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ABSTRACT
Using visualization techniques to explore and understand
high-dimensional data is an efficient way to combine hu-
man intelligence with the immense brute force computation
power available nowadays. Several visualization techniques
have been developed to study the cluster structure of data,
i.e., the existence of distinctive groups in the data and how
these clusters are related to each other. However, only
few of these techniques lend themselves to studying how
this structure changes if the features describing the data
are changed. Understanding this relationship between the
features and the cluster structure means understanding the
features themselves and is thus a useful tool in the feature
extraction phase.

In this paper we present a novel approach to visualizing
how modification of the features with respect to weighting
or normalization changes the cluster structure. We demon-
strate the application of our approach in two music related
data mining projects.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering—similarity mea-
sures, algorithms

Keywords
High-Dimensional Data, Interactive Data Mining

1. INTRODUCTION
A common problem in data mining is to extract and select

the right features for further analysis. This is particularly
true for complex high-dimensional data such as images or
music. In many applications the different options of the
preprocessing and feature extraction procedures can be de-
scribed in terms of parameters which are adjusted to fit spe-
cific needs. For example, such a parameter can define the
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value of the exponent of a power-law used to compress the
range of specific values, the weighting between features, or
if the data is variance normalized or not.

In exploratory data analysis there is generally no specific
target function given which could be used to optimize these
parameters. Furthermore additional parameters might be
introduced by the distance function (e.g. Minkowski metric)
which is necessary for cluster analysis. Finding appropriate
values for all of these parameters and in consequence defin-
ing the feature extraction procedure remains a task which
requires domain expertise and human intelligence.

In this paper we present a new technique to visualize the
influence of such parameters on the cluster structure of the
data. The intention is to offer domain experts the possibility
to interactively explore the influence of the parameters, gain
new insights, and inspire new hypothesis for further analysis.

The technique we propose is particularly applicable to
very high-dimensional data represented by low-level features.
It is based on a new extension to the Self-Organizing Map
(SOM) [19] algorithm and on Smoothed Data Histograms
(SDH) [28]. In particular, we present Aligned-SOMs, i.e.,
multiple SOMs stacked on top of each other and aligned so
that they are organized in a similar way. The SOMs are
trained to represent the same data items in different data
spaces defined by slightly different values for the parameters
mentioned above. We use Aligned-SOMs in combination
with SDH to visualize how gradual changes in the feature
extraction procedure slowly change the organization of the
data in the 2-dimensional visualization space.

To demonstrate our approach we present a system de-
signed in cooperation between a data miner and a musicol-
ogist to analyze expressive performances of classical piano
music by internationally renowned pianists. Furthermore,
we apply the same concept to create an interface for ex-
ploring the contents of digital libraries. In particular, we
demonstrate how a music collection is organized and visual-
ized based on a combination of timbre (i.e., sound character-
istics which distinguish different instruments) and rhythmic
characteristics and how this organization gradually changes
when the focus of interest is changed in favor of one of these.

The remainder of this paper is organized as follows. In
Section 2 we review related work. In Section 3 we review
the SOM and the SDH visualization. In Section 4 we present
Aligned-SOMs. In Section 5 we present two applications of
Aligned-SOMs to explore expressive performances of classi-



cal music and to explore archives of popular music. Finally,
in Section 6 we draw some conclusions.

2. RELATED WORK
In general, visualization techniques are powerful tools that

are frequently employed in knowledge discovery processes.
Visualizations can make complex relationships easily under-
standable and stimulate visual thinking [9]. Especially, tools
which visualize the cluster structure of data are valuable for
exploring and understanding data. Such tools include data
histograms for one-dimensional data as well as algorithms
which project high-dimensional data to a two-dimensional
visualization space trying to preserve the topology, i.e., try-
ing to ensure that distances between data items in the vi-
sualization space correspond to the distances in the high-
dimensional data space.

A popular choice for non-linear projections is the Self-
Organizing Map (SOM) [19]. Alternatives include non-linear
Multi-Dimensional Scaling (MDS) [21] or linear Principal
Component Analysis [11]. For example, in [34] an approach
was presented where a hyperbolic metric is combined with
MDS. The user can interactively change the focus to differ-
ent regions in the data space, thus, viewing the relationship
of items in the chosen region with a relatively high resolu-
tion while maintaining the overall context. However, this
approach is based on given distances between data items,
while our aim is to aid the user in defining how these dis-
tances shall be calculated. Once an appropriate definition
for the distances is found, focusing on details in different
regions of the data space would be one of the next steps.

