that
(is_in, res, ser) denotes that the resource resis in the
service ser.

Let us follow the idea of T. Berners-Lee of webiz-
ing language [3], and webize Entish. Let all Entish
names be URI, and let us keep Entish development
open and distributed, 1.e., new names for services, op-
eration types, resources types, functions, and relations
can be introduced in an open and distributed way.
For this purpose, we specify distributed Dictionary-
Services where everyone can create and manage his /
her own dictionary consistent with the Entish syntax.
The dictionary should have a form of a collection of
read-only documents created according to one specific
XML format.

To sum up what has been done so far, it seems that
the Entish is a minimum language for service descrip-
tion by service providers as well as for task formulation
by users. Service invocation is realized by satisfying
the formula form_in of the type of operation the ser-
vice performs. The idea of service invocation appears
to be great, however, the question is: Who or what
is responsible for realizing this satisfaction. Who or
what is responsible for realizing service composition
and integration if it is needed? The answer is agent,

e e g. g g e opbit. WAL . pJo g Heb L g it Y=ot Ve Ao

detoey BALLLL LAIULL L G pPLVRRLn Al AL agt i)

ble for task realization. Hence, we introduce the type
Agent.

For any task issued by a user there must be an agent
responsible for the task realization. In order to do so a
user needs a GUI that is called SecretaryService. For
any task there is a timeout for its realization. The task
with a timeout is written down as the agent’s goal.
The agent is dedicated only to its goal realization, so
that when 1t succeeded or the timeout is over, the
agent notifies the SecretaryService about that, and
terminates its process. Hence, we introduce to Entish
the first agent attribute: goals(agent).

What is the agent supposed to do after receiving the

goal? It starts with its main goal as its first intention.
It asks any service by sending the following message:
”My intention is ¢”, where ¢ i1s an Entish formula de-
scribing the goal of the agent. Hence, we introduce
to Entish the next agent attribute intentions(agent).
If the service is able to realize the agent intention, it
replies to the agents with a commitment that has the
following form: ”I commit to realize your intention, if
the conditions conl and con?2 are satisfied.”
These conditions describe the input resources the
agent is obliged to deliver to the service as well the
timeout for the delivery. Hence, we introduce to En-
tish the attribute commitments(service), that is a
pair of form_in, and form_out formulas, where form_in
is equal to (coni and con2) whereas form_out is equal
to intentions(agent). The information about the
commitment must be saved in agent’s knowledge, so
that we introduce to Entish the next agent attribute:
knows(agent). Usually, agent is equipped with initial
knowledge by the SercretaryService. Agent can also
commit to a service (particularly to its SecretarySer-
vice) to perform a task, so that we introduce also the
following agent attribute: commitments(agent).

Service invocation is realized in the following six
steps: In the first step an agent sends its intention
to the service. In the second step a commitment is
sent to the agent by the service. In the third step the
formula form_in of the commitment is satisfied by the
agent or by another service. In the fourth step an op-
eration 1s performed by the service. In the fifth step
the formula form_out of the commitment is satisfied.
Let us note that there may occur failures in the steps:
second, third, and fourth one if, for example, the time-
out 1s over. In the final sixth step the agent is notified
by the service about either success or failure. The
service invocation constitutes the first crucial point of
our approach.

Generally, if agent’s goal can not be realized by a
single service, the agent looks for a plan (called work-
flow plan) that decomposes the main goal into sub
goals (sub tasks). Once it has got a plan, it must
find out services that can realize the sub tasks, and
arrange the workflow. How can it be done? The sim-
plest solution is to introduce a special service (called
InfoService) for providing agents with workflow plans
and info about services performing operations needed
for the workflow. However, the workflow arrangement,
execution and control, as well as reconfiguring and re-

Len e LT

\,UVCL.)’ 111 vl Ao
Workflow plan is an element of type Operation in En-
tish. It is a sequence of Entish formulas to be adopted
by agent as its intentions. The last formula of the
sequence describes the final result of the workflow ex-
ecution, whereas the first formula describes what ini-
tial resources are needed to start an execution. The
rest of the formulas describe intermediate situations
and correspond to operations to be performed in the
workflow.

