
Daniel Veit
Universität Karlsruhe (TH)
Information Management

and Systems
Englerstr. 14

76131 Karlsruhe
 veit@iw.uni-karlsruhe.de

 www.iw.uni-karlsruhe.de

Jörg P. Müller
Siemens AG CT

Intelligent Autonomous
Systems

Otto-Hahn-Ring 6
81730 Munich

 joerg.mueller@mchp.siemens.de

 www.ct.siemens.com

Christof Weinhardt
Universität Karlsruhe (TH)
Information Management

and Systems
Englerstr. 14

76131 Karlsruhe
weinhardt@iw.uni-karlsruhe.de

www.iw.uni-karlsruhe.de

Abstract
Matchmaking is the process of mediating de-
mand and supply in markets based on profile
information. In electronic marketplaces and in
negotiations matchmaking plays a key role.
The issue is to find the most appropriate agent
for a task, the best bid in a multiattribute auc-
tion or the best present good for a request. In
most real-world markets multidimensional
matchmaking is required, i.e., the ability to
combine different dimensions and sub dimen-
sions of decision-making to define an over all
relevance. This task requires the interplay of
multiple matchmaking algorithms. Another
central aspect is the possibility to design
relevance computation processes for multiat-
tribute objects easily. The realization of this
issue makes multidimensional matchmaking
processes to be easily integrated into industrial
marketplace solutions. The work described in
this paper aims on general multidimensional
matchmaking objectives. These matchmaking
objectives are implemented and deployed for
industrial applications. The main contributions
of this paper are (i) the definition of multidi-
mensional matchmaking in general (ii) an im-
plementation of configurable multidimensional
matchmaking as a application dependent EJB
component which is configurable using XML,
(iii) the definition and implementation of dif-
ferent relevance (i.e. distance) functions for
general usage and specific domains (iv) the
description of a process guiding application
developers to design matchmaking applica-
tions (enterprise java beans) (v) a report on
experiences deploying the EJB matchmaker for
the human resource area within a large-scale
agent-based software.

Keywords: Market-based Coordination Mechanisms,
Multidimensional Matchmaking, Relevance Computation

1 Introduction
Electronic markets are massively gaining importance in
past few years. This tendency is mainly driven by the rise
of electronic commerce. The deployment possibilities of
electronic markets range from goods to contracts over all
kind of objects which can be described in an electronic
way. In next-generation electronic markets autonomous
agents are likely to play an important role (see also
[Müller and Pischel, 1999]).

An electronic market is based on the assumption that
there are clear and well defined measures which allow to
qualify an item with respect to another item. In general this
is not the case. Most kinds of items traded on electronic
markets are homogeneous items whose only negotiable
factors are quantity and price. The huge majority of items
which are candidates to be traded on electronic market-
places are items which have negotiable properties that are
not measurable in figures or a discrete structure but are
have to be measured in non numeric continuous values or
even complex documents containing both, figures and
continuous, describing values. One crucial task in elec-
tronic markets is to provide mechanisms which allow to
find the best fitting counterparts for a negotiation. In
general this should be an ordered list of possible coun-
terparts which is descending in quality of the respective
starting basis. In case of a homogeneous item e.g. a stock,
a price and quantity information is easy to qualify with
respect to the own position. This is different when dealing
with heterogeneous items like e.g. a human resource
market does.

After the best fitting counterparts are found negotiation
starts. In a negotiation the same problem rises again. If
attributes are negotiated whose comparison is non trivial,
elaborated measures must be defined to compute a rele-
vance. In the phase where counterparts are distinguished
this is a non-recurring task in which the relevance of each
possible counterpart towards the own position is deter-
mined once, whereas in a negotiation every bid or iteration
of the bidder must be judged with respect to the opposite
position.

Multidimensional Matchmaking for Electronic Markets

Consequently functions to judge relevance between a
request and an offer must be supported which meet the
following desiderata:

• Take as input a starting point description format
which is possibly complex (i.e. contains several di-
mensions and sub-dimensions for specification).

• Provide mechanisms (relevance functions) to com-
pute the relevance of instances of this format towards
the other position.

• Provide different (possibly domain specific defined)
description formats for the requester and the provider
side.

• Provide a mapping from the requester description
format to the provider description format which ex-
plains how relevance is computed.

• Evaluate efficiently in order to support decisions
which are similar to how a specialist would decide.