The distances in the data space depend on the metric,
the extracted features, and how the individual features are
normalized and weighted. In the experiments presented in
this paper we use the Euclidean distance metric. However,
in the same way the features can be weighted or normalized
differently it is also possible to change the distance metric.
The impact of distance metrics on high-dimensional data has
been studied, for example, in [4]. The problem of defining a
similarity between data items can be simplified if for some
of the data the similarity is known [16].

Changing the distances between data items changes the
structure of the data. For example, if the data consists
of several piano pieces which vary in tempo, the structure
would be one big cluster when focusing on sound character-
istics only. One the other hand, the structure might consist
of several small clusters if the focus is on rhythm.

To understand the relationship between different ways
of weighting features, it is useful to visualize the gradual
changes in the structure when shifting focus from one feature
to another. Previous work in this direction includes Star Co-
ordinates [12], which are based on scatter plots where the
data is projected onto a non-orthogonal coordinate system
representing the multi-dimensional data space. The result-
ing ambiguities are resolved when the user interacts with the
visualization. The user can emphasize a particular feature
by giving a single dimension more space, i.e., increasing the
length of the respective axes, and rearranging all other axis
so that they are orthogonal to the emphasized one. The
main difference to our approach is, that we do not assume
each data dimension by itself to be meaningful but rather
assume many low-level attributes which as a whole resemble
an abstract concept.

A different approach to combining human intuition with

the processing power of computers to find a suitable projec-
tion of the data is [1, 3]. The approach is based on Polarized
Projections, i.e., the data is projected into a subspace de-
fined by polarization anchors which have a similar function
as the model vectors in the SOM. Given a polarized projec-
tion the data is visualized using kernel density estimators
allowing the user to easily identify clusters. Although this
allows an interactive search for the best way to project the
high-dimensional data, there are several differences to our
work. Foremost, the approach focuses on finding clusters in
the data, while we try to understand and find the right pa-
rameters for the feature extraction process. The projections
which are defined through the polarization anchors cannot
be interpreted directly in such a way that would allow direct
feedback to the feature extraction process. Furthermore, in
contrast to the Polarized Projections, our emphasis is on
linking different views of the same data so that the data
density visualization changes smoothly between slightly dif-
ferent projections of the same data.

Recently, a framework for visualizing changes in the den-
sity distribution of data was presented in [2]. In contrast
to the approach we present, the framework was applied to
understand changes in evolving data streams using differ-
ential kernel density estimation with various window sizes.
In evolving data streams the same data spaces are used at
different points in time while the data items change. Other
approaches analyzing the changes in data characteristics in-
clude [10] where the focus is on measuring the effects on data
mining models instead of intuitively visualizing changes.

3. SELF-ORGANIZING MAPS
The Self-Organizing Map (SOM) [17, 19], an unsupervised

neural network, has successfully been applied in exploratory
data analysis [13] with applications in various domains such
as finances [8]. The SOM is a powerful tool for visual clus-
tering [33] and analyzing correlations in the data [32]. Fur-
thermore, a variant of the SOM, the Adaptive Subspace
SOM [18] has been developed to automatically detect in-
variant features in dynamic signals.

One of the best known applications of the SOM is the
WebSOM project [15, 20] where millions of high-dimensional
text documents are organized according to their similarity
to create an intuitive user interface for interactive explo-
ration. Alternatives to the SOM include Multi-Dimensional
Scaling [21], Sammon’s Mapping [30], and Generative To-
pographic Mapping (GTM) [6]. The approach we present
can be reformulated to use either of these, however, we have
chosen the SOM because of its computational efficiency.

The idea of the SOM is to map the high-dimensional data
to a 2-dimensional map in such a way that similar items are
located close to each other. The resulting mapping reflects
the cluster structure of the data, i.e., the clusters and their
relationship to each other.

