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Abstract − The concept of similarity is impor-
tant for many data mining related applications such
as content-based music retrieval. Defining similarity
can be very difficult if several aspects are involved.
For example, music similarity depends on the melody,
rhythm, or instruments.

The Self-Organizing Map is a powerful tool to visu-
alize how the data looks like from a certain perspective
of similarity. In this paper a new technique is proposed
to align different SOMs to enable the user to gradually
and smoothly change focus from one similarity aspect
to another without losing orientation. Furthermore,
two applications of these Aligned-SOMs are presented
in the music domain.

1 Introduction

The definition of similarity, i.e., how distances between
data items are computed, determines the output of
clustering algorithms and similarity based retrieval ap-
plications. Defining similarity given some raw (high-
dimensional, low-level) data representation is usually a
difficult task. This is particularly true if the intention
is to approximate perceptual similarities as it is the
case when dealing with music, images, or video.

For example, the similarity of images depends on
different aspects such as color, texture, and shape.
These aspects can be extracted from different low-level
features in different ways. Furthermore, they can be
weighted differently, and finally they can be compared
using different metrics. Obviously, several decisions
need to be made which can be described in terms of
parameters.

One approach to adjust these parameters in infor-
mation retrieval is relevance feedback [8]. By gathering
feedback from the user the system learns appropriate
parameter settings to satisfy users demands. A differ-
ent approach is to learn the best metric automatically
by giving the system some examples [2]. In contrast to
these previous approaches the focus of this paper is to
study differences between aspects of similarity.

The Self-Organizing Map [3] is a powerful tool to
understand how a specific parameter selection effects
the structure in the data. In particular, the SOM can
be used to visualize groups of similar items and how

this groups are related to each other. However, when
inspecting several SOMs to evaluate different parame-
ters it turns out to be difficult to compare the results
directly because the data items and clusters will be
located in different regions of the map.

Aligned-SOMs address this issue by aligning these
different views of the data. In particular, multiple
SOMs are trained on the same data but with slightly
different parameters. These SOMs are trained in such
a way that each data item is located in the same region
on different maps. Thus, the user is able to gradually
change the parameter settings, i.e., the focus on simi-
larity aspects, while observing smooth changes in the
structure.

In the following Section the Aligned-SOM algorithm
is outlined and illustrated. In Section 3 two appli-
cations are presented. The first application is to or-
ganize and visualize a music collection for interactive
exploration. The second application is to study mu-
sical performance strategies. In Section 4 conclusions
are drawn.

2 Aligned-SOMs

Given only one distance parameter to explore p ∈
{pmin . . . pmax} a SOM is assigned to each of the ex-
treme values. These two SOMs are laid on top of each
other representing extreme views of the same data.
Between these two extremes a certain (user defined,
with computational restrictions) number of SOMs is
inserted resulting in a stack of SOMs. Neighboring
SOM layers in the stack represent slightly different pa-
rameter settings. All SOMs have the same map size
and are initialized with the same orientation obtained,
for example, by training the SOM in the middle of the
stack and setting all other layers to have the same ori-
entation.

This initialization procedure is based on a similar
idea applied to preserve the orientation in Growing
Hierarchical SOMs [1]. However, unlike GHSOMs the
Aligned-SOMs are trained so that all layers contribute
to the overall orientation instead of propagating it only
in one direction.

To align the SOMs during training it is necessary
to define a distance between layers which controls how



smooth the transitions between layers are. Based on
this distance the pairwise distances for all units in the
stack are calculated and used to align the layers the
same way the distances between units within a map
are used to preserve the topology.

The training process is based on the normal SOM
training algorithm. A data item and a layer are se-
lected randomly. The best matching unit for the item
is calculated within the layer. The adaptation strength
for all units in the stack depends on their distance to
the best matching unit. The model vectors within the
selected layer are adapted as in the basic SOM algo-
rithm. For adaptations in all other layers the respec-
tive representation of the data is used. The online
training algorithm is outlined in Table 1. For the ex-
periments presented in this paper a batch version of the
Aligned-SOMs was used which is based on the batch
training algorithm for individual SOMs.

The batch training algorithm for Aligned-SOMs can
be formulated as follows. Let Da denote the data ma-
trix of size n × da for each similarity aspect a, where
n is the number of data items and da is the number
of dimensions of aspect a. Let U2 (ml × ml) be the
squared distances in the visualization space between
all units in the stack, where m is the number of units
per layer and l is the total number of layers. Let Nt

(ml ×ml) be the neighborhood matrix calculated, for
example, as Nt = exp(−U2/(2r2

t )), where rt is the
neighborhood radius at iteration t. Let Pat (n × ml)
be the sparse partition matrix defined by Pat(i, j) = 1
if unit j is the best matching unit for item i, i.e., there
is no other unit in the layer of unit j which could bet-
ter represent item i from the perspective of aspect a,
and Pat(i, j) = 0 otherwise.1 The spread activation
matrix for each aspect Sat (n × ml) is calculated as
Sat = PatNt. Mixing coefficients wak specify the in-
fluence of each aspect on each layer k. The spread
activation for each layer Skt (n × m) is calculated as
Skt = (1/

∑
a wak)

∑
a wakSakt, where Sakt are the m

columns of Sat which represent the layer k. Finally,
the updated model vectors Makt+1 are calculated as
Makt+1 = S∗

ktDa where S∗
kt denotes the normalized

columns of Skt. The columns are normalized such that
the sum of each column equals 1 except for the columns
representing units which are not activated. If not ter-
minated the algorithm continues with calculating Nt+1

and so on.
Figure 1 illustrates the characteristics of Aligned-

SOMs using a simple animal dataset [3]. The dataset
contains 16 animals with 13 boolean features describ-
ing appearance and activities such as number of legs
and ability to swim. The necessary assumption for an
Aligned-SOM application is that there is a parameter
of interest which controls the similarity calculation. A
suitable parameter for this illustration is the weighting

1In Section 3.1 the partition matrix is predefined and not
recalculated for the user defined aspect of similarity.

