
Proc. of the 7th Int. Conference on Digital Audio Effects (DAFx’04), Naples, Italy, October 5-8, 2004

HIERARCHICAL ORGANIZATION AND VISUALIZATION OF
DRUM SAMPLE LIBRARIES

Elias Pampalk∗, Peter Hlavac

Austrian Research Institute for
Artificial Intelligence (OeFAI)

Vienna, Austria
elias@oefai.at

Perfecto Herrera

Music Technology Group
Institut Universitari de L’Audiovisual

Universitat Pompeu Fabra, Barcelona, Spain
pherrera@iua.upf.es

ABSTRACT

Drum samples are an important ingredient for many styles of
music. Large libraries of drum sounds are readily available. How-
ever, their value is limited by the ways in which users can explore
them to retrieve sounds. Available organization schemes rely on
cumbersome manual classification.

In this paper, we present a new approach for automatically
structuring and visualizing large sample libraries through audio
signal analysis. In particular, we present a hierarchical user in-
terface for efficient exploration and retrieval based on a computa-
tional model of similarity and self-organizing maps.

1. INTRODUCTION

Digitized drum samples are an important ingredient in music pro-
duction for many styles of contemporary music. However, finding
the best samples for a drum loop can be a difficult and very time-
consuming task.

Countless sample CDs with drum sounds are available on the
market. Each one uses its own way and criteria to organize and
label the hundreds of samples it contains. Furthermore, an in-
creasing amount of samples are available directly from the In-
ternet. Each source has different naming conventions and sup-
plies metadata (instrument type, diameter, settings, recording en-
vironment,...) of variable quality. This makes it difficult to inte-
grate samples from different sources into a single collection with a
content-based organization, and practically limits the size of sam-
ple collections artists and producers work with.

Currently basically two approaches are used to organize sam-
ples from different sources. The first approach is to classify sam-
ples on the first level by the instrument (tom, bass drum, snare,
hi-hat, cymbal, etc.) and on the second level by the CD source
(name of the sample CD or manufacturer). The second approach
is to classify samples by their source on the first level, and instru-
ment on the second level. Usually both approaches are used in
parallel.

Suppliers have recently started to address the difficulties of
managing large sample libraries by integrating them into virtual in-
struments which offer advanced search mechanism combined with
a graphical user interface (e.g. Stylus from Spectrasonic, Groove
Agent from Steinberg, PLP 120 from Best Service). However,
no system is available for drum sounds which supports similarity-
based exploration and retrieval beyond metadata queries.

∗ Part of this work was done while the author was a visiting researcher
at MTG-IUA.

In this paper we leave aside the metadata and focus solely on
the audio signal of a sample and its similarity to others. We hierar-
chically organize large sample libraries according to this similar-
ity measure. This allows exploration using queries such as: “Find
something that sounds more like this sample than that one”.

To automatically create such an organization we adapted an
auditory model. Furthermore, we used clustering algorithms to
create summaries of the collection and visualize the hierarchical
structure. To demonstrate our approach we implemented a HTML-
based interface allowing the user to explore the hierarchical struc-
ture of the sample collection. First demonstrations of our approach
to prospective users gave very positive feedback and pointed out
some interesting issues for future research.

The remainder of this paper is organized as follows. In the
next Section we review related work. In Section 3 we present the
similarity measure we use for drum sounds. In Section 4 we dis-
cuss the self-organizing map algorithm. In Section 5 we describe
the user interface and how we create it. In Section 6 we discuss
first feedback from users. Finally, in Section 7 we conclude our
work.

2. RELATED WORK

A vast amount of research on organizing and structuring sounds
has been published. Three main directions are relevant to our
work, namely: (1) instrument identification and classification, (2)
timbre spaces, and (3) user interfaces to sound collections.

Instrument identification and classification (for an overview
see [1]) is relevant for several reasons. For one it would be a valu-
able extension to the work presented in this paper to automatically
label sounds and use this information in the interface. Further-
more, most approaches to instrument classification can be general-
ized to classify according to almost any concept. Thus, in an ideal
case drum sounds could be classified into bright, thick, heavy, or
any other user defined categories. Furthermore, features extracted
from an audio signal which are useful for classification are also
likely to be useful in developing similarity measures which form
the basis of our work. Very promising results on classification of
drum sound have recently been published in [2, 3]. However, since
we rely on similarity measures, the results from instrument classi-
fication cannot be applied directly to our work.