The SOM consists of an ordered set of units which are
arranged in a 2-dimensional visualization space, referred to
as map. Common choices to arrange the map units are
rectangular or hexagonal grids. Each unit is defined through
its distance to the other units, and is assigned a model vector
in the high-dimensional data space. To map a data item
from the data space to the map it is necessary to calculate
the distance between the data item and all model vectors
to find the model vector with the smallest distance, i.e., the
most similar model vector. The data item is then mapped to



the respective unit, also referred to as best matching unit.
Thus, every point in the data space can be assigned to a
location on the 2-dimensional map.

3.1 The Batch-SOM Algorithm
The SOM can be initialized randomly, i.e., random vectors

in the data space are assigned to each model vector. Sev-
eral alternatives using, for example, a Principal Component
Analysis to initialize the SOM can be found in [19].

The SOM training is basically a loop which is repeated
until convergence. In each iteration the best matching unit
for each data item is calculated. Then the model vectors of
the respective units are updated so that they fit the data
better. This would be identical to k-means clustering [25]
were it not for a constraint which forces the model vectors
of neighboring units to represent similar data items. The
units which are considered to be in the neighborhood of a
particular unit are defined through a neighborhood function
based on the distances between the units on the map. An
important aspect of the SOM is that the size of the neigh-
borhood decreases slowly with each iteration to finally end
up with very small neighborhoods allowing each unit to per-
fectly adapt to the data it represents.

To formalize the batch-SOM algorithm we define the data
matrix D, the model vector matrix Mt, the distance ma-
trix U, the neighborhood matrix Nt, the partition matrix Pt,
and the spread activation matrix St. The data matrix D is
of size n×d where n is the number of data items and d is the
number of dimensions. Each row represents one data item.
The model vector matrix Mt is of size m×d, where m is the
number of map units. The values of Mt change with each
iteration t. The distance matrix U of size m×m defines the
squared distances between the units on the map. Thus, U is
symmetrical with zeros on the diagonal. The neighborhood
matrix Nt can be calculated, for example, as

Nt = e−U/r2
t , (1)

where rt defines the neighborhood radius and monotonically
decreases with each iteration. N is of size m×m, symmet-
rical, with high values on the diagonal, and represents the
influence of one unit on another. The sparse partition ma-
trix Pt is calculated given D and Mt. In particular, at
iteration t,

Pt(i, j) =

{
1, if unit j is the best match for item i,

0, otherwise.
(2)

Thus, Pt is of size n × m and the sum over all columns of
each row equals 1. The spread activation matrix St, with
size n × m, defines the responsibility of each unit for each
data item at iteration t. Thus, St(i, j) will be high if j is
the best matching unit for item i, and depending on how
large the neighborhood is, all units in the neighborhood of
unit i will have relatively high values too for i. The spread
activation is calculated as,

St = PtNt. (3)

At the end of each loop the new model vectors Mt+1 are
calculated as,

Mt+1 = S∗t D, (4)

where S∗t denotes the spread activation matrix which has
been normalized so that the sum over all rows in each col-
umn equals 1 except for units without responsibilities. Note,

that if a unit is not responsible for any data item, i.e., the
sum over all rows in the respective column equals 0, the nor-
malization would cause divisions by zero. Thus, the columns
representing units without responsibilities are not normal-
ized and the respective model vectors are not updated.

There are two main parameters which need to be adjusted
by the user. The first is the number of map units, i.e.,
how large the SOM should be. This decision is basically a
computational one. More map units require more training
iterations and for each iteration the computation of the best
matching units becomes more intense. On the other hand,
more units lead to a higher resolution of the mapping.

The most difficult parameter to adjust is the final neigh-
borhood radius relative to the number of map units. To ad-
just this correctly it is necessary to know the level of noise
in the data. Very noisy data requires a large final radius.
The final radius defines the smoothness of the mapping.

3.2 Smoothed Data Histograms
Various methods to visualize clusters based on the SOM

have been developed. The most prominent method visu-
alizes the distances between the model vectors of adjacent
units and is known as the U-matrix [31]. We use Smoothed
Data Histograms (SDH) [28] where each data item votes for
the map units which represent it best based on some func-
tion of the distance to the respective model vectors. All
votes are accumulated for each map unit and the resulting
distribution is visualized on the map.

