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Abstract

The availability of large music collections calls for
ways to efficiently access and explore them. We
present a new approach which combines descriptors
derived from audio analysis with meta-information to
create different views of a collection. Such views can
have a focus on timbre, rhythm, artist, style or other
aspects of music. For each view the pieces of mu-
sic are organized on a map in such a way that similar
pieces are located close to each other. The maps are
visualized using an Islands of Music metaphor where
islands represent groups of similar pieces. The maps
are linked to each other using a new technique to
align self-organizing maps. The user is able to browse
the collection and explore different aspects by gradu-
ally changing focus from one view to another. We
demonstrate our approach on a small collection using
a meta-information-based view and two views gener-
ated from audio analysis, hamely, beat periodicity as
an aspect of rhythm and spectral information as an
aspect of timbre.

Introduction

}@oefai.at

sic from heavy metal. However, there are several aspects of
similarity to consider. Some aspects have a very high level of
detail such as the difference between a Vladimir Horowitz and
a Daniel Barenboim interpretation of a Mozart sonata. Other
aspects are more apparent such as the noise level. It is ques-
tionable if it will ever be possible to automatically analyze all
aspects of similarity directly from audio. But within limits,

it is possible to analyze, for example, similarity in terms of
rhythm (Foote et all, 2002; Paulus and Klaplri, 2002; Dixon
et al|, 2008) or timbre (Logan and Salompn, 2001; Aucouturier
and Pacheét, 2002b).

In this paper we present a hew approach to combine informa-
tion extracted from audio with meta-information such as artist
or genre. In particular, we extract spectrum and periodicity his-
tograms to roughly describe timbre and rhythm respectively.
For each of these aspects of similarity the collection is orga-
nized using a self-organizing m&p (Kohohen, 1982, 2001). The
SOM arranges the pieces of music on a map such that simi-
lar pieces are located close to each other. We use smoothed
data histograms to visualize the cluster structure and to create
an Islands of Musianetaphor where groups of similar pieces
are visualized as islands (Pampalk €t al., 2(002a,b).

Furthermore, we integrate a third type of organization which
is not be derived by audio analysis but is of interest to the
user. This could be any type of organization based on meta-

Technological advances with respect to Internet bandwidth anthformation. We align these 3 different views and interpolate
storage media have made large music collections prevalent. Eketween them using aligned-SONs (Pampalk é{ al., 2003b) to
ploration of such collections is usually limited to listings re- enable the user to interactively explore how the organization
turned from, for example, artist-based queries or requires acthanges as the focus is shifted from one view to another. This is
ditional information not readily available to the public such assimilar to the idea presented by Aucouturier and Pachet (2002b)
customer profiles from electronic music distributors. In partic-who use an “Aha-Slider” to control the combination of meta-
ular, content-based browsing of music according to the overaihformation with information derived from audio analysis. We
sound similarity has remained unsolved although recent worklemonstrate our approach on a small music collection.

seems very promising (e.g. Tzanetakis and Co6ok, 2001 AuT

Couturier and Pachet, 2002b; Cano et al,, 2002: Pampalk et aghe remainder of this paper is organized as follows. In the next

. — L : . - — ection we present the spectrum and periodicity histograms we
.200.2‘1)' The main d'ﬁ'C.U|ty. Is to estimate the perceived S'm'lar'use to calculate similarities from the respective viewpoints. In
ity given solely the audio signal.

section 3 we review the SOM and the aligned-SOMs. In section
Music similarity as such might appear to be a rather simple cond we demonstrate the approach and in section 5 we conclude
cept. For example, it is no problem to distinguish classical mueour work.

