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Abstract

The rapid growth of agent-based systems has
given rise to a situation where software test-
ing and validation of agents and multi-agent
systems are difficult. The need to define
an engineering methodology for the develo-
pment of agent-based systems has lead to
the use of a formal specification to identify
and characterise the agent systems’ compo-
nents. In this paper, we propose to take
an existing formal framework for agent sys-
tems - SMART the first framework crea-
ted to unify concepts and terms for agent
and autonomous agent systems - and de-
velop it for implementation with reactive ar-
chitectures. In particular, we address the
agent’s reactivity as a distinct and well de-
fined process. To this end, we refine SMART
to explicitly support event generation and
recognition by proposing a formal descrip-
tion, in Z language, of each involved compo-
nent. We also discuss implementation strat-
egy for our reactive architecture, using the
Macondo platform to describe the design and
implementation of the reactive component as
well as to provide a foundation for subse-
quent software testing and validation tech-
niques.

1 Introduction

The need to retrieve information from any source at
any time is the concept that will characterise a great
part of future research in the computing sector. In
fact, the World Wide Web seems to be the ideal place
to store almost all information - information that to-
day is surely accessible from any pc with a browser
or related tools, or information that tomorrow will be
provided by the support of ”push” technology, where
intelligent mobile agents will go out onto the web and
autonomously retrieve and push the data you require
to you. In this complex scenario, mobile agent sys-
tems constitute the emergent and promising field that
aims to solve this problem.

A mobile agent is an entity that acts like a
PRA (perceive, reason, act) cycle [Norvig and Rus-

sell, 1995]. Different interesting properties are usu-
ally associated with agents, most relevant amongst
these being autonomy, reactivity, pro-activity and so-
cial ability [Wooldridge and Jennings, 1994]. An
autonomous agent is an agent that acts without direct
influence of a user. An agent is reactive if it responds
in a timely manner to any change that occurs in the
environment. An agent is pro-active if it acts in an
opportunistic manner. Finally, sociological agents are
agents which communicate and cooperate with other
agents, and sometimes with users.

In particular, an agent can act in a unpredictable
and dynamic environment where continuously, new re-
sources can become available while others are occu-
pied. This scenario describes a near real-time Web en-
vironment where agents act in conflict and are forced
to behave opportunistically to reach a successful state.
The reactive component gives the agent the ability to
respond in an efficient and opportunistic manner to
any change that occurs in the environment,.

In the past, reaction mechanisms have been used for
several goals: MARS [Cabri et al., 2000] is one exam-
ple of a Linda-like [Ahuja et al., 1986] coordination
model which uses tuple space and reaction to improve
performances in multi-agent systems. Guardian [Lars-
son and Hayes, 1998] is an autonomous agent for me-
dical monitoring and analysis with reactive behaviour
properties. Furthermore, other agents have been crea-
ted to act in complex and dynamic environments, like
the real world [Liscano et al., 1995].

Because several agent architectures have an explicit
reactive layer (e.g. Emotional Agents described in
[Camurri and Coglio, 1998]), but none of those is des-
cribed in a formal and unified manner, there is no
common understanding of how to implement a reac-
tive architecture, and no formal specification to sup-
port the testing and validation of the software agent-
based systems. The increased sophistication and com-
plexity of the agent and multi-agent systems, and the
related difficulties to managing the development soft-
ware process, lead to serious concerns over the quality
and correctness of agent software products. As ad-
dressed in [Luck and d’Inverno, 2001], formal specifi-
cation can represent one of the techniques to be ap-
plied in achieving the description of an agent software
design and properties in mathematical logic.
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formal framework for agent systems and developing it
towards an implementation for reactive architectures
thus providing a foundation for subsequent software
testing and validation techniques.