As voting function we use a robust ranking where the
map unit closest to a data item gets n points, the second
n-1, the third n-2 and so forth, for the n closest map units.
All other map units are assigned 0 points. The parameter
n can interactively be adjusted by the user. The concept
of this visualization technique is basically a density estima-
tion, thus the results resemble the probability density of the
whole dataset on the 2-dimensional map (i.e. the latent
space). The main advantage of this technique is that it is
computationally not more expensive than one iteration of
the batch-SOM algorithm. On the other hand, it does not
offer a clear statistical interpretation as, for example, the
probability density defined by the GTM algorithm.

3.3 Illustration of SOM and SDH
Figure 1 illustrates characteristics of the SOM and the

cluster visualization using a synthetic 2-dimensional dataset.
Although in general it does not make sense to use the SOM
to analyze 2-dimensional data this dataset allows us to il-
lustrate some aspects of the SOM algorithm which would be
difficult to visualize otherwise.

One important aspect is the topology preservation. Map
units next to each other on the grid represent similar regions
in the data space. This can be seen by the arrangement of
the model vectors, which are connected by lines indicating
which model vectors are assigned to neighboring map units
(cf. Figure 1c). If k-means had been used instead of the
SOM, the connecting lines would be drawn randomly be-
tween points, while the SOM has learned to represent the
data in such a way that the model vectors are arranged ac-
cording to the organization of the map units.

Another important aspect, which is illustrated in Fig-
ure 1c, is that the SOM defines a non-linear mapping from
the data space to the 2-dimensional map. The distances be-
tween neighboring model vectors are not uniform. Areas in
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Figure 1: Illustration of SOM and SDH, (a) proba-
bility distribution in the 2-dimensional data space,
(b) sample drawn from this distribution, (c) model
vectors of the SOM in the data space, (d) map units
of the SOM in the visualization space with clusters
visualized using SDH (n=3 with spline interpola-
tion). High density areas are visualized with white,
low density with gray. The model vectors and the
map units of the SOM are represented by the nodes
of the rectangular grid.

the data space with a high density are represented by more
model vectors, thus, in higher detail than sparse areas. This
characteristic is exploited by the U-matrix visualization.

However, not all model vectors are located in dense areas
and some model vectors remain in sparse areas to main-
tain the overall structure of neighboring units. These units
which might not represent any data are known as interpo-
lating units. The fact that not every unit represents the
same amount of data items is exploited by the SDH (cf.
Figure 1d).

4. ALIGNED-SOMS
The goal is to understand the relationship between dif-

ferent ways of representing the same data by visualizing
changes in the cluster structure. Thus, we assume that
the dataset can be represented in different but related ways
depending on various parameters in the feature extraction
process.

Aligned-SOMs are a new approach to visualizing the influ-
ence of such parameters by training multiple SOMs, i.e., we
stack several SOMs on top of each other and obtain several
SOM layers representing the same data from different points
of view. Each layer has a slightly different point of view than
its neighbors. The main constraint we apply to the layers
is that they map the same data to similar locations as their
neighbors. Then the user can move through the layers and
see how the distribution of the data gradually changes as
the parameters defining the feature extraction process are
changed.

The Aligned-SOMs are trained in such a way that each
layer maps similar data items close to each other within
the layer, and that neighboring layers map the same items
to similar locations. To ensure that two neighboring SOM
layers have a similar organization we define a distance be-
tween two layers, which we choose to be smaller than the
distance between two adjacent units on each map. For ex-
ample, while the distance between two adjacent units within

a layer is set to 1, the distance between two layers can be set
to 1/5. Thus, two layers separated spatially by 4 other lay-
ers would be constrained as strongly as two adjacent units
within a layer to represent the same data items. Note that
it is not sufficient to use the normal SOM training algorithm
to map the data to 3-dimensional grids [19], because each
SOM layer represents not only the same data, but also has
a different data space. Thus, a model vector from one layer
cannot directly be interpreted in a different layer.

4.1 Training Algorithm for Aligned-SOMs
We formulate the Aligned-SOMs training algorithm based

on the formulation of the batch-SOM in Section 2. To train
the SOM layers we extend the distance matrix U to contain
the distances between all units in all layers, thus the size
of U is ml × ml, where m is the number of units per layer
and l is the total number of layers. Each layer i has its
own model vectors Mit of size m × d and data Di of size
n × d. The neighborhood matrix is calculated according to
Equation 1. The sparse partition matrix Pt is of size n×ml
and calculated using Equation 2 with the extension that the
best matching unit for a data item is calculated for each
layer. Thus, the sum over all columns in each row equals
the number of layers. The spread activation matrix St is
calculated as in Equation 3. The updated model vectors
Mit+1 are calculated as,

Mit+1 = S∗itDl, (5)

where S∗it denotes the normalized columns of St which rep-
resent the model vectors of layer i.