In this paper we refer to a research project in which we
focussed on the topic of matchmaking as a coordination
mechanism in the selection phase of a negotiation in an
elelctronic market. In Section 2 we focus on the objectives
for matchmaking in general. In Section 3 we introduce the
GRAPPA matchmaking framework. Section 4 gives an
overview on the implementation of GRAPPA (Generic
Request Architecture for Passive Provider Agents) which
is a generic EJB-based Matchmaker based on XML data
structures. Section 5 briefly summarizes the application of
GRAPPA in the Human Resource Domain. The project
called HrNetAgent is a large-scale agent-based software
prototype for matchmaking between vacant positions and
applicants. In Section 6 we provide an evaluation of the
matchmaking approach made in the HrNetAgent Project.
In Section 7 we conclude and describe issues of further
research and application.

2 Matchmaking objectives
Matchmaking is not only a key task in multi-agent sys-
tems, it is also a crucial function in marketplaces and
electronic negotiations. The provider who will enable the
most effective matches between demand and supply will
gain a competitive advantage and increase the acceptance
and popularity of their marketplaces.

2.1 Definition
We understand matchmaking as a function which accepts
as input a set of offers (candidate profiles) and a request
(centroid profile) and provides as output a ranked list of
the k best offers with respect to the request. Each element
of the list provides an over all relevance of the offer to-
wards the request. This relevance is computed form the
distances obtained in the subdimensions of the profiles. In
Section 3 we will explain this process in more detail. Each
centroid profile is wrapped by an agent. Candidates can
provide their profiles either by defining a single agent
which carries its profile or by selecting an agent which
wraps a larger amount of candidate profiles stored in a

database. Thus, matchmaking can be regarded as a
k-nearest neighbors problem: in an n-dimensional vector
space, the k nearest neighbors to a given profile (repre-
sented as a point in that vector space) need to be com-
puted. This problem is well understood in theory and
solutions are known e.g., from Information Retrieval
[Salton, 1989]. However, the requirements stated in Sec-
tion 1 turn the development of generic solutions to this
problem into a challenge.

2.2 Related Work
In this section we will present some work done by dif-
ferent groups which concerns matchmaking among pro-
files which are carried by autonomous agents. These
profiles are mostly refered to as Agent Service Descrip-
tions. Kuokka and Harada [Kuokka and Harada, 1996]
considered matchmaking in the context of emerging
information integration technologies, where potential
providers and requesters send messages describing their
capabilities and needs of information (or goods). They
presented two matchmakers: COINS (COmmon INterest
Seeker), which is based on free text matchmaking using a
distance measure from information retrieval (Salton
[Salton, 1989]), and SHADE (SHared DEpendency En-
gineering), which uses a subset of KIF (Knowledge
Interchange Format) and a structured logic text represen-
tation called MAX. While COINS aimed at e-commerce,
SHADE aimed at the engineering domain.

Complementing the theoretical work in [Decker et. al.,
1997], Sycara and coworkers addressed the matchmaking
problem in practice. They developed and implemented the
LARKS matchmaker (LAnguage for Advertisement and
Request for Knowledge Sharing) described in [Sycara and
Klusch, 1998]. In LARKS, the matchmaking process runs
through three major steps: (1) Context matching, (2)
syntactical matching, and (3) semantic matching. Step 2 is
divided into a comparison of profiles, a similarity match-
ing, and a signature matching. Compared to previous
approaches, LARKS provides higher expressiveness for
service descriptions. Like those, however, LARKS has a
static scheme for service descriptions, which restricts its
application to agents that comply with this fixed descrip-
tion format.

In the context of electronic auctions, Weinstein and
Birmingham [Weinstein and Birmingham, 1997] intro-
duce a service classification agent which has meta
knowledge and access to nested ontologies. This agent
dynamically generates unique agent and auction descrip-
tions which classify an agent's services and auction sub-
jects, respectively. A requester obtains from it the name of
the best auction to its needs.

In IMPACT [Subrahmanian et. al., 2000], so called
Yellow Pages Servers play the role of matchmaker agents.
Offers and requests are described in a simple data structure
which represents a service by a verb and one or two nouns
(e.g., sell:car, create:plan(flight)). The matchmaking
process computes the similarity of descriptions from
shortest paths in directed acyclic graphs that are built over

the sets of verbs and nouns, respectively, where edges
have weights reflecting their distance.