The SMART [d’Inverno and Luck, 2001] framework
taken as a sound conceptual framework is useful to
precisely and unambiguously understand agent and
multi-agent systems. It provides a unified framework
with high-level models of agents, relationships and in-
teractions, but which does not specify a prescribed in-
ternal architecture for agency and autonomy. It also
provides a base for further development of agent ar-
chitecture and agent theory in an incremental fashion
through refinement and schema inclusion. In SMART,
deliberative and reactive action generation is a unique
process that does not allow exploitation of the advan-
tages of the differences between actions, a limitation
which, in this project, has been overcome by distinctly
defining reaction from deliberative action generation.
Thus, the framework has been further developed to
incorporate notions of reaction, reactive agent, reac-
tive autonomous agent. To prove the validity of the
given reactivity agent specification, we chose to imple-
ment a reactive component. To that end, we needed
an existing platform whose software was open-source,
for which the mobility functionality was guaranteed
but no reactivity was implemented. All these features
we found in Macondo [Ciancarini et al., 2000].

The paper is organised as follow:

In Section 2 we discuss the background of the work:
SMART framework and Macondo platform. In Sec-
tion 3 we describe the key agent components for the
reactivity. In Section 4 we present the formal specifi-
cation of the agent reactive component. In Section 5
we discuss implementation through description of the
design and implementation of the reactive component
and present a foundation for subsequent software test-
ing and validation techniques for the Macondo plat-
form. The paper ends with conclusions presented in
Section 6.

2 Background

2.1 SMART

Structured and Modular Agents and Relationship
Types (SMART) [d’'Inverno and Luck, 2001] is a for-
mal specification for agents and Multi Agents Systems
(MAS).

In this framework the world is made up of enti-
ties that can be instantiated as objects, agents or
autonomous agents. An entity consists of four main
components: a set of attributes, a set of capabilities,
a set of goals and a set of motivations. The formalisa-
tion of this concept in Z language [J.M.Spivey, 1992] is
given in the next schema. Z schemas have two parts:
the upper declarative part, which declares variables
and their type, and the lower predicate part, which
relates and constraints those variable.

AJLLULU

attributes : PAttribute
capabilities : PAction
goals : PGoal

motivations : PMotivation
attributes # {}

attributes denote the perceivable qualities of an
agent; capabilities denote actions that an agent is
capable of; goals, as the word says, are the set of all
goals for an agent, and motivations are the set of
all goal-generation attitudes. By Attribute it is also
possible to define the environment simplistically as
follows:

Environment == P; Attribute

An entity is an object if its set of capabilities is
not empty.

Object _____
Entity

capabilities # {}

By refining an object, an Agent and Autonomous
Agents may be obtained.

___Agent
Object

goals # {}

____AutonomousAgents .
Agent

motivations # {}

Thus, agents are objects with a not-empty set of goals,
and autonomous agents are motivated agents.

2.2 Macondo platform

Macondo® [Ciancarini et al., 2000], is an open source
platform for distributed Java applications based on
mobile agents and coordination. The principal at-
tributes of Macondo are mobility and coordination.
The mobile agent model is based on the concepts of
Agent and Place. Agents are autonomous processes
that move through different places for their own pur-
poses. The place is the environment that hosts agents.

Macondo, a flexible, simple and open source, is a
valid ground structure which can be developed to im-
plement new agent systems with different specifica-
tions and functionality.

Coordination between agents is achieved with
MJada, an extension of Jada [Ciancarini and Rossi,
1996]. Jada is a Linda-like [Gelernter, 1985] coordina-
tion language based on a set of classes used to access
an object space. The object space is an object con-
tainer with a set of methods for accessing its contents.
MJada uses a shared space to exchange tuples and im-
proves Jada by giving support to mobile agents.

!Macondo and Mjada were developed at the University

of Bologna. Macondo is being expanded at the University
of Camerino.
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Often, an agent architecture consists of three layers:
1) the Reactive Layer by which an agent can respond
in a timely and efficient manner to environment evolu-
tion; 2) the Planning Layer, used to support an agent’s
long-term planning activity, and 3) the Social Layer
which supports multi-agent social reasoning and group
planning. The layered architecture can be refined or
partially modified, but the three main targets remain
the same: Reaction, Planning and Social Reasoning.
In the literature, several architectures adopt the three-
layer approach. InteRRaP [Miiller, 1996] and Tour-
ingMachine [Ferguson, 1992] are two examples. Other
three-layer approaches may be found in [Gat, 1998;
Bonasso et al., 1996)].