To initialize the Aligned-SOMs in our experiments we
have first trained the layer representing the most complex
data space, e.g., the layer in which sound characteristics
(timbre) and rhythm are equally weighted, and then initial-
ized the spread activation of all layers based on S∗it of the
most complex layer.

The necessary resources in terms of CPU time and mem-
ory are proportional to the number of layers and depend
on the complexity of the feature extraction parameters an-
alyzed. Thus, the overall computational load is of a higher
magnitude than training a single SOM. In practice, we have
experienced that standard hardware (P4 2GHz with 512MB
RAM) is sufficient to run Aligned-SOMs on our datasets.
For example, the experiments we discuss in Subsection 5.1,
which are calculated from over 10,000 multivariate time se-
ries segments, run within 1 hour including the time it takes
Matlab to create over 500 image files for the HTML inter-
face. For larger datasets several optimizations of the al-
gorithm are possible, in particular, applying an extended
version of the fast winner search [14] would improve the ef-
ficiency drastically, since there is a high redundancy in the
multiple layer structure.

4.2 Illustration of Aligned-SOMs
To illustrate the Aligned-SOMs we use a simple dataset

containing 16 animals with 13 boolean features describing
their appearance and activities [19]. The dataset is depicted
in Table 1. We assume, that it is not clear how to best rep-
resent the animals and that the weighting ratio between ap-
pearance and activity features is of interest. Thus, we have
trained 31 layers of SOMs using the Aligned-SOM training
algorithm. The first layer uses a weighting ratio between
appearance and activity features of 1:0. The 16th layer, i.e.,
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Dove × × × ×

Chicken × × ×

Duck × × × ×

Goose × × × × ×

Owl × × × × ×

Hawk × × × × ×

Eagle × × × × ×

Fox × × × ×

Dog × × × ×

Wolf × × × × × ×

Cat × × × ×

Tiger × × × × ×

Lion × × × × × ×

Horse × × × × × ×

Zebra × × × × × ×

Cow × × × ×

Table 1: 16 animals described by 13 attributes.

the center layer, weights both feature groups equally. The
last layer uses a weighting ratio of 0:1, thus, focuses only
on activities. The weighting ratios of all other layers are
linearly interpolated.

From the resulting Aligned-SOMs 5 layers are depicted
in Figure 2. For interactive exploration a HTML version
with all 31 layers is available on the internet.1 When the
focus is only on appearance all small birds are located to-
gether in the lower right corner of the map. The Eagle is
an outlier because of its size. On the other side, all mam-
mals are located in the upper half of the map separating
the medium sized ones on the left from the large ones on
the right. As the focus is gradually shifted to activity fea-
tures the structure changes. In particular, the animals are
arranged in such a way that predators or located on the left
and others on the right. Although there are several signifi-
cant changes regarding individuals, the overall structure has
remained largely the same, enabling the user to easily iden-
tify similarities and differences between two different ways
of viewing the same data.

5. APPLICATIONS
In this section we present two applications of Aligned-

SOMs. The first application is the identification of distinc-
tive sequences in multivariate time series data representing
musical performance strategies. The second application is
the content-based organization and visualization of a mu-
sic collection for interactive exploration. For both applica-
tions we use a HTML based user interface with JavaScript
and many images to conveniently interact with the Aligned-
SOMs. A demonstration is available on the internet.1

5.1 Exploring Musical Performance Strategies
The first application is part of a large data mining project2

whose goal is to study fundamental principles of expressive

1http://www.oefai.at/˜elias/kdd03/
2http://www.oefai.at/music

Figure 3: Part of a trajectory corresponding to an
expert performance of Chopin etude op. 10, No. 3.
The loudness and tempo curves are smoothed. The
bar boundaries are indicated through the black sec-
tions. The time dimension is visualized through the
thickness and shading of the trajectory.

music performance [35, 36]. Performances by concert pi-
anists are measured with respect to timing and loudness
fluctuations. The goal is to find characteristic patterns that
give insight into typical interpretation strategies used by pi-
anists.