Permission to make digital or hard copies of all or part of this ork 2 Similarity Measures
for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advan- In general it is not predictable when a human listener will con-
tage and that copies bear this notice and the full citation on the first gjqer pieces to be similar. Pieces might be similar depending on
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the lyrics, instrumentation, melody, rhythm, artists, or vaguely




by the emotions they invoke. However, even relatively simple 10
similarity measures can aid in handling large music collections or
more efficiently. For examplé, Logan (2002) uses a spectrum-

based similarity measure to automatically create playlists of

similar pieces.| Aucouturier and Padhet (2002b) use a similar

spectrum-based measure to find unexpected similarities, e.g.,
similarities between pieces from different genres. A rather dif- -401
ferent approach based on the psychoacoustic model of fluctua-  _so
tion strength was presented by Pampalk et al. (2002a) to orga-

nize and visualize music collections.
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Unlike previous approaches we do not try to model the overalFigure 1: The curve shows the response of Terhardt's outer and
perceived similarity but rather focus on different aspects and almiddle ear model. The dotted lines mark the center frequencies
low the user to interactively decide which combination of theseof the critical-bands. For our work we use the first 20 bands.
aspects is the most interesting. In the remainder of this sec-
tion we first review the psychoacoustic preprocessing we ap-
ply. Subsequently we present the periodicity and spectrum his=
togram which rely on the preprocessing.

e computed with,

Zoark( finz) = 13 arctar{0.76 ) + 3.5arctar{f/7.5)%.  (2)

2.1 Psychoacoustic Preprocessing The main characteristic of the bark scale is that the width of the

The objective of the psychoacoustic preprocessing is to remov&e critical-bands is 100Hz up to 500Hz and beyond 500Hz the
information in the audio signal which is not critical to our hear- Width increases nearly exponentially (see Figure 1).

ing sensation while retaining the important parts. After the preyye calculate spectral masking effects according to Schroeder
processing each piece of music is described in the dimensiolg ]| (1979) who suggest a spreading function optimized for
time (f, = 86Hz), frequency (20 critical-bands with the unit jntermediate speech levels. The spreading function has lower
bark), and loudness measured in sone. Similar preprocessiRgd upper skirts with slopes af25dB and—10dB per critical-

for instrument and music similarity have been used, for €xampand. The main characteristic is that lower frequencies have
ple, by Feiten and Gnze] (1994) and by Pampalk et al. (2002a). 5 stronger masking influence on higher frequencies than vice
Furthermore, similar approaches form the core of perceptual ayersa. The contribution of critical-bangd to zj with Az =

dio quality measures (e/g. Thiede et/al., 2000). z; — z; is attenuated by,

Prior to analysis we downsample and downmix the audio to

11kHz mono. It is important to notice that we are not trying to Bag(Azpark) = ©)
measure differences between 44kHz and 11kHz, between mono +15.81 + 7.5(Az + 0.474) +

and stereo, or between an MP3 encoded piece compared to the 1751+ (Az + 0.474)2)1/2_

same piece encoded with Ogg Vorbis or any other format. In

particular, a piece of music given in (uncompressed) CD qual- ) )

ity should have a minimal distance to the same piece encodewe calculate thg loudness in sone using the formula suggested
for example, with MP3 at 56kbps. As long as the main characPY/Bladon and Lindblom (1981),

teristics such as style, tempo, or timbre remain clearly recogniz- (—a0)/10

able by a human listener any form of data reduction can only be SondldsspL) — 2 , if1>40dB, (@)
beneficial in terms of robustness and computational speed-up. sonelde-S (1/40)>%42 otherwise.

In the next step we remove the first and last 10 seconds of ea
piece to avoid lead-in and fade-out effects. Subsequently w
apply a STFT to obtain the spectrogram using 23ms window¥
(256 samples), weighted with a Hann function, and 12ms over2.2  Periodicity Histogram
lap (128 samples). To model the frequency response of the outer

and middle ear we use the formula proposel by Terhardt (1979] © obtain periodicity histograms we use an approach presented
' y|Scheirer[(1998) in the context of beat tracking. A similar ap-

proach was developed by Tzanetakis and Cbok (2002) to clas-

inally, we normalize each piece so that the maximum loudness
alue equals 1 sone.

Ads(furnz) = , 1) sify genres. There are two main differences to this previous
—3.64 (1073 )78 + work. First, we extend the typical histograms to incorporate
+6.5exp(—0.6(1073f — 3.3)%) + information on the variations over time which is valuable in-

formation when considering similarity. Second, we use a reso-
nance model proposed by Moelants (2002) for preferred tempo
to weight the periodicities and in particular to emphasize differ-
The main characteristics of this weighting filter are that the in-ences in tempos around 120 beats per minute (bpm).

fluence of very high and low frequencies is reduced while fre
quencies around 3—4kHz are emphasized (see Higure 1).