Our approach differs from these systems in various re-
spects:

• The definition of the demand and supply profiles can
be can be flexibly adapted to enable a wide range of
applications.

• Our model does not enforce a specific matchmaking
method. Instead, arbitrary (possibly nested) descrip-
tion schemes can be defined from basic types using
various forms of aggregation such as lists, sets, or re-
cords, and linked with suitable distance functions in a
flexible way.

• Existing multi-stage matchmaking approaches
measure similarity in several steps subsequently and
classify the matching object after applying different
matchmaking methods in a sequence. In contrast, our
approach clusters the attributes of demand and supply
profiles into clusters and computes local subdistances
for these clusters “in parallel”, before combining them
to a single global distance.

• GRAPPA uses XML to describe supply and demand
profiles schemas, and thus can be easily applied to a
range of existing and future data repositories. Also,
future extensions of GRAPPA may take advantage of
tools for XML.

• GRAPPA provides an open framework to incorpo-
rate new matchmaking algorithms and to reuse them
within industrial matchmaking solutions.

3 The GRAPPA Matchmaking
Framework

Figure 1 illustrates the structure of the GRAPPA match-
making framework. In [Eiter et. al., 2001; Veit et. al.,
2001] we consider the multidimensionality of match-
making in greater detail.
It consists of three major parts. Its core is the matchmaking
engine described in Section 3.1. It is complemented by the
matchmaking library (Section 3.2) and the matchmaking
toolkit (Section 3.3).

3.1 GRAPPA Matchmaking Engine
The matchmaking engine accepts a set of supply profiles
(candidate instances) and a demand profile as input. The
supply profiles which have to be provided as instances of
the matchmakers candidate class are either stored in the
matchmakers service repository or – in case the match-
maker does not keep a service repository – retrieved from
different data sources. The request which has to be pro-
vided as an instance of the matchmakers centroid class is
matched against each of the candidate instances.

The candidate structure as well as the centroid structure
are multidimensional. They consist of complex types
constructed from a domain specific set of basic types
under application of four complex type constructors: list,
array, record and set. The overall distance, a real value
between 0 and 1, is obtained by recursively computing the
distance values for different profile sub-types, as

Figure 1. GRAPPA Matchmaking Framework

shown in the example in section 4, and propagating them
upwards to compute the values for their parents (see
Section 3.2 as well as [Eiter et. al., 2001; Veit et. al., 2001]
for details).

For the basic types (the atomic attributes of the centroid
and the candidate), the specific distance function for the
particular type is applied and the result is propagated
upwards.

Then, at the next higher level, all basic distances be-
tween the atomic types in this level are merged to one
distance value for this complex type under application of
aggregate functions. For in depth discussion of the dis-
tance function issue see [Veit, 1999].

The result of the recursive computation of distance
values is

(i) an overall distance (real value between 0 and 1) which
reflects the quality of the considered candidate in-
stance for the current centroid instance.

(ii) a structure (in XML) which consists of the individual
distance results in each layer.

The best k candidates (with respect to the current centroid)
are returned as the result of the match. This list is ranked
using the value from (i).

The agent (or the agent’s principal) can then recur into
the XML structure described in (ii) to obtain an explana-
tion how the particular overall result arose (e.g., which
aspects of the match contributed to a good or bad overall
result).

3.2 GRAPPA Matchmaking Library
The GRAPPA Matchmaking Library hosts an extensible
collection of predefined profile schemas and (gen-
eral-purpose or domain-specific) distance functions. The
profiles schemas can be used as a basis for applica-
tion-specific profiles; the distance functions provide
uniform interfaces that allow us to flexibly combine them
to develop specific matchmaking solutions.

It is essential for a matchmaking system to provide
powerful distance functions. Currently, we provide dis-
tance functions for FreeText, WeightedKeyword, Interval,
TimeInterval, DateInterval, Boolean, and Number basic
values (i.e. instances of basic types). All distance func-
tions have the property to take two basic values as input
and to provide a real number between 0 and 1 as output
(distance). Additionally domain specific distance func-
tions, can be integrated as we shall describe in Section 5.

On top of these basic functions, we define aggregate
distance functions. Currently, WeightedAverage, Aver-
age, Minimum, Maximum are supported as predefined
aggregate functions. As for basic functions, it is possible
to define domain specific aggregate functions and inte-
grate them into a domain specific matchmaker.