The dataset used for this particular experiment consists
of performances of Mozart piano sonatas, played by 6 in-
ternationally renowned pianists (Daniel Barenboim, Roland
Batik, Glenn Gould, Maria João Pires, András Schiff, Mit-
suko Uchida). Each performance is characterized by two
series of numeric values that represent the measured tempo
and loudness, respectively, over the course of the perfor-
mance. An example of one such time series in the form of a
smoothed trajectory in the two-dimensional tempo-loudness
space is shown in Figure 3, with tempo on the vertical axis
and loudness on the horizontal axis. Details of this form of
performance visualization can be found in [23]. The various
trajectories are cut into overlapping segments each repre-
sented by 60 low-level features. The purpose of the whole
procedure is to find out whether there are indeed character-
istic and interpretable classes of tempo-loudness strategies
that pianists apply consistently, and whether these are dif-
ferent between performers.

At the current state of our research it is not clear how
to best represent the performance trajectories to capture
the main characteristics. Some of the open questions are re-
lated to the weighting of the tempo and loudness dimensions,
strength of the trajectory smoothing, and the normalization
of the data.

Regarding the normalization we have found 5 forms to
be of particular interest which can be categorized in 3 lev-
els. The first level is no normalization, the second level is
normalizing the mean, the third level is to normalize mean
and variance. The effect of the second level is that we focus
only on absolute changes regarding loudness or tempo. For
example, did the pianist speed up by 10 beats per minute
(bpm)? In the third level we focus only on relative changes,
for example, has the pianist played 10% faster or slower?
Within the second and third levels we distinguish between
2 ways of normalizing the data, namely, normalizing over a
short segment of the trajectory (‘local’) or normalizing over
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Figure 2: Aligned-SOMs trained with the animal dataset, (a) first layer with weighting ratio 1:0 between
appearance and activity features, (b) first quarter layer with ratio 3:1, (c) center layer with ratio 1:1, (d)
last quarter layer with ratio 1:3, (e) last layer with ratio 0:1. The shadings represent the density calculated
using SDH (n=2 with linear interpolation).

Figure 4: The feature extraction options and their
relationships.

a longer sonata part (‘global’).
Figure 4 shows the connection between the 5 forms of nor-

malizing the data. In addition, two dimensions are included
which control the weighting between loudness and tempo,
and the degree of smoothing the trajectories. For each of
these different ways to extract features we analyze the ef-
fects on the cluster structure of the data. In particular, we
analyze changes in the density distribution of trajectories in
different sonatas, and in different pianists.

5.1.1 User Interface
A screenshot of the HTML user interface is shown in Fig-

ure 5. The data used consists of several fast Mozart piano
sonatas with a segment length of 10 beats. The user in-
terface is divided into 3 parts. The first part contains the
navigation unit, below it an eigenvalue indicator, and a visu-
alization of the SOM model vectors, namely the codebook.
The second part contains the SDH visualization for each pi-
anist. To make differences between the 6 SDH visualizations
more apparent, in addition, we visualize the individual SDHs
after subtracting the average SDH. From this contrasting vi-
sualization it is easily possible to identify which patterns are
used particularly often or seldom by a pianist compared to
the average usage of the patterns. The third part contains
the SDH visualizations of each sonata part. Although we

are not primarily interested in finding patterns which distin-
guish sonatas from each other, this visualization has proven
to be useful in evaluating the normalizations.

The navigation unit is the same as in Figure 4. By mov-
ing the mouse over the circles, the corresponding images are
shown in the HTML viewer using JavaScript. Three mark-
ers are used to indicate the current position to the user.
One marker indicates the normalization, one the weighting
with respect to loudness and tempo, and the third marker
indicates the degree of smoothing. Between two extremes
we use 7 intermediate positions. Therefore, given the over-
all structure, over 3,800 SOMs would need to be trained to
allow every possible combination of the three markers. Due
to computational considerations we have limited the combi-
nations such that a marker can only be moved to the small
circles if the other two markers are located on big circles,
thus, reducing the number of SOMs to 127.