—1073(1073 )™

‘We start with the preprocessed data and further process it us-
ing a half wave rectified difference filter on each critical-band
Subsequently the frequency bins of the STFT are grouped intm emphasize percussive sounds. We then process 12 second
20 critical-bands according to Zwicker and Fastl (1999). Thewindows (1024 samples) with 6 second overlap (512 samples).
conversion between the bark and the linear frequency scale c&ach window is weighted using a Hann window before a comb



filter bank is applied to each critical-band with a 5bpm resolu-tor space in which prototype based clustering can be performed
tion in the range from 40 to 240bpm. Then we apply the resoefficiently the approach does not cope well with new pieces with

nance model df Moelants (2002) with= 4 to the amplitudes significantly different spectral characteristics compared to the

obtained from the comb filter. To emphasize peaks we use anes used for training.

full wave rectified difference filter before summing up the am-

. DN Compared to these previous approaches we use a relatively sim-
plitudes for each periodicity over all bands. P P bp y

ple technique to model spectral characteristics. In particular,
That gives us, for every 6 seconds of music, 40 values represente use the same technique introduced for the periodicity his-
ing the strength of recurring beats with tempos ranging from 4@ograms to capture information on variations of the spectrum.
to 240bpm. To summarize this information for a whole piece ofThe 2-dimensional histogram has 20 rows for the critical-bands
music we use a 2-dimensional histogram with 40 equally spaceand 50 columns for the loudness resolution. The histogram
columns representing different tempos and 50 rows representirgpunts how many times a specific loudness in a specific critical-
strength levels. The histogram counts for each periodicity hoviband was reached or exceeded. The sum of the histogram is nor-
many times a level equal to or greater than a specific value wawsalized to 1. In our experiments we reduced the dimensionality
reached. This partially preserves information on the distribuof the 1000-dimensional vectors to 30 dimensions using princi-
tion of the strength levels over time. The sum of the histogranpal component analysis. Examples of spectrum histograms are
is normalized to one, and the distance between two histogranggven in Figurd . It is important to note that the spectrum his-
is computed by interpreting them as 2000-dimensional vectortogram does not model many important aspects of timbre such
in a Euclidean space. as the attack of an instrument.

Examples for periodicity histograms are given in Figure 4. TheA first quantitative evaluatiorf (Pampalk et| al., 2003a) of the
histogram has clear edges if a particular strength level is reachespectrum histograms indicated that they are suited to describe
constantly and the edges will be very blurry if there are strongsimilarities in terms of genres or artists and even outperformed
variations in the strength level. It is important to notice thatmore complex spectrum-based approaches such the those sug-
the beats of music with strong variations in tempo cannot beest by Logan and Salomdn (2001) and Aucouturier and Fachet
described using this approach. Furthermore, not all 2000 dig2002h).

mensions contain information. Many are highly correlated, thus

it makes sense to compress the representation using principgl Organization and Visualization

component analysis. For the experiments presented in this pa-

per we used the first 60 principal components. The spectrum and periodicity histograms give us orthogonal

. o . o . . views of the same data. In addition we combine these 2 views
A first quantitative evaluation of the periodicity histograms in-_ . . ' . . . .
with a meta-information-based view. This meta-information

dicated that they are not well suited to measure the similaritx/. ; ; .
2 . iew could be any type of view for which no vector space might
of genres or artists in contrast to measures which use spectruny.

information (Pampalk et al., 2003a). One reason might be thaefX'St’ for example an organization of pieces acc_:ordmg_to per-
X : : T - onal taste, artists, genres. Generally any arbitrary view and
the pieces of an artist might be better distinguishable in terms ot . A : d .