The way the agent constructs a workflow on the ba-
sis of a fixed workflow plan is the following. The agent
starts with the last formula in the workflow plan se-
quence as its first intention. It is supposed that the
agent’s goal follows from that last formula. The ser-
vice SER-0 that agrees conditionally to realize the
first intention, gives to the agent an appropriate com-
mitment where the form_in formula of the commit-
ment determines (together with the work plan) the
next intentions of the agent. The next move of the
agent is to find out service(s) that can realize the next
intentions. Once the agent finds out an appropriate
service, say SER-1, that commits to realize the in-
tentions, the satisfaction of the form_in formula of
the service SER-0 is delegated to the service SER-
1. (It is the critical point for understanding
our idea of automatic service integration.) Sup-
posing that the agent finds out the service SER-1
that agrees to realize its intention, the service SER-
1 returns to the agent a commitment with another
form_in formula that determines the next intentions
of the agent. Once the agent finds out an appropri-
ate service, say SER-2, that commits to realize the
intentions, the satisfaction of the form_in formula of
the service SER-1 is delegated to the service SER-2.
And so on. The process goes on until the agent col-
lects all commitments needed to construct a workflow
according to the adopted plan. The commitments in-
clude appropriate timeouts that synchronize the work-
flow. Once the agent computes (on the basis of its
knowledge) that it itself can satisfy initial formulasin
the workflow plan, it can start the workflow execu-
tion. Usually, the initial formulas correspond to the
initial resources (data) provided by the SecretarySer-
vice for the task realization. The satisfaction of the
initial formulas starts the workflow execution; it looks
like domino effect. If the process is completed before
the timeout set for the task realization, the agent can
execute the workflow, and then notifies the Secretary-
Service about that. The method of constructing and
executing workflows by the agent constitutes the sec-
ond crucial point of our approach.

InfoService is crucial for task realization by the
agents. From the point of view of system functioning it
is a distributed database, and it is not important how
it is implemented. The only requirement is that In-
foService implements simple conversation protocol for
providing info (expressed in Entish) about operations
(workflow plans), and about services having specified
operation type. This is done in response to agent’s re-
quest that is always of the form: ” My intention is ¢”.
InfoService is also used for publishing info by service

~ioiatidlibo s dbibsatiAd by agt e,

PLUVIUCLD. ol vViaiuo PLUVILJ_CL wall oLdlla vl LialJs avn L1
tish formula), describing the type of operation \his/her
service provides, to InfoService. InfoService can joint
this info to its database. Hence, the conversation pro-
tocol for InfoService is extremely simple. InfoService
corresponds to UDDI, however, it seems to be simpler.
Agent is dedicated only to one task performance, but
its experience is supposed to be saved in an InfoSer-
vice where it is processed and the results help other
agents that have tasks of the same type. The idea of
InfoService constitutes the third crucial point of our
approach to service integration.

The idea presented above seems to be nice, but
the problem is how to create an agent that could
perform tasks by arranging and executing workflows.
How should such agent react to failures of some work-
flow elements? What if the agent process is killed
by an accident or if the host of the agent process is
down? The solution is quite simple: The essential
data of agent process must be separated from execu-
tion machinery of the process. Surprisingly, these data
correspond to agent (mental) attributes. Tet these
data be called soul in Entish. The execution ma-
chinery should be delegated to the special dedicated
service called BodyService. Agent process is created
if the data structure soul is sent to a BodyService.
BodyService is responsible for agent’s reasoning, plan-
ing, communication, and action execution on the basis
of the soul data. If the process is killed by an accident,
then it can be fully reconstructed from the soul, be-
cause the soul stores (by definition) all essential data
of the process. Since the soul is expressed in Entish, it
is implementation independent. This constitutes the
fourth crucial point of our approach.

To sum up, Entish is fully declarative lan-
guage although it corresponds functionally to WSFL,
XLANG, XAML, and DAML-S which are procedural
languages. To be more precise, Entish (being declar-
ative) supports automatic service integration which is
also the intended goal of WSFL, XLANG, XAML, and
DAML-S. Tt is the concept of separation of the essen-
tial data (i.e., soul) of the agent process from the pro-
cess execution and reasoning machinery that allows to
keep Entish as a declarative language. The essential
data are expressed in Entish and serve as control data
of the service integration process. The execution and
reasoning machinery (that must be realized procedu-
rally) is moved outside Entish to the dedicated ser-
vice, i.e., BodyService. BodyService is viewed as an
application implementing the appropriate interface for
communication in Entish. However, we impose several
conditions on the BodyService behavior, for example,
agent’s goals and commitments can not be canceled
unless the associated timeouts are over, an agent can
not take intentions that contradict its goal or commit-
ments, and finally agent must be rational whatever it
means. These requirements are not formal but are
necessary for assuring intended system behavior.