Usually, the reactive component generates actions
that could potentially conflict with actions generated
by other components; for example, the planning layer
may decide to turn left to reach home, while the reac-
tive layer may decide to go right to avoid an oncoming
car. The agent must choose which of the two actions
to perform, and in this case the conflict-resolution pro-
cess can be critical. The agent must immediately de-
cide upon the best action or his car may be hit. There-
fore, the conflict resolution component must be very
efficient. Actions coming from reactive layers must be
generated and executed very quickly. Thus, a good
model will use condition-action rules. Each rule has
two parts: the first containing a condition which the
environment can satisfy, the second containing a set
of actions which an agent performs as a reaction to
the environment evolution. If the condition is true,
the action is executed. Conflict may also arise if the
environment simultaneously satisfies more than one
condition. In this case each rule will generate the as-
sociated set of actions and the conflict-resolution com-
ponent must again choose the right behaviour.

4 The agent reactive component

4.1 Basic schemas
An event is a significant occurrence in the world.

Event : PAttribute

The event is defined by a set of Attributes which
describe the occurrence. The event must be generated
only if the environment has those specific attributes.
Every environment constitutes a set of possible events
that can be generated, with the exception of the empty
set. An environment with an empty set of events is a
model for a platform that cannot generate events.

—__Env .
environment : Environment
entities : PEntity
envpossevents : PEvent
environment # {}
U{e : entities ® e.attributes} C environment

The Env schema provides a description of the world.
Therefore, the world is an enwvironment populated
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can be generated.

A generating-events environment is not sufficient to
manage reactivity. Reactions must also be defined.

A reaction is an appropriate response to a specific
event. Thus, before a reaction can be described, an
event and a set of actions associated with it are re-
quired.

oo S e
re_action : PAction
re_action # {}

4.2 Reactive agent schema

The reactive component of an agent, or a single reac-
tive agent, can be considered a refined object. The
goals and motivations that characterise agents and
autonomous agents, respectively, are irrelevant. The
only requisite is the potential for action. Objects have
this potential. So, by this definition, reactive agents
are objects.

___ObjectReaction
bject

objectpossevents : PEvent
objectinterestingevents : PEvent
objectactualevents : PEvent
objectreactions : PReaction
objectreactionsgen : PEvent — PAction
objectinterestingevents C objectpossevents
objectactualevents C objectinterestingevents
Vr,r' : Reaction|
(r € objectreactions) A
(r' € objectreactions) A
(r.event = r'.event) o
r.re_action = r'.re_action
U{r : Reaction)|
r € objectreactions
r.event} = objectpossevents
U{r : Reaction)|
r € objectreactions
r.re_action} C capabilities
Ve : Eventle € objectpossevents e
(Vr : Reaction)|
(r € objectreactions) A (r.event =e) o
objectreactionsgen {e} = r.re_action)

objectpossevents is the set of all events that can
be intercepted. Other events are meaningless for
the reactive component. An event that is not an
element of objectpossevents cannot be understood.
objectinterestingevents is used to denote the subset
of all possible events pertinent to the present situa-
tion. This subset, obviously, is modified in relation to
changes that occur in the environment. For example
we might wish to be warned of an incoming obstacle
while we are in motion, but are no longer interested
in this event when we are at rest.

The reactive agent must know how to react pro-
perly to each Event. Therefore, the objectreactions
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thermore, the reactive agent must be able to perform
all actions required in response to an event. This is
why all re_action are included in the capabilities.
objectactualevents contains events generated
within the environment. Each event included within
the objectactualevents is awaiting management.
Finally, objectreactionsgen selects the correspon-
ding reaction for an event from the objectreactions
set. The objectactualevents is dynamically updated
by removing all managed events, as illustrated in the
following.
___AObjectReaction
ObjectReaction
Object Reaction’
notmanagedreactions : PEvent — PFEvent
objectpossevents’ = objectpossevents
objectactualevents' =
notmanagedreactions objectactualevent

4 UL

The ObjectState schema is the schema for an object

having acting capabilities.