; o . . resulting organization is applicable which can be laid out on a
rhythm than timbre. However, it is also important to realize thatma
using periodicity histograms in this simple way (i.e., interpret- P-
ing them as images and comparing them pixel-wise) to describ@/e use a new technique, called aligned-SOMs (Pampalk et al.,
rhythm has severe limitations. For example, the distance bg2003h; Pampalk, 2003), to integrate these different views and
tween two pieces with strong peaks at 60bpm and 200bpm igermit the user to explore the relationships between them. In
the same as between pieces with peaks at 100bpm and 120bpitinis section we review the SOM algorithm, the smoothed data

) histogram visualization, and specify the aligned-SOM imple-
2.3 Spectrum Histogram mentation we use for our demonstration. We illustrate the tech-

To model timbre it is necessary to take into account which fre MAues using a simple dataset of animals.

quency bands are active simultaneously — information we ig3.1  Self-Organizing Maps

nore in the periodicity histograms. A popular choice for de-

scribing simultaneous activations in a compressed form are mdihe self-organizing map (Kohonen, 1982, 2001) is an unsuper-

frequency cepstrum coefficients. Successful applications hawdsed neural network with applications in various domains in-

been reported, for example, by Fddte (1997); Logan (2000); Locluding audio analysis (e.g. Cosi el al., 1994; Feiten aiwiz8],

gan and Salomon (2001); Aucouturier and Pachet (2002b).  [1994;|Spevak and Polfreman, 2001URwirth and Rauber,

Logan and Salomon (2001) suggested an interesting approa-%-(‘-)oj')' _Alterna'uves include multl-d|m_en3|onal scaling (Kruskal

h : f cis d ived b i Fich and Wish,[ 1978), Sammon’s mappirig (Samirjon, 1969), and

where a piece of musIC 1S described by Spectra WNICh 0CCUt o a ative topographic mappirig (Bishop €t/al., 1998). The ap-
roach we present can be implemented using any of these, how-
ver, we have chosen the SOM because of its computational ef-

ficiency.

frequently. Two pieces are compared using the earth mover
distance|(Rubner et al., 1998) which is a relatively expensiv
computation compared to the Euclidean distance.

Aucouturier and Pachet (2002a,b) presented a similar approacll?18 objective of the SOM is to map high-dimensional data to

using Gaussian mixture models to summarize the distributio(% 2-dimensional map in such a way that similar items are lo-
of spectra within a piece. To compare two pieces the likelihoo ated close to each other. The SOM consists of an ordered

that samples from one mixture were generated by another St of units which are arranged in a 2-dimensional visualiza-

computed. tion space, referred to as the map. Common choices to arrange
Although the approach presented| by Fobte (1997) offers a ve¢che map units are rectangular or hexagonal grids. Each unit is



assigned a model vector in the high-dimensional data space. #énit closest to a data item getspoints, the second-1, the
data item is mapped to theest matching univhich is the unit  third n-2 and so forth, for the: closest map units. Basically
with the most similar model vector. The SOM can be initializedthe SDH approximates the probability density of the data on the
randomly, i.e., random vectors in the data space are assignedruap, which is then visualized using a color code (see Figures 2
each model vector. Alternatives include, for example, initializ-and3). A Matlab toolbox for the SDH can be downloaded from
ing the model vectors using the first two principal componentsttp://www.oefai.at/"elias/sdh/.

of the data/(Kohonen, 2001). 3.2 Aligned-SOMs

After initialization 2 steps are repeated iteratively until conver- . . .
gence. The first step is to find the best matching unit for eacﬂ—.he SOMisa useful tool for exploring a data set gccordln_g oa
data item. In the second step the model vectors are updated Sien Similarity measure. However, when exploring music the
that they fit the data better under the constraint that neighborin oncept of similarity is not clearly defined since there ars Sev-
units represent similar items. The neighborhood of each unffre! @Spects to consider. Aligned-SONMs (Pampalk et al., 2003b;

is defined through a neighborhood function and decreases with@mpalki 2003) are an extension to the basic SOM which al-
each iteration. low for interactively shifting the focus between different aspects

and exploring the resulting gradual changes in the organization
To formalize the basic SOM algorithm we define the data mapf the data. The alighed-SOMs architecture consists of several
trix D, the model vector matri¥l;, the distance matril, the  mutually constrained SOMs stacked on top of each other. Each
neighborhood matril;, the partition matri¥;, and the spread map has the same number of units arranged in the same way
activation matri)Gt. The data matriD is of sizen x d wheren (eg on a rectangu|ar gnd) and all maps represent the same
is the number of data items ands the number of dimensions. pjeces of music, but organized with a different focus in terms
The model vector matriM,; is of sizem x d, wherem is the of, for examp|e' aspects of timbre or rhythm.
number of map units. The values i, are updated in each it- o . .
erationt. The squared distance mattiof sizem x m defines The individual SOMs are trained such that each layer maps sim-