As an example for a basic distance function in
GRAPPA, we show the default distance function for free
text. This distance function is based on a cosine similarity
measure developed in information retrieval [Salton,
1989]. Any free text document T can be associated with a
document vector dv by removing stopwords and per-
forming stemming on the remaining words. For each
word, its frequency in T is assigned (called the term fre-
quency (tf)). Given a collection of N documents, the
document frequency (df) of a word stem is the number of
documents in which it occurs. The
term-frequency-inverse-document-frequency factor (tf-idf
factor)

has proven to be a useful weight for a word stem. The
documents are represented in a document space by their
document vector consisting of the tf-idf factors.

The similarity of two documents T1 and T2 is computed
as the cosine between the corresponding document vectors
in the document space [Salton, 1989]:

where

for i=1 or i=2 is the weight for term j in document i and k
is the dimension of the document space.

3.3 GRAPPA Toolkit
The GRAPPA Toolkit provides a set of tools which enable
the development of a multidimensional matchmaker for
specific applications mainly through configuration with-
out much coding work. To guide the marketplace designer
we have defined a 5-step process to obtain a domain
specific matchmaking solution:

(1) Define the centroid and candidate schemas (basic
entries) in XML;

(2) Define the clusters of attributes in XML
(pseudo-orthogonalization); clustering can be recur-
sive;

(3) Associate the clusters of the centroid with clusters of
the candidate by applying appropriate distance func-
tion;

(4) Combine the results of the distance functions to an
overall distance value (e.g., weighted sum);

(5) Apply feedback regarding the quality of the matches,
e.g., by adaptively changing weights or matching
functions.

Steps (1) – (4) are explained in more detail in Section 4.
The feedback process in (5) is currently implemented as a

simple real value between 0 and 1 which the systems user
can return to the system. With this value the user can
indicate how he judged the systems matchmaking result
for the particular item.

4 Matchmaking Implementation
In this section, we describe key issues of implementation
of the matchmaking framework. We focus on the re-
quirements described in Section 1; in particular, the
framework has been designed to be extensible and to be
integrated easily into commercial e-business platforms.

4.1 Basic entities and processes
In this section, we describe the basic computational con-
cepts used in our implementation. The centroid profile
encapsulates the structure of the originating request. This
structure is defined by means of an XML document type
definition (DTD). Requests on the domain-specific
matchmaker must conform to this DTD.

Candidate profiles are the data instances on which the
matchmaking will be processed (e.g. records in an appli-
cants database). Alike the centroid profile, this structure
must be defined in an XML document type definition.

Example of candidate and centroid profile:

To compute a match between centroid and candidate
profile based on various distance functions, a 1:1-mapping
between the elements of the centroid and the candidate is
required. Especially if the centroid and the candidate
provide a different number of top-level attributes a or-
thogonalization process is required which will be de-
scribed in the following. In this process, attributes that
together describe a separate semantic aspect relevant for
matchmaking are determined and grouped into a cluster.
An attribute may be contained in more than one cluster. If
this is the case, they are duplicated to preserve orthogo-
nality.

As described in Section 3.2, the matchmaking library
provides a number of built-in distance functions that can
be used to create domain-specific matchmakers. All dis-
tance functions will need to implement an interface
DistanceFunction. This way, domain-specific
distance functions implementing custom semantics re-
quired for specific matchmaking solutions can be pro-
vided.

Aggregate functions are used by the matchmaker to
compute a multi-attribute result from the values returned
by the basic distance functions. The matchmaking library
contains the aggregate function WeightedSum to compute
a weighted sum of the basic distances as an overall result.

Candidate:
Person

Age
Expected_wage

Soft_skills
Hard_skills

Centroid:
job_profile

max_age
max_wage

job_description

Different aggregate functions implementing thresholds,
hard constraints, or averages can be included similarly as
additional distance functions using the interface Ag-
gregateFunction.
Example after orthogonalization and association of
distance functions:

Here, three clusters were formed and three distance func-
tions, f1, f2, and f3, were associated to the clusters.