Interesting models for the similarity of percussive instruments
have been the outcome of research on timbre spaces and percep-
tual similarities in general. For example, Lakatos [4] suggests a
3-dimensional timbre space for percussive sounds. In particular,
he suggests that the physical dimensions which are correlated with
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the 3 most salient perceptual dimensions are log-attack time, spec-
tral centroid, and temporal centroid. These physical dimensions
are also used in the MPEG-7 description format as descriptors for
timbre [5]. However, in first experiments we conducted the quality
of these descriptors was insufficient to distinguish fine details in
the samples as required for our task.

Another interesting aspect of research on timbre spaces is that
the similarity relationships of the sounds are usually visualized in
2 or 3 dimensions using multi-dimensional scaling. One of the ear-
liest approaches to use a self-organizing map (SOM) [6] to study
timbre spaces by visualizing sound collections was presented by
Cosi et al. [7]. An auditory model is used to compute the similar-
ity between 19 relatively different sounds (e.g., flute, oboe, piano,
organ, ...) with pitch C4. Although this previous work differs from
our work with respect to the number and type of samples, the same
principles apply.

Our approach is mainly inspired by the work of Feiten et al. [8,
9] where a SOM-based interface to efficiently access sample col-
lections was proposed. Analogue to [7] an auditory model to com-
pute the similarity of approximately 100 synthesized samples is
used as input to a self-organizing map to visualize the collection.
Despite differences in number and type of samples, our main con-
tribution to this direction of research is an adapted similarity mea-
sure which was optimized using results from preliminary drum lis-
tening tests. In addition, we present a new hierarchical extension
to the SOM-based interface to deal with large collections.

A quite different user interface to find sounds is the Sonic
Browser [10]. The main idea of the Sonic Browser is to browse au-
dio files by listening to them simultaneously in a stereo-spatialized
sound scape. However, feedback from our targeted users indicated
that even small overlaps (e.g. open hi-hat fading out while snare
starts playing) are irritating and should be avoided.

3. SIMILARITY MEASURE FOR DRUM SOUNDS

In general it is difficult to predict when a human listener will con-
sider two drum sounds to be similar. Similarity depends on the
context, which aspects the listener is focusing on, and subjective
impressions. Sounds can be described in measurable dimensions
such as attack time or spectral centroid but are commonly de-
scribed with vaguely defined adjectives such as dark, fat, punchy,
deep, thick, crispy, etc.

However, compared to other instrument sounds there are sev-
eral simplifications which make the similarity easier to compute.
First of all, drums allow fewer variations in pitch than instruments
in general. Thus, we consider changes in frequency equally impor-
tant to changes in the loudness envelope over time. Secondly, the
temporal loudness contour usually has a relatively simple shape.
In particular, to some extent we can ignore effects such as vibrato
or other loudness modulations which are very common for other
types of instruments.

Our approach to compute the similarity of drum sounds is
based on [8] where the main idea is to interpret sonograms as vec-
tors and use a distance metric to compute distances in the vector
space. Sonograms are computed taking some aspects of the audi-
tory system into account. As input we use 44kHz mono samples.
Samples longer than 500ms are truncated. We use a FFT with
23ms windows, weighted with a Hann function, and 12ms over-
lap to obtain the spectrogram. To model the frequency response
of the outer and middle ear we use the formula proposed by Ter-

hardt [11],

AdB(fkHz) = (1)

−3.64 f−0.8 + 6.5 exp
(

−0.6(f − 3.3)2
)

− 10−3f4.

The main characteristics of this weighting filter are that the influ-
ence of very high and low frequencies is reduced while frequencies
around 3–4kHz are emphasized (see Figure 1).
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Figure 1:Terhardt’s outer and middle-ear model. The dotted lines
mark the center frequencies of the 24 critical-bands.

Subsequently the frequency bins of the STFT are grouped into
24 critical-bands according to Zwicker and Fastl [12]. The con-
version between the bark and the linear frequency scale can be
computed with,

Zbark(fkHz) = 13 arctan(0.76f) + 3.5 arctan(f/7.5)2. (2)

The main characteristic of the bark scale is that the width of the the
critical-bands is 100Hz up to 500Hz, and beyond 500Hz the width
increases nearly exponentially (see Figure 1 where the dotted lines
appear almost equally spaced beyond 500Hz on the log-scaled fre-
quency axis).