the distance between the units on the map. The neighborhod@r data items close to each other within the layer, and neigh-

matrix N, can be calculated, for example, as _ori_ng Iayer§ are further constrained_ to map the same items_ to
similar locations. To that end, we define a distance between in-
N, = ¢=Y/rd) (5) dividual SOM layers, which is made to depend on how similar

the respective views are. The information between layers and

wherer, defines the neighborhood radius and monotonicallydifferent views of the same layer is shared based on the location
decreases with each iteratid¥, is of sizem x m, symmetrical, ~©Of the pieces on the map. Thus, organizations from arbitrary
with high values on the diagonal, and represents the influencgources can be aligned.

of one unit on another. The sparse partition malxof size  we formulate the aligned-SOMs training algorithm based on
n x m is calculated give andM,, the formulation of the batch-SOM in the previous section. To
train the SOM layers we extend the squared distance midtrix
. )1, ifunit jis the best match for item to contain the distances between all units in all layers, thus the
Pi(i ) = {O . ©)  grenfU] i .
, otherwise. size ofU is ml x ml, wherem is the number of units per layer
and! is the total number of layers. The neighborhood matrix
The spread activation matri®,, with sizen x m, defines the is calculated according to Equatiph 5. For each aspect of simi-
responsibility of each unit for each data item at iteratiand  larity a a sparse partition matriR,; of sizen x ml is needed.
is calculated as In the demonstration discussed in secfibn 4 there are 3 different
S, = P;N;. (7) aspects. Two are calculated from the spectrum and periodicity
histograms and one is based on meta-information. The partition
matrices for the first two aspects are calculated using Eqydtion 6
. with the extension that the best matching unit for a data item is
Mes1 = SD, (8) selected for each layer. Thus, the sum of each row equals the
whereS; denotes the spread activation matrix which has beefiumber of layers. The spread activation majy for each
normalized so that the sum over all rows in each column equal@spectu is calculated as in Equati¢ri 7. For each aspeanhd
1 except for units to which no items are mapped. layeri, mixing coefficientsw,; are defined withy~ w,; = 1

There are two main parameters for the SOM algorithm. One i%rzlzttiz%igxg]cehrgig;ling:\?cr]tﬁ;r: EOJ gglch aspect. The spread ac-

the map size, the other is the final neighborhood radius. A larger
map gives a higher resolution of the mapping but is computa-

At the end of each loop the new model vectbts,; are calcu-
lated as

tionally more expensive. The final neighborhood radius defines Sit = Z WaiSait )
the smoothness of the mapping and should be adjusted depend- “
ing on the noise level in the data. Finally, for each layei and aspect with dataD,, the updated

Various methods to visualize clusters based on the SOM hav@odel vectordvl,;;, are calculated as

been developed. We use smoothed data histograms (Pampalk »

et all,[2002b) where each data item votes for the map units Mait+1 = S;Da. (10)
which represent it best based on some function of the distance " .
to the respective model vectors. All votes are accumulated foWhereS’it denotes the normalized columnsSy.

each map unit and the resulting distribution is visualized on thén our demonstration we initialized the aligned-SOMs based on

map. A robust ranking function is used to gather the votes. Théhe meta-information organization for which we assumed that
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Figure 2: Aligned-SOMs trained with a small animal dataset showing changes in the organization, (a) first layer with weighting
ratio 1.0 between appearance and activity features, (b) ratio 3:1, (c) ratio 1:1, (d) ratio 1:3, (e) last layer with ratio 0:1. The shadings
represent the density calculated using S @ with bicubic interpolation).

only the partition matrix is given. Thus, for the 2 views basedtions (Pampalk et al., 2002a). Although realistic sizes for music
on vector spaces, first the partition matrices are initialized therollections are much larger, we believe that even small numbers
the model vectors are calculated from these. can be of interest as they might occur, for example, in a result

The necessary resources in terms of CPU time and memory, tofaqu_ery S.UCh as the top 1(.)0 in the chart_s. The limitation in
ize is mainly induced by our simple HTML interface. Larger

increase rapidly with the number of layers and depend on th . . ! . .