4.2 Configuration
In order to customize the generic matchmaker for a do-
main, we provide a configuration process: First, the
structure of centroid (request to the matchmaker) and
candidate (data instances) profiles has to be defined. These
structures must be provided as XML document type defi-
nitions (DTD). During the matchmaking process, in-
stances of the centroid and candidate profiles must comply
with these DTDs. Then, the main configuration file (XML
document) has to be created. In this document, the clus-
tering of attributes, and association of distance functions
with each pair of centroid / candidate cluster pair are
specified. Additionally this document contains the speci-
fication of the aggregate parameters whose meaning
depends on the corresponding aggregate function (in the
case of the weighted sum, the aggregate parameter would
represent simply the weight).

Furthermore for each cluster pair, a constraint type (soft
or hard) must be declared. This type determines the impact
of an absolute inequality of a cluster-pair on the overall
result. So a distance of 0 of one cluster compar-ison with
the comparison type strong would lead to an overall result
of 0 independent of any other comparison result. Each
cluster and its associated distance function is considered
as one dimension in the configuration. The configuration
entries for each dimension are grouped as 5-tuples con-
sisting of: (i) cluster from centroid; (ii) cluster from can-
didate; (iii) distance function; (iv) aggregate parameter;
and (v) constraint type. As mentioned above, the compu-
tation of a distance value between two clusters can also be
done by dividing each cluster into its subitems, compute
the distance of these subitems directly and use an aggre-
gate function to obtain an overall result for this cluster.

In this case the corresponding dimension entry in the
configuration file would have a number of sub-dimension

entries and instead of a distance function an aggregate
function for the overall result has to be specified.
Dimension entries in configuration file for the example
above:

<Configuration>
 <Dimension>
 <LeftName>job_profile</LeftName>
 <RightName>Person</RightName>
 <Dimension>
 <LeftName>max_age</LeftName>
 <RightName>Age</RightName>
 <DistanceFuntion>
 Age_Dist</DistanceFunction>
 <AggregateParameter>
 50<AggregateParameter>
 <Type>weak</Type>
 </Dimension>
 <Dimension>
 <LeftName>max_wage</LeftName>
 <RightName>Expected_wage</RightName>
 <DistanceFunction>
 Wage_Dist</DistanceFunction>
 <AggregateParameter>
 50</AggregateParameter>
 <Type>weak</Type>
 </Dimension>
 <AggregateFunction>
 WeightedSum</AggregateFunction>
 <AggregateParameter>30</AggregateParameter>
 <Type>strong</Type>
 </Dimension>
 <Dimension>
 <LeftName>job_description</LeftName>
 <RightName>soft_skills</RightName>
 <RightName>hard_skills</RightName>
 <DistanceFunction>FreeText_Asymmetric
 </DistanceFunction>
 <AggregateParameter>70</AggregateParameter>
 <Type>strong</Type>
 </Dimension>
</Configuration>

The configuration file with a structure as described above
is written in XML using a special Configuration document
type definition Configuration.dtd provided as a
part of the matchmaking library.

Using this configuration information, a domain-specific
instance of the matchmaker can be created automatically.

4.3 Matchmaking JAVA-library
The matchmaking library consists of a number of classes
covering configuration aspects such as dimension entries
and the main configuration file, a class for the generic
matchmaker which operates with the configuration and
carries out the matchmaking process between instances of
corresponding classes for centroid and candidates. The
matchmaking result is covered by a class which provides
detailed information about the matchmaking process such
as information about each cluster-cluster comparison,
reasons for “disqualifying” a candidate, output to XML,
etc. The following paragraphs provide a short description
of the most important classes included in the matchmaking
library:

The dimension-class encapsulates the dimension entry
(a 5-tuple) in the configuration file with declaration of the
clusters in centroid and candidate, distance function (resp.
sub-dimensions an aggregate function), the aggregate

Centroid:
job_profile

 max_age

 max_wage

job_description

f1,w1

Freetext_asymmetric,
w2

f2,w2

Candidate:
Person

 Age

Expected_wage

Soft_skills
Hard_skills

parameter and type. Since a dimension can have multiple
sub-dimensions, this class is defined recursively.
The config-class is the main configuration class, encap-
sulating the configuration file and administering the di-
mension entries. During construction, an object of this
class loads all required distance and aggregate functions,
creates dimension entries and builds the necessary internal
structure for the matchmaker. Additionally this class
provides the application with two factory objects for
loading centroid and candidate data. Instances of the
matching class must be initialized with a configuration
object and will then perform the domain-specific match-
making on centroid and candidates. Additionally this class
can have a number of candidate providers from which
candidates can be drawn.