We calculate spectral masking effects according to Schroeder
et al. [13] who suggest a spreading function optimized for interme-
diate speech levels. The spreading function has lower and upper
skirts with slopes of+25dB and−10dB per critical-band. The
main characteristic is that lower frequencies have a stronger mask-
ing influence on higher frequencies than vice versa. The contri-
bution of critical-bandzi to zj with ∆z = zj − zi is computed
by,

BdB(∆zbark) = (3)

+15.81 + 7.5(∆z + 0.474) +

−17.5
(

1 + (∆z + 0.474)2
)1/2

.

We calculate the loudness in sone using the formula suggested
by Bladon and Lindblom [14],

Ssone(ldB-SPL) =

{

2(l−40)/10, if l ≥ 40dB,
(l/40)2.642, otherwise.

(4)

After these steps each sample is described by a sonogram in
the dimensions time (fs = 86 Hz), frequency (24 critical-bands
with the unit bark), and loudness (measured in sone) with a max-
imum length of 500ms. Examples for sonograms are shown in
Figure 2.

The use of different metrics to compare sonograms was stud-
ied in [15] where based on data from listening tests the authors
come to the conclusion that a Minkowski metric withp = 5 pro-
duces best results on synthesized harmonic samples. In first exper-
iments we could not confirm these these findings for drum sam-
ples, thus, we have resorted to the use of the Euclidean distance.
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Figure 2: Four typical samples and their sonograms. The gray-
scale of the sonograms in the 2nd row are normalized so that white
equals 0 sone and black equals 27 sone.

A main problem when using sonograms is the sensitivity to
time shifts which requires some sort of temporal alignment. For
example, comparing 2 versions of the same sample where one ver-
sion is shifted by 20ms could yield a distance larger than the dis-
tance between two perceptually different samples. In [9] an ap-
proach is proposed where a SOM is trained on steady state sounds
(with approximately 6ms duration) extracted from the samples.
Subsequently, the samples are represented by trajectories on the
SOM. The sounds are then compared by computing the distance of
their trajectories using the city-block distance and aligning them
temporally so that the distance is minimal. The main advantage
of using the SOM is to optimize the computations, however, the
computing power available today allows us to directly align the
sonograms.

To align two sonograms we compute the distances between
them while shifting them against each other in the range of 50ms.
We then take the minimum of these distances as the distance of the
samples. Figure 3 gives an example for such a direct alignment.
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Figure 3:Illustration of the temporal alignment assuming there is
only one frequency band. B is aligned with A which results in B’
with a minimum distance to A.

4. SELF-ORGANIZING MAP

The SOM [16, 6] is a useful algorithm mainly to visualize very
high-dimensional data. In previous work we have applied it to or-
ganize and visualize music collections [17, 18]. In this paper we
use 1-dimensional SOMs to hierarchically structure the samples
and a 2-dimensional SOM for visualization. The SOM consists of
units which have a topological order (usually a 2-dimensional rect-
angular grid, referred to as map). Each of these units is assigned a
model vector in the data space. The model vectors can be initial-
ized in various ways, basically a random initialization is sufficient.
Each sound sample is assigned to the unit which has the most simi-
lar model vector (best matching unit). Thus, each sound is mapped
to a location on the map (which is usually used for visualization).

The main objective of the SOM is to map similar data items
(i.e., sound samples) to units close to each other. This is achieved

a b

c d

Figure 4:Illustration of the SOM. (a) The probability distribution
from which the sample was drawn. (b) The model vectors of the
SOM. (c) The SDH and (d) the U-matrix visualizations.

by iteratively optimizing the topology and quantization error. The
quantization error is optimized by adapting the model vector of
each unit so that it better represents the samples assigned to it.
This is identical to k-means clustering. The topology is preserved
by taking the neighborhood of each unit into consideration when
adapting the model vectors. The model vector of each unit is
adapted not only to fit the directly assigned samples, but also the
samples of neighboring units. The size of the neighborhood which
is taken into consideration is decreased gradually during training.
The final size of this neighborhood together with the number of
map units (map size) are the two main parameters of the SOM
which control how much freedom the SOM has to adapt to the
data.

Figure 4 illustrates some important characteristics of the SOM.
Samples are drawn from a 2-dimensional probability density func-
tion. A 2-dimensional (8×6) SOM is trained so that the model
vectors adapt to the topological structure of the data. There are
two important characteristics of the non-linear adaptation. First,
the number of data items mapped to each unit is not equal. Es-
pecially in sparse areas some units might represent no data items.
Second, the model vectors are not equally spaced. In particular,
in sparse areas the adjacent model vectors are relatively far apart
while they are close together in areas with higher densities.