complexity of the feature extraction parameters analyzed. Th(éO”eCtIOI’]S WO.UId require a hierarchical extension that, e.g., rep-
overall computational load is of a higher order of magnituderesents each 'S'a'?d only by the most typical member and allows
than training a single SOM. For larger datasets several optimizawe user to zoom in and out.

tions are possible, in particular, applying an extended version ofhe user interface (see FigJrg 3) is divided into 4 parts: the
the fast winner search proposed by Kaski (1999) would improvaavigation unit, the map, and two codebook visualizations. The
the efficiency drastically, since there is a high redundancy in th@avigation unit has the shape of a triangle, where each corner

multiple layer structure. represents an organization according to a particular aspect. The

To illustrate the aligned-SOMs we use a simple dataset contairf]jeta"nformat'On VIEW IS Io_cated at the top, penqchcny on the
ing 16 animals with 13 boolean features describing their ap—eft' an(_j spe(t:)trum on thi right. The userhcqn nawggFe betwdeen
pearance and activities such as size, number of legs, ability t@e_se views by moving the mouse over the intermediate nodes,
swim, and so forth (Kohonéh, 2001). We trained 31 layers o :?Igi?fer(reesrlljtltr?olgessn:ﬁgtSsZ?ig%esrg\tvtshee map. In total there are
SOMs using the aligned-SOM algorithm. The first layer uses :

weighting ratio between the aspects of appearance and activilphe meta-information view we use in this demonstration was
of 1:0. The 16th layer, i.e., the center layer, weights both aspectseated manually by placing the pieces on the map according to
equally. The last layer uses a weighting ratio of 0:1, focusingpersonal taste. For example, all classical pieces in the collec-
only on activities. The weighting ratios of all other layers aretion are mixed together in the upper left. On the other hand, the
linearly interpolated. island in the upper right of the map represents pieceBdm-

Five layers from the resulting aligned-SOMs are shown in Fig-funk MCs The island in the lower right contains a mixture of

ure[3. For interactive exploration an HTML version with all different pieces byapa RoachLimp Bizkit Guano Apesand
31 layers is available on the IntenﬁaWhen the focus is only others which are partly very aggressive. The other islands con-

on appearance all small birds are located together in the Iowf“n {ngrel or Ie?s tahrgltra;y ”;'ﬁlg‘?sl oforl)lecets ,_althoug_h th_(—:hone
right corner of the map. The Eagle is an outlier because of it cated closer to omtun sland contains music wi

size. On the other hand, all mammals are located in the ups-
per half of the map separating the medium sized ones on thehe current position in the triangle is indicated with a red
left from the large ones on the right. As the focus is graduallymarker which is located in the top corner in the screen-shot.
shifted to activity descriptors the organization changes. In parThus, the current map displays the organization based on meta-
ticular, predators are now located on the left and others on thimformation.

tronger beats.

between two different ways of viewing the same data. specific region and what the differences between regions are.

) In particular, the codebook visualizations reveal that the user

4 Demonstration defined organization is not completely arbitrary with respect to
ébe features extracted from the audio. For example, the period-
mented an HTML based interface. A screen-shot is depicteg:Ity histogram has the h'gheSt peaks around the Bom_fuf‘k MCs
Island and the spectrum histogram has a characteristic shape

in Figure[3, an online demonstration s avallableFor this around the classical music island. This shape is characteristic of
demonstration we use a small collection of 77 pieces from dif- ) P

ferent genres which we have also used in previous demonstrgq-USiC with Iittle_energy ir_1 high frequencies. The _shadings are
a result of the high variations in the loudness, while the overall

relatively thin shape is due to the fact that the maximum level

To demonstrate our approach on musical data we have impl

*http://www.oefai.at/"elias/aligned-soms/
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Figure 3: Screenshot of the HTML-based user interface. The navigation unit is located in the upper left, the map is to its right,
and beneath the map are the codebook visualizations, where each subplot represents a unix& 8@MQrained on 77 pieces

of music. On the left are the periodicity histogram codebooks. The x-axis of each subplot represents the range from 40 (left) to
240bpm (right) with a resolution of 5bpm. The y-axis represents the strength level of a periodic beat at the respective frequency. The
color shadings correspond to the number of frames within a piece that reach or exceed the respective strength level at the specif
periodicity. On the right are the spectrum histogram codebooks. Each subplot represents a spectrum histogram mirrored on th
y-axis. The y-axis represents the 20 critical-bands while the x-axis represents the loudness. The color shadings correspond to tt
number of frames within a piece that reach or exceed the respective loudness in the specific critical-band.