The eigenvalue indicator displays the first, the second, and
the sum of all other eigenvalues. The eigenvalues serve as
indication of the complexity of the cluster structure in the
data space. For example, for the sonatas used in Figure 5 if
no normalization is applied most of the variance can be ex-
plained using a linear projection into a 2-dimensional space.
The reason is that the relative variations within a segment
are negligible compared to the large variations of the ab-
solute loudness and tempo given several sonatas played by
different pianists. On the other hand, the most complex data
space is the one illustrated in Figure 5, i.e., local mean and
variance normalization with unsmoothed trajectories and an
equal weighting between loudness and tempo.

The codebook shows the model vector of each unit. The
trajectory segments are visualized by blue lines with a red
dot marking the end. The blue shading represent the vari-
ance of the data items mapped to the unit. The number
in the lower right of each unit displays the number of data
items mapped to the respective unit. For example, in Fig-
ure 5 there are 578 items mapped to the second unit in the
first row. The trajectory starts fast and loud and almost
linearly moves to slow and soft (ritardando-decrescendo).
The codebook gives valuable insights into frequent patterns,
however, it depends on the data analyzed if it is possible
to visualize the codebook. When analyzing, for example,
a text document collection it might be interesting to use
a list of frequent words or other summarization strategies
instead [22, 29].



Figure 5: Screenshot of the user interface used for exploring the effects of the feature extraction on the
expressive performances of Mozart piano sonatas.

5.1.2 First Results
Studying the influence of the low-level features on the dis-

tinguishability of performance strategies is ongoing research.
Using the interactive interface presented above we have been
able to understand the data better. Moreover, visualizing
the effects of normalization and weighting have helped com-
municate ideas between data miners and musicologists in our
research project. We invite the reader to verify the following
observations by interacting with the visualization provided
at http://www.oefai.at/˜elias/kdd03/mozart/.

One example of a rather trivial result is the influence of
the loudness-tempo weighting when no normalization is ap-
plied. When the focus is only on loudness major differences
between the pianists are clearly recognizable in the SDH vi-
sualization. In particular, the recordings by Batik are much
louder than the others while Schiff is by far the softest. On
the other hand, the SDH visualizations of the sonatas are

very similar and hardly distinguishable. Both observations
are intuitive since the CD recordings vary in terms of av-
erage loudness. Thus, the distinctions made with this nor-
malization are not due to specifics of pianists, but rather to
specifics of the recordings.

On the other hand, if the focus is on tempo, then the dif-
ferences between the pianists diminish, except for Gould.
Comparing the SDH with the codebook reveals that the
performances by Gould are outliers since they are either
extremely fast or slow. The SDH of the sonatas reveals that
they are very distinguishable in terms of tempo which is
obvious since some are simply faster than others.

This distinction between sonatas is lost when normaliz-
ing the mean either locally for a segment or globally for
a whole sonata part. When normalizing the mean locally
the SDH of the pianists reveals that Gould plays very fre-
quently patterns of relative constant loudness and tempo.
When removing the average from the SDH visualization, we



can see that Pires is quite the opposite to Gould and fre-
quently performs very strong modulations of loudness and
tempo. Schiff seems to modulate more the tempo than the
loudness. This is underlined when viewing the effect of the
loudness-tempo weighting. When focusing only on loudness
the performances of Schiff is very similar to the performances
by Gould while focusing on tempo reveals that there are
strong similarities between Pires and Schiff. Note that al-
though the visualization gives valuable insights into the data
which would be difficult to obtain otherwise, it is necessary
to quantify any observations and test them on new data.

5.2 Exploring Music Archives
The second application is part of the project Islands of

Music3 whose goal is to create intuitive interfaces to digi-
tal libraries of music by automatically analyzing, organiz-
ing, and visualizing pieces of music based on their perceived
acoustic similarities [26, 27].

The Islands of Music are calculated using the SOM with
a SDH visualization and a specific color scale. Similar pieces
are located close to each other on the map. The resulting
clusters are visualized as islands. Subclusters within clusters
are visualized as mountains and hills. A parameter defines
the coastline which separates the water from the islands and
helps to find distinctive clusters faster. A similar effect we
obtain through the coastline has been used with Polarized
Projections for visual clustering [3].

The main problem when organizing pieces of music is to
automatically calculate the similarities between them. Mu-
sic similarity can be viewed from several different perspec-
tives. For example, the similarity can be based on the in-
struments used, the melody, or the rhythm. Although it is
an easy task for a human listener to judge the general simi-
larity between two pieces, there are currently no satisfactory
computational models available.