__ObjectState
EntityState
ObjectAction
willdo : P Action
willdo = (objectactions environment)
willdo C capabilities

The variable willdo specifies the next action the object
will take. If we require a reactive agent or, even better,
a reactive object, we must add the ObjectReaction
schema, to the ObjectState schema. This inclusion
leads to the ReactiveAgent schema.
___ReactiveAgent
ObjectState
Object Reaction
resolvecon flict : PAction — PAction
willdo : PAction
willdo =
resolvecon flict( (objectactions environment) U
(objectreactionsgen objectactualevents))

Both objectactions and objectreactionsgen occur in
the action-generating process. objectactions is used
in the planning process, while objectreactionsgen is
used in short term activity. At times a conflict re-
solution process, activated using the resolvecon flict
function, may be necessary to determine which ac-
tion to perform. At the object level, the planning
process is quite simple, so the difference between the
objectactions and the objectreactionsgen are nearly
irrelevant. In Agent and AutonomousAgent schemas
the action selection process is extremely complex
(goals and motivations are also used in the decision
making process), so short time response and long term
planning are fundamentally different activities.

4.3 Environment and Agents

The Env schema does not explicitly show the presence
of reactive agents in the environment. Therefore, this
schema must be refined. The following ReactiveEnv
schema, proposes a potential refinement.
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reactiveagents : PReactive Agent

The environment during its evolution notifies different
events. This activity is formalised in the ReactiveEn-
vNotify schema below.

__ReactiveEnvNotify
A ReactiveEnv

notify : Environment — PEntity —
Environment — PEntity —
ReactiveAgent — PEvent

envpossevents = envpossevents’
Ve : Reactive Agent|e € reactiveagents’ e
e.objectactualavents =
notify environment entities
environment' entities’
e
Venvy, envs : Environment;
enty, enty : PEntity; e : ReactiveAgent e

notify envy ent; envy enty e C envpossevents’

The variable envpossevents is an invariant because it
is constant over the time. noti fy selects all events that
must be communicated to a particular agent. Events
recognition is based on previous and present states
of environment and entities, and also on the target
reactive agent status.

Changes in the variable objectactualevents imme-
diately cause changes in the variable willdo because
the following relation is always true
willdo = (objectactions environment) U
(objectreactionsgen objectactualevents).

Differences in the decision making process continue
to be explicit in the ReactiveAgentState and in the
Reactive Autonomous AgentState schemas.

—_ReactiveAgentState
AgentPerception

AgentAction
Reactive Agent
posspercepts, actualpercepts : View
actualpercepts C posspercepts
posspercepts =
canperceive environment perceivingactions
actualpercepts = willperceive goals posspercepts
perceivingactions = {} = posspercepts = {}
willdo = resolvecon flict(
(agentactions goals
actualpercepts environment) U
(objectreactionsgen objectactualevents))

____ReactiveAutonomousAgentState
Reactive AgentState

AutonomousAgent Perception
AutonomousAgent Action
willdo = resolvecon flict(
(autoactions motivations goals
actualpercepts environment) U

(objectreactionsgen objectactualevents))

agentactions uses goals and actualpercepts to ge-
nerate actions. autoactions uses also motivations.
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The differing complexities of these functions includes
more than simply the number of subjects. The
objectreactionsgen only take the pre-estabilished set
of actions in the correspondent reaction, using it to
act. agentaction and autoaction must generate new
plans and new sets of actions, which are costly activ-
ities.
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5 The reactive module for Macondo

In this section we discuss the implementation strategy
followed to implement the reactive component for the
Macondo platform.