of loudness is not constantly exploited. from the upper left where pieces such as, ek Elise by

The codebooks of the extreme perspectives are shown in Fi&_eethoven can be found.

ure[4. When the focus is only on one aspect (e.qg., periodicitylFigure[$ shows the shapes of the islands for the two extreme
the model vectors of the SOM can better adapt to variations besdews focusing only on spectrum or periodicity. When the fo-
tween histograms and thus represent them with higher detaitus is on spectral features the island of classical music (upper
Also noticeable is how the organization of the model vectordeft) is split into two islands wherél represents piano pieces
changes as the focus is shifted. For instance, the structure ahdl orchestra. Inspecting the codebook reveals that the differ-
the spectrum codebook becomes more pronounced as the foceisce is that orchestra music uses a broader frequency range. On
shifts to spectral aspects. the other hand, when the focus is on periodicity a large island is
formed which accommodates all classical pieces on one island
A. This island is connected to isla@where also non-classical
usic can be found such as the sdritlle Drummer Boyby
rosby & Bowie orYesterdayby the Beatles. Although there
are several differences between the maps the global orientation
remains the same. In particular the isladandH/I; C andJ;

D/E andK; G andM contain largely the same pieces and corre-

An important characteristic of aligned-SOMs is the global
alignment of different views. This is confirmed by investigat-
ing the codebooks. For instance, the user defined organizatic%]
forces the periodicity patterns of music by Bomfunk MCs to be
located in the upper right. If trained individually, these period-
icity histograms are found in the lower right which is furthest
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Figure 4. Codebooks depicting the underlying organization. (a) and (b) represent the codebooks of the aligned-SOM organizec
according to periodicity histograms while (c) and (d) are organized according to the spectrum histograms. The visualization is the
same as in Figuifg 3 with a different color scale.
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Figure 5: Two extreme views of the data and the resulting Islands of Music. On the left (a) the focus is solely on the periodicity
histograms, on the right (b) the focus is solely on spectrum histograms.

spond to the global organization based on the meta-informatioplaced. Furthermore, the number of different views is not lim-

ited. For example, to study expressive piano performances the
5 Conclusions aligned-SOMs were applied to integrate 5 different views (Pam-

_ ~ |palk et al.| 2003Db).

We v preserted  ew appr02ch 0 XDINe MUSE CONECHO e circton o ure werk s f ncoporat new erar
plyemenst]ary gimilariti]/ measures nam-ely tﬁe s?pectrum and p hical exten_sions into the user intgrface to efficiently explore
riodicity histograms which describe timbre and rhythm, respecgrgaem(;?rl]lecrﬂgns('e (Cu[r)riftgtnBfgﬁrgth;alzg)gg)nig’nn:o:ob;hae Sﬁga
tively. We combined these two aspects of similarity with a third 9 g map (€.9. e PP

view which is not based on audio analysis. This third view cand'rec'[Iy to the aligned-SOM and smoothed data histogram visu-

be any organization based on arbitrary meta-information. alization ap_proach_. However, using smoothed_d_ata histograms
to reveal hierarchical structures seems promising (Pampalk

Using aligned self-organizing maps we implemented an HTMLet al|[ 2002Db).

interface were the user can gradually change focus from one

view to another while exploring how the organization of the acknowledgements

collection changes smoothly. Preliminary results are very en-

couraging given the simple similarity measures we use. This research was supported by the EU project HPRN-CT-

Future work will address the two main limitations of our ap- 2000-00115 (MOSART) and the project Y99-INF, sponsored by
proach. First of all, major quality improvements could bethe Austrian Federal Ministry of Education, Science and Cul-
achieved by better models for perceived similarity. The apture (BMBWK) in the form of a START Research Prize. The

proach we presented is independent of the specific similaritBMBWK also provides financial support to the Austrian Re-

measure. Either of the two suggested measures can easily be search Institute for Atrtificial Intelligence.
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