Several approaches to calculate music similarities are based
on Mel Frequency Cepstrum Coefficients (MFCCs), e.g., [24,
5, 7]. The MFCCs describe sound characteristics in terms
of frequency band and energy at a specific point in time and
are used to model the timbre.

In our previous work we presented rhythm patterns [26,
27] to calculate similarities. The rhythm patterns capture
dynamic characteristics in the loudness modulation of spe-
cific frequency bands based on psychoacoustic models [37].

Instead of defining a specific way to calculate the similar-
ity between two pieces of music, we are developing interfaces
which allow the users to define what they individually con-
sider to be relevant aspects of similarity. A screenshot of a
prototype is shown in Figure 6. The user can interactively
change the weights on features describing rhythm properties
and sound characteristic (timbre) using a sliding bar.

The visualization shown in Figure 6 is a prototype we use
to analyze the similarity measures. Beneath the islands and
the sliding bar the model vectors of each layer are visualized.
The model vectors contain two types of information which
are displayed separately. On the left (red color) are the
rhythm patterns and on the right (blue color) the MFCC
patterns.

The current position of the sliding bar is on the right side,
thus, the focus is on timbre characteristics. From this point
of view there are five islands in the data, each representing

3http://www.oefai.at/˜elias/music

a specific type of music. For example, on the island in the
lower left peaceful classical pieces are located such as Für
Elise or the Mondscheinsonata by Beethoven. On the other
side, in the upper right of the map is an island where we
find pieces by the aggressive rock group Papa Roach.

Although the details of the model vectors are irrelevant
for the targeted user it allows us in the current stage of
development to analyze and understand why a particular
piece of music is located in a specific region. For example,
when looking at the model vectors of the map in Figure 6
there are several insights into the organization of the map we
can gain. For example, we can see that the rhythm patterns
are organized so that patterns with overall low energy can
be found on the left. While the patterns with the highest
energy can be found around the island in the lower right
corner, which represents music with strong beats such as
the songs by Bomfunk MC’s.

Furthermore, we use the whole system to analyze and un-
derstand the relationships between different similarity mea-
sures and, thus, to evaluate them in an intuitive manner.
For example, we can simplify the calculation of the rhythm
patterns and compare the simplified version to the original
version. If there are no significant changes in the organiza-
tion of the collection, then the simplified version is likely to
be just as good. However, it is more likely to have some sort
of changes in the cluster structure, which can then be easily
identified. An alternative approach would be to use objec-
tive and qualitative evaluations. However, due to a lacking
ground truth such evaluations of music similarity measures
are currently an unsolved problem in the music information
retrieval community.

One of the observations we have made with this visualiza-
tion is that focusing on timbre structures the data more in
terms of types of instruments or artist. For example, in the
lower left of the map there are some classical pieces of mu-
sic. When focusing on timbre, there is a distinction between
slow piano and slow string pieces. On the other hand, when
focusing on rhythm this distinction is not made. Another
example is the music in the upper right of the map. When
focusing on timbre, for example, pieces by Papa Roach are
clearly separated from others, while these are mixed together
with other pieces from the same style when weighting the
rhythm patterns more strongly.

6. CONCLUSIONS AND DISCUSSION
We have presented a novel approach to visualizing changes

in the cluster structure of data when the features describing
the data are changed. Using Aligned Self-Organizing Maps
the user is able to gradually and smoothly change focus be-
tween feature extraction procedures to explore how they are
related and what the differences are. We demonstrated the
application in two data mining projects.

In the first application where the goal is to analyze mu-
sical performance strategies the main result was that the
visualization helped communicate ideas between data min-
ers and domain experts. In particular, it helped the data
miners explain why it is necessary to consider weighting of
different dimensions and different forms of normalization.
On the other hand, the domain experts were able to help
the data miners find interesting aspects of the data to ana-
lyze in more detail.

In the Islands of Music project where communicating ideas
is not a critical issue there were two main results. The first



Figure 6: Screenshot of the user interface used for content-based exploration of music archives.

result is that the visualization can be used to study differ-
ences and similarities between different ways of computing
similarity between music, i.e. studying how different ways
of extracting features are related. Furthermore, preliminary
results indicate that being able to change focus from one
similarity aspect to another might be an interesting tool for
browsing and exploring digital libraries of music.
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