The candidate provider interface automates the access
of candidate data for the matchmaker. Implementing this
class the user has the ability to preview and preselect
candidates from various data sources before matchmaking
so that unnecessary comparisons can be avoided.

4.4 Deployment as Enterprise Java
Beans component

In addition to the classes of the basic matchmaker de-
scribed above the library provides a set of classes for the
deployment of a domain-specific matchmaker in an ap-
plication server to provide matchmaking functionality in
the context of a commercial e-business platform and to
make it available from the web or from other clients.
These classes are two wrapper classes for the MMConfig
and the matching class with some extra functionality
suitable for EJB components.

Config, ConfigEJB, ConfigHome: Classes for the Con-
figBean as a wrapper for the MMConfig class. This En-
terprise Java Bean is realized as an entity bean to provide a
persistent storage for domain-specific configurations of
the matchmaker.

Matchmaker, MatchmakerEJB, MatchmakerHome:
These classes represent the MatchmakerBean session bean
with the matchmaking functionality. In combination with
an instance of the ConfigBean this class performs the
matchmaking in the application server.

5 Application: HRNetAgent
Due to the open, flexible architecture of the GRAPPA
framework, it can be applied to a wide range of match-
making problems in all sorts of (agent- or hu-
man-operated) electronic marketplaces. In this section, we
provide a brief description of one industrial project in
which GRAPPA has been applied successfully. The Sie-
mens “Human Resource Network Agent” (HRNetAgent)
project.

The HRNetAgent is an application of GRAPPA for
matching corporate job profiles with profiles of job ap-
plicants (i.e., unemployed persons), stored in various data
bases.

Figure 2. HRNetAgent System overview

The current version of HRNetAgent is a prototype system
that has been developed for the German Federal Labor
Exchange Office1, and demonstrates the feasibility of a
partially automated approach to employment relaying.
Based on its success, a full-fledged system is planned for
the near future. The potential return on investment is huge:
reducing the relaying time of unemployed persons (cur-
rently, there are about 4 million people in Germany
without employment) just by one day on average will save
the German government more than a hundred million
dollars a year.

Figure 2 shows the architecture of the HRNetAgent
system. A company specifies its job profiles to a desig-
nated GUI-Agent, which takes the role of a requester agent
in the system. The GUI-Agent queries the matchmaker by
sending to HRNetAgent the description of the open posi-
tion which should be filled. The scheme for specifying the
open positions is the centroid. The backend of HRNet-
Agent consists of a collection of data sources wrapped by
information agents, and by a search controller that coor-
dinates a number of search agents. E.g., one data source is
the central database of the German Federal Labor Ex-
change Office, in which all currently unemployed persons
in Germany are stored. Others may be corporate skills
databases, Further databases can be easily integrated. Note
that the database wrapper agents play the role of virtual
provider agents in our architecture.

The HrNetAgent human resource market is designed to
find appropriate applicants from heterogeneous sources
(e.g. the employee data of different companies). The
results are displayed for the user in a homogeneous way.
These properties fulfill main points of the desiderata for
future job markets formulated by Maier et. al. in [Maier et.
al., 2000].

Wrapper agents perform the task of query translation,
connection handling, and result translation. They return a
preselection of profiles to the matchmaker based on con-
ditions extracted from the centroid profile. In HRNet-

1 http://www.arbeitsamt.de

Agent, the centroid and candidate schemes are converted
to XML-DTDs which are considered as the document
classes of these types. Matchmaking thus is done on a
preselection of candidates. The most successful candidates
for a job profile are stored in the local service repository
for fast access by the application. In addition, HRNet-
Agent offers an automated notification service via SMS,
Fax, or Email.

6 Conclusions
In this paper, we have described a generic approach to
matchmaking in agent- or human-mediated electronic
marketplaces. The focus of this work is on achieving the
flexibility and openness required to build a matchmaking
framework that can be easily applied to different vertical
marketplaces and that can be integrated into a broad range
of industrial marketplace platforms. Currently, the
matchmaking framework described in Section 3 will be
developed to product stage. It will be used both to enable
matchmaking in agent-based marketplace applications
within Siemens and for “non-agent enabled” electronic
marketplaces. Our hope is that this will be a starting point
allowing us to push the deployment of agents into main-
stream e-business systems.