Of course, Entish could be extended by introducing
actions and process constructors, so that execution,
reasoning and control could be described. However,
the design motto was: When expressing something,

AV it =t A=

SOUL:

Collections of ‘ ‘ ‘ _ ‘

Entish formulas: Goals Commitments
Intentions ‘ ‘ Knowledge ‘ ‘ History ‘

MIND: Procedure for workflow formation, management,
reconfiguration, and recovery

control
perception

BODY: Action execution on communication platform

Figure 1: The layered agent architecture.

use the least powerful language you can. Hence, we
have designed a minimum language. What was un-
necessary was moved outside, that is, the functionality
associated with service publishing and discovery was
moved to InfoService, whereas execution and reason-
ing machinery was moved to BodyService. As a result,
Entish is a simple declarative and action independent
language for web service integration.

Let us compare Entish to the existing web service
integration efforts. The point of inventing Entish was
not to create a new better language for service de-
scription. Entish as a web service description lan-
guage is simple, perhaps too simple so that WSDL
should rather be adopted as the basis for developing
Entish idea. The novelty the Entish proposes is a new
technique for automatic service invocation and service
integration. It corresponds to the efforts of WSFL,
XLANG, XAML, and DAML-S. Hence, the idea of
Entish could be applied to built the layer on the top
of SOAP+WSDL+UDDI stack. In order to do so the
syntax of WSDL should be adopted. However, the
syntax of Entish seems to be easier for presentation
as well as for implementing. For this very reason we
decided to adopt only SOAP as the transport layer,
and to implement Entish on SOAP.

5 Agent architecture

We propose the following agent architecture, see Fig.
1.

Agent architecture is composed of the following
three layers: mental attitudes (soul), decision mech-
anism (mind), execution mechanism (body). The
mind and body is implemented as a BodyService al-
though functionally they are different modules, and
they should be separated. The mind performs reason-
ing and planning on the basis of the soul contents and
the perception delivered from the body. The mind
controls both the soul and body. The body executes
actions (directed by the mind) in a transport platform,
e.g., on SOAP+HTTP.

The soul is expressed in Entish and consists of
knowledge (a collection of facts), goals, intentions, his-
tory and commitments. Since the contents of soul
is expressed in Entish, it (the contents) is indepen-
dent from transport platform as well as from agent
implementation. Agent soul can migrate alone with-

form of agent mobility called soul migration. The idea
is that a running agent process stores all its essential
data and control parameters in its soul. The process
may be closed at any time, the soul sent to a BodySer-
vice running on a remote host, and the agent process
can be fully reconstructed there. The new agent mi-
gration form is based on one common format of agent
data (soul). Usually, agent data structure is arbitrary
and depends on agent implementation, so that migra-
tion of agent data makes sense only if the same agent
code is available at the new place. In our approach
agent data has one universal structure so that it is
compatible with any agent code that implements the
common format of soul.

Although the soul is based on the idea of BDI agent
architecture [5; 7], the proposed soul format may be
insufficient, that is, some important aspects (data) of
agent process are not stored in the soul. The proposed
soul format was design for agents that are supposed to
integrate web services. So that from this point of view
it works well. Perhaps the format is not universal so
that in order to apply our agent architecture in other
domains, the format should be extended.

A consequence of our agent architecture is that
agent is purely an information agent. Its capability
to perform actions is restricted mainly to migration
and communication however, there is a possibility of
having more actions implemented as routines in agent
body. Its ability to reason is minimal, almost all rea-
soning and planning job is delegated to the InfoSer-
vices.

So, the question is what our agent does? The main
and only job of the agent is to construct workflow that
would perform successfully the task delegated to that
agent. This includes: (1) construction of operation (a
sequence of sub tasks) of the workflow; (2) arrange-
ment of services needed to perform the sub tasks; (3)
control, rearrangement and recovery of the workflow
in the case of failure; (4) and finally notification (ei-
ther positive or negative) of the task realization to be
sent to user.