The first version of Macondo does not generate
events. The Place hosts agents and provides an in-
terface for resources. In the proposed extension, the
FEnv is a refinement of the Place with event gene-
ration capabilities. An important component of the
Env is the Events Monitor, which tests whether the
environment satisfies certain conditions in order to
generate events. The EwventsMonitor activates dif-
ferent threads to check different possible situations
(Fig.1). All events to be recognized are distributed

Events Monitor

Monitor Monitor

Monitor
Thread [Evens || Thread [EYeMS || Thread [Events
List List List

Figure 1: Events Monitor

among the Monitor Threads in order to minimize ac-
tivity for each thread. When an event is to be gene-
rated, the Monitor Thread that senses it alerts the
FEvents Monitor.

The reactive object component of each agent in-
cludes a list of interesting events. This list is used
by the Events Monitor to establish how many events
must be monitored and how many M onitor T hreads
are required. Clearly, it is not necessary to check the
environment for events that are not in any interesting
list, because no agent will react to this event.

FEnv uses different Event Notifier threads to no-
tify events. Each thread is associated with a group of
agents. The association is made in order to form ho-
mogeneous groups for events notification. For exam-
ple, there will be a thread for the notification of events
el and e2, a thread for each event €3 and a thread for
events e4 and e5. Any agent will be present in a group,
if in its interesting events list there is such event. Ob-
viously, an agent can be present in more than one
group. Therefore, when the event e2 is generated only
the corresponding Fvent Notifier is alerted and the
notification is made only to agents in its group Fig. 2.

The association of an event to only one (or to a few)
thread(s) minimises work among all threads. If we
wish to minimise notification time, we can distribute
an event generation among all threads. In this way
we achieve maximum parallelism, but also maximum
resource consume, Fig. 3.
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Agent
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Interestingl__| Agent Interesting|  Notify#
Events Events J Interesting
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Interesting flAgent }‘ lAgentl /I Interestin
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\M Notify\ . ANotify'/l _» Agent
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Event Event Event
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Env Events Monitor
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Figure 2: Event Notification
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Figure 3: Parallel Event Notification

When agents are stimulated by an Event Notifier,
they must update the actions they may have to exe-
cute. Thus, agents immediately adjust their behaviour
in response to the events they receive. This is agent
reaction.

An incoming agent must ask permission of the Env
to be executed, so that the Env can ensure that there
are not too many agents at its location in order to
avoid the collapse of the system because of the pres-
ence of too much agents.

To estimate the efficiency and performance of the
system, tools for testing and validation are necessary.
Agents’ performances must be estimated with and
without the reactive component, so that it becomes
clear when reactivity increases performance and when
reactivity is not useful. Testing is also necessary to un-
derstand whether situations exist where the systems
collapse due to the rapid growth of events generation
and how these situations should be managed.

Setting up the system with these tools facilitates the
assessment of the best configuration of all components
in all situations and prevents critical status.
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In this article, we have extended the SMART agent
framework giving explicit representation to the reac-
tive component. The description of the new included
schema, is not at an abstract level, but approaches an
implementation level because our goal was to provide
the bases for future software agent testing and valida-
tion techniques.

The formal specification proposed in this paper for
the agent’s reactive component takes advantage of
software environments. The events generation is left
to the environment; agents must only decide which
events are of interest to them so that only interesting
events are generated and agents are never alerted to
useless occurrences. Agents are free to devote time
to other activities and so improve their performance.
It is better to have a single component checking for
events (the environment), than thousands of agents.

If there are too many agents or strict time con-
straints, the environment can change its policies for
events and thread generation. With activities concen-
trated in only a few threads, some agents could be
alerted out of synch; if activities are distributed on all
threads, the system could be over-stressed so that the
specific context and the specific situation could lead
to the definition of correct policy.

The proposed implementation strategy and the pro-
posed formal specification have been used to extend a
Macondo platform by adding a new reactive compo-
nent. The resulting system allows for different con-
figuration of all components for any possible context
and for management of the reactivity of autonomous
agents in a formal, robust and well known manner.
In a future project, we will attempt to define a formal
technique for the testing and validation of the system’s
reactive component.

Future work also will include a more accurate formal
description of events management in order to establish
precisely which is the better configuration of the sys-
tem in each possible situation. Ascertaining resulting
performances relating to events distribution among all
threads is of utmost interest.
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