Both characteristics can be exploited to visualize the cluster
structure of the SOM using smoothed data histograms (SDH) [19]
and the U-matrix [20], respectively. The SDH visualizes how
many items are mapped to each unit. The smoothing is controlled
by a parameter. The U-matrix visualizes the distance between the
model vectors. The SDH visualization (Figure 4(c)) shows the
cluster structure of the SOM. Each of the 5 clusters are identifi-
able. The U-matrix mainly reveals that there is a big difference
between the clusters in the lower right and the upper right.

5. USER INTERFACE

The HTML-based user interface (see Figure 5) that we have devel-
oped consists of two parts. The upper part is only text-based and
the lower part is mainly graphical. In the following we describe
the ideas and concepts behind both of them. The main idea is to
give the user first a overview of the different samples available and
then rapidly narrow down the search with each input from the user.
A demonstration is available online without the audio files due to
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Figure 5:Screenshot of HTML-based user interface.

copyright restrictions.1

5.1. Text Interface

The intention of the text-based interface is to create a very simple
interface which would allow the user to navigate in the sample
collection with closed eyes using only a few keyboard keys. The
basic functionality would be using up and down keys to listen to
the next or previous sample, right to listen to more similar and left
to listen to less similar samples. However, in the HTML interface
this functionality is available only for usage with the mouse.

In Figure 5 the four columns represent the four levels of the
hierarchical structure. The first level is the leftmost column, the
fourth level the rightmost. In this case, the user has selected the
first sound on the first level (requesting more of this kind). Each
of the 9 choices are typical sounds for the sub-branches they rep-
resent. On the second and third level the 5th sample was selected
leaving a final set of 5 samples in the fourth column. If the user
is not satisfied with this set it is always possible to make differ-
ent choices at higher levels in the hierarchy and explore other
branches.

1http://www.oefai.at/˜elias/dafx04

The first level is a rough summary of the collection based on
9 samples. The number 9 was arbitrarily chosen manually. It is
a trade-off of using as many samples as possible to describe the
collection as accurately as possible on one side, and using as few
samples as possible to create a good summary. In future work it
might be interesting to investigate determination of this number
automatically for each node in the tree.

The 9 samples are determinated using a 1-dimensional SOM
with 9 units. The motivation for using a SOM is to order the sam-
ples in a meaningful way. In particular, adjacent neighbors on the
list should be similar to each other. In this case we have a rough
order of toms (1,2,4,5), snares (3,6,7), hi-hat (8), and cymbals (9).
Alternatively, k-means clustering could be used in combination
with a traveling salesman algorithm to sort the clusters.

Each of the 9 (parent) samples on the first level represent a
subset of the collection (children). Each subset includes all sam-
ples which are best represented by the respective parent. The num-
ber of these children is displayed in brackets next to the name of
the parent. Furthermore, each parents subset is enlarged by 50%
to include children which are not best represented but are never-
theless similar. For example, in Figure 5 on the first level 150
samples are best represented by the first parent. The subbranch
includes these 150 plus an addition 75 which are best represented
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by the second parent but are located on the boundary to the first
parent. This overlap in the hierarchy ensures that samples which
are similar to two parents can be found more easily.

For each set of children a SOM is trained until the number of
children in a set is smaller than 13. Thus, the depth of the branches
of the tree are not fixed to a specific number. In the experiments
we will discuss later the depth reached a maximum level of 4 and
a minimum level of 3.

There are several alternatives to create hierarchical structures.
In previous work [21] we have used the Growing Hierarchical
SOM (GHSOM) [22]. The main reason for not using the GH-
SOM in this work is because it would not be possible to create the
visualizations described below. However, the GHSOM and vari-
ations [23] use heuristics which would automatically determine
the number of parent samples. These heuristics might be suitable
choices for future work.

5.2. Graphical Interface

The intention of the graphical user interface is to give the user
more information on the automatically created organization. The
GUI is tightly coupled with the text-based interface. The visual-
ization is based on one large 2-dimensional (48× 12) SOM which
is trained on the whole collection. The location of the 9 samples
(determinated in the text-based part) are marked on the map with
numbers. The user can move the mouse over the samples to get a
tooltip with the sounds filename displayed and hear the sounds. If
the user wants to find more of the same then it is possible to click
on the sounds to descend to the next level.