A current restriction of the system is that it only pro-
vides 1:N matchmaking. I.e., the Matchmaker will always
consider one demand profile and multiple supply profiles,
and vice versa. It cannot deal with matching problems as
they occur in continuous double auctions, where the best
matches combining multiple demand and supply profiles
need to be identified (see e.g., [Sandholm, 2000]). Future
work will include the development of corresponding
matching functions for N:M matchmaking.

Also, the system currently provides only very basic
feedback mechanisms that can be used to adapt the
matchmaking configuration. We believe that learning
capability will be required to achieve robust and good
matchmaking behavior, and we are planning to incorpo-
rate feedback rules into the system in the future.

One future research objective will be to apply multi-
dimensional matchmaking for relevance computation in
electronic negotiations. Bichler [Bicher, 2000] states that
multi-attribute auctions use a mechanism which deter-
mines a winning bid among n different bids. This mecha-
nism can be seen as an application of multidimensional
matchmaking. In our future work we intend to apply the
GRAPPA matchmaking system to multi-attribute auctions
in practice. Finally, more elaborate methods are required
to test the performance of complex matchmaking solutions
as the one described in Section 3 and 4.

References
[Bicher, 2000] Bichler, M. (2000, April). An experimental

analysis of multi-attribute auctions. Decision Support
Systems 29 (2000), pp. 249-268.

[Decker et. al., 1997] Decker, K., K. Sycara, and M.
Williamson (1997, August). Middle-agents for the
internet. In Proceedings of the Fifteenth International

Joint Conference on Artificial Intelligence (IJCAI-97),
pp.578-583.

[Eiter et. al., 2001] Eiter, T., D. Veit, J. Müller, and M.
Schneider (2001). Matchmaking for structured objects.
In Proceedings of the DaWaK 2001, Munich, Germany,
P. 186-194.

[Kuokka and Harada, 1996] Kuokka, D. and L. Harada
(1996). Integration information via matchmaking.
Journal of Intelligent Information Systems 6(2/3), P.
261-279.

[Maier et. al., 2000] Maier, M., K. Kronewald, P. Mertens
(2000). Vernetzte Jobbörsen und Unternehmensnetz-
werke – eine Vision, Wirtschaftsinformatik 42 (2000)
Sonderheft, P. 124-131.

[Müller, 1997] Müller, J. P. (1997). The design of intel-
ligent agents. Lecture Notes of Articial Intelligence, Vol.
1077. Springer-Verlag.

[Müller and Pischel, 1999] Müller, J. P. and M. Pischel.
Doing business in the information marketplace: a case
study. In Proceedings of the 3rd Intl. Conference on
Autonomous Agents (Agents-1999), ACM Press, 1999.

[Salton, 1989] Salton, G. (1989). Automatic Text Proc-
essing. Addison-Wesley. (ISBN 0-201-12227-8)

[Sandholm, 2000] Sandholm, T. (2000). eMediator: a next
generation electronic commerce server. In Proceedings
of the 4th Intl. Conference on Autonomous Agents
(Agents-2000), P. 341-348, ACM Press.

[Subrahmanian et. al, 2000] Subrahmanian, V.S., P. Bon-
atti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and R. Ross
(2000, June). Heterogenous Agent Systems. MIT Press.
(ISBN: 0-262-19436-8)

[Sycara and Klusch, 1998] Sycara, K., J. Lu, M. Klusch
(1998, October). Interoperability among heterogenous
Software Agents on the internet. Technical Report
CMU-RI-TR-98-22, The Robotics Institute Carnegie
Mellon University, Pittsburgh.

[Veit, 1999] Veit, D. (1999). Matchmaking algorithms for
autonomous agent systems. Master’s Thesis, Institute of
Computer Science, University of Giessen, Germany.

[Veit et. al., 2001] Veit, D., J. Müller, M. Schneider, B.
Fiehn (2001). Matchmaking for Autonomous Agents in
Electronic Marketplaces. In Proceedings of the 5th Intl.
Conference on Autonomous Agents, (Agents-2001),
Montreal, P. 65-66.

[Weinstein and Birmingham, 1997] Weinstein, P. and W.
Birmingham (1997). Service classification in a
proto-organic society of agents. In Proceedings of the
IJCAI-97 Workshop on Artificial Intelligence in Digital
Libraries.