Agent decision mechanism can work according to
the following algorithm:

ALY . A sl vbe s Lo L v A LA VY

1. update knowledge on the basis of perception;
check all your timeouts;

2. check if your current intention and/or goal is re-
alized;
if the goal is realized or the timeout to realize 1t
is over, go to (7);
if the current workflow execution fails, go to (6);
if the current intention is realized go to (6);

3. check if there is a routine (a primitive action) in
your body that can realize your current intention;
if there is one, execute it and go to (1);

4. ask a service how to realize the intention;
if you get back a partial plan, go to (6);
if you get back a commitment, take the precondi-
tion of the commitment as the current intention;
if the precondition is true, go to (5), otherwise go

to (1);

4o dll AUV LL 1HiUJuldl Vb Lall 11UJu
grate randomly to another remote place (to look
for another InfoServices) and go to (1);

Ay YU, e

5. if the workflow is completed, execute it and go to
(1);

6. planning and determining (next) current inten-
tion;
go to (1);

7. notify (positively or negatively) the user;
give a report to an InfoService;
terminate the process.

6 Conclusions

It seems that our agent architecture can not be clas-
sified according to the standard taxonomies, see for
example [6; 8]. Perhaps it is specific for application
domain, i.e., web service integration. Our architec-
ture may be seen as distributed, i.e., InfoServices may
be viewed as part of agent architecture where the main
part of agent planning and learning is performed. The
learning consists on storing and processing agent ex-
perience. Agent life is short, i.e., it is dedicated to
exactly one task performance. It ”dies” after realizing
its task (or if the timeout is over) and reporting the
way the task was achieved to an InfoService. On the
other hand, it is easy to create a new agent if there is
another task to be realized. The new agent can use the
experience (of the past agents) stored and processed
in the InfoServices.

A detailed syntax of Entish with explanation and
walk trough example are available on request from
sambrosz@ipipan.waw.pl
The first prototype of Entish implementation was
done on HTTP+SOAP transport. Simple instances
of SecretaryService, InfoService, DictionaryService,
BodyService and a number of ordinary services were
implemented. Most of the ordinary services are for
converting data formats, e.g., gif to jpg, pdf to ps, la-
tex to html, etc.. There are also other services like
PhoneNumberService that returns the phone number
of a person given his/her personal data (name, ad-
dress), and a lot more will be implemented as student
projects shortly. Now, we are testing the prototype
and collecting experience. One corollary is obvious:
More services are needed.

A preliminary version of Entish has been published
in [1]. For sources and reports on the progress of
Entish specification and implementation, see our web
site: www.ipipan.waw.pl/mas

References

[1] S. Ambroszkiewicz and T. Nowak. Agentspace as
a Middleware for Service Integration. In Proc.
ESAW’2001. Springer-Verlag LNAI, vol. 2203.

[2] S. Ambroszkiewicz, W. Penczek, and T. Nowak. To-
wards Formal Specification and Verification in Cy-
berspace. Presented at Goddard Workshop on For-
mal Approaches to Agent-Based Systems, 5 - 7 April
2000, NASA Goddard Space Flight Center, Green-
belt, Maryland, USA. Published in Springer LNAI
Vol. 1871.

L=l

- www.w3.org/Designlssues/Webize.html -and- /De-
signlssues/Logic.html

The Principle of Least Power (T. Berners-Lee)
www.w3.org/Designlssues/Evolution.html

il o= et

M. E. Bratman. Intentions, Plans, and Practical Rea-
son. Harvard University Press, 1987.

J.P.Mueller. The Right Agent (Architecture) to Do
the Right Thing. In J.P. Mueller, M.P. Singh,
and A.S. Rao (Eds.) Inteligent Agents V, Proc. of
ATAL’98, Springer LNAI 1555, pp. 211-225, 1999.

A. S. Rao and M. P. Georgeff. Modelling rational
agents within a BDI-architecture. In Proc. KR91,
pp. 473-484, Cambridge, Mass., 1991, Morgan Kauf-
mann.

W. Truszkowski and J. Karlin. A Cybernetic Ap-
proach to the Modeling of Agent Communities.
In Proc. of 4th International workshop CIA 2000,
Boston, MA, USA, July 2000. LNAI 1860, pp. 166-
178.

L. Wittgenstein. Philosophical Investigations. Basil
Blackwell, pp. 20-21, 1958.

IBM’s tutorial
www-4.ibm.com /software /solutions/webservices /

DAML-S www.daml.org/services
OASIS BTP WWW.oasls-

open.org/committees/business-transactions/
UDDI www.uddi.org

SOAP and XMLP www.w3.org/2000/xp/
XAML www.xaml.org

XLANG

www.gotdotnet.com/team /xml_wsspecs/xlang-

c/default.htm
ebXML www.ebxml.org/
WSFL

www-4.ibm.com /software /solutions/webservices /