The image in the lower part of Figure 5 is the SOM where the
9 samples of the first level marked. Note the order which is created
by the 1-dimensional SOM. The gray-shadings in the background
are a smoothed data histogram and indicate how many items are
located in the different areas. The SDH smoothing parameter is au-
tomatically adjusted for each hierarchy level to create rough sum-
maries on higher levels, and more detailed summaries on lower
levels. In particular, the parameter was calculated based on the
square root of samples on the respective level.

In previous work we used the SOM and SDH to visualize mu-
sic collections using a metaphor of islands of music [17]. Clusters
found by the SDH were visualized as islands. In this work, we
use the SDH mainly to visualize which part of the collection is
currently being considered in a branch of the hierarchy.

Figure 6 illustrates how the set of samples is narrowed down as
the user makes selections. On the first level (see map in Figure 5)
the whole collection is visualized on the map and the parents are
spread across it. On the second level the area only covers about
one quarter of the whole collection. Finally, on the fourth level the
parents are so close to each other that they overlap in the figure.

6. FIRST EVALUATIONS & DISCUSSION

For the experiments we used (mostly dry, or mixed with some am-
biance or reflection room) drum samples from 2 sample CDs from
different vendors. In total the collection had 817 distinct samples.
We computed the HTML interface described above and informally
demonstrated it to 5 prospective users who use and search for drum
samples on a daily basis. In general feedback was very positive.
We observed the following.

(1) Given the choice the users always preferred the graphical
interface. One user explained that producing music is a creative
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Figure 6:Maps belonging to (a) column 2, (b) column 3, and (c)
column 4 of Figure 5.

process. Unconventional search mechanisms are more likely to
come up with something unpredictable. However, the text inter-
face was also considered to be very useful. Mainly because some
of the displayed file names contained very useful information (e.g.,
SN 6” mixed with reflection room rimshot hard). The request was
made to better integrate this information into the graphical inter-
face.

(2) Generally, the better integration of metadata was a ma-
jor request. Especially filters to focus only on one instrument are
missing. However, filtering instruments might be a suboptimal so-
lution in cases were samples from different instruments can sound
very similar such as a bass drum mixed with a reflection room and
snares. One solution might be to use a color coding to indicate
the instrument type of the parent in the GUI. Another option might
be to use component planes analogue to the weather charts in the
islands of music metaphor [17]. The weather charts are laid over
the SOM and display in which areas there is a high or a low con-
centration of a specific property.

(3) A very interesting point which was brought up is that 3
hierarchical levels would be sufficient instead of 4. Mainly this
can be explained by weaknesses of the similarity measure we use.
Although, the correlation of the similarity measure and user rat-
ings from preliminary A-B drum listening tests is around 0.8, the
similarity measure is far from optimal. In particular, the level of
detail which our organization creates is not supported by the sim-
ilarity measure. For example, in Figure 5 in the 4th column there
is a mix of toms, bass drums, and even one snare drum. Another
reason why 3 levels could be sufficient is that in manually created
organizations it is very common to have significantly more than
12 samples in the lowest levels of the hierarchy (some users men-
tioned they usually have 30 or more samples in directories on the
lowest level).

(4) Another important point brought up in the interviews was
that every artist uses his own vocabulary to describe samples. Al-
though it would not be necessary to adapt to each artists individual
vocabulary it would be very useful to classify samples according
to words such as dark, thick, crispy, etc. even if the meaning of
these words needs to be more or less arbitrarily predefined. This
additional information could be visualized as mentioned in (2).

Other points brought up were (5) the lack of a zoom function,
(6) the restriction to mono sound, (7) the selected parent should
be marked on the lower level hierarchy, (8) a good system should
allow very fast browsing using as few clicks as possible to support
the creative process.
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7. CONCLUSIONS

We have presented a system to automatically organize and visual-
ize drum sound collections hierarchically. The similarity measure
we use has several limitations, however, it seems to be sufficient
for drum sounds and their specific characteristics. First feedback
we got from prospective users was very positive although some
modifications were suggested. In future work will focus on im-
proving the similarity measure. Currently we are conducting lis-
tening tests for drum sounds to gather data to optimize the various
parameters in the similarity measure. Furthermore, we plan to im-
plement a VST plugin to integrate the system into sequencers such
as Cubase or Logic.
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