0 Initialize all SOM layers.

1 Randomly select a data item and layer.

2 Calculate best matching unit c for item within layer.

3 For each unit (in all layers),

a – Calculate adaptation strength using a neighbor-

hood function given:

– the distance between the unit and c,

– the radius and learning rate for this iteration.

b – Adapt respective model vector using the

vector space of the particular layer.

Table 1: Online training algorithm for Aligned-SOMs.
Steps 1–3 are repeated iteratively until convergence.

between activity and appearance features.
To visualize the effects of this parameter 31 Aligned-

SOMs are trained. The first layer uses a weighting ratio
between appearance and activity features of 1:0. The
16th layer, i.e., the center layer, weights both equally.
The last layer uses a weighting ratio of 0:1, thus, fo-
cuses only on activities. The weighting ratios of all
other layers are linearly interpolated. The size for all
maps is 3×4. The distance between layers was set to
1/10 of the distance between two adjacent units within
a layer. Thus, the alignment between the first and the
last layer is enforced with about the same strength as
the topological constraint between the upper left and
lower right unit of each map. All layers were initialized
according to the organization obtained by training the
center layer with the basic SOM algorithm.

From the resulting Aligned-SOMs 5 layers are de-
picted in Figure 1. The cluster structure is visualized
using Smoothed Data Histograms (SDH) [7]. For inter-
active exploration a HTML version with all 31 layers
is available online.2 When the focus is only on appear-
ance all small birds are located together in the lower
right corner of the map. The Eagle is an outlier be-
cause its bigger than the other birds. All mammals
are located in the upper half of the map separating
medium sized ones on the left from large ones on the
right. As the focus is gradually shifted to activity de-
scriptors the organization changes smoothly. When the
focus is solely on activity the predators are located on
the left and others on the right. Although there are
several significant changes regarding individuals, the
overall structure has remained the same, enabling the
user to easily identify similarities and differences be-
tween two different ways of viewing the same data.

3 Applications

In this section two applications of Aligned-SOMs in
music related projects are discussed. The first project
aims at organizing and visualizing music collections

2http://www.oefai.at/˜elias/aligned-soms
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Figure 1: Aligned-SOMs trained with the animal dataset, (a) first layer with weighting ratio 1:0 between
appearance and activity features, (b) 3:1, (c) 1:1, (d) 1:3, (e) 0:1. The shadings represent the density calculated
using SDH (n = 2 with bicubic interpolation). White corresponds to high densities, gray to low densities.

for content-based exploration. The second applica-
tion is part of a large data mining project which deals
with performance strategies of famous pianists. Both
demonstrations presented in this paper are available
online.2

3.1 Islands of Music

The goal of the Islands of Music project3 is to create
intuitive interfaces to large music archives by automat-
ically analyzing, organizing, and visualizing pieces of
music based on their perceived acoustic similarities [6].

The main difficulty is to calculate the percep-
tual similarity which can depend on the instruments,
melody, rhythm, lyrics, or on the invoked emotions.
It is questionable if there will ever be any satisfactory
computational models to predict overall similarity rat-
ings by human listeners. However, to access large mu-
sic repositories even organizations derived from simpli-
fied similarity measures can be very useful.

For this demonstration two similarity measures are
used, namely, spectrum and periodicity histograms
which model aspects of timbre (sound characteristics)
and rhythm respectively [4]. The spectrum histograms
summarize how often specific frequency bands are ac-
tive, while the periodicity histograms describe the
strength of periodically reoccurring beats. In addition
to these two measures a predefined organization based
on meta-information is used. This organization can be
any arbitrary organization that can be projected onto a
map, for example, grouping pieces according to artists
or any other user preferences. The idea is to enable the
user to browse through a music collection by changing
focus between any of these three aspects.

A screenshot of the user interface is shown in Fig-
ure 2. For this demonstration a collection of 77 pieces
from different genres is used. The user interface is
divided into four parts, namely, the navigation unit,
the map, and two codebook visualizations. The nav-
igation unit has the shape of a triangle, where each
corner represents an organization according to a par-
ticular aspect. The user defined view is located at the

3http://www.oefai.at/˜elias/music

top, periodicity on the left, and spectrum on the right.
The user can browse these views by moving the mouse
over the intermediate nodes which results on smooth
changes of the map. In total there are 73 different
nodes the user can explore.

The current position in the triangle is indicated by a
red marker which is currently located in the top corner.
Thus, the map displays the user defined organization.
For example, all Classical pieces in the collection are
mixed together in the upper left. On the other hand,
the island in the upper right of the map represents
pieces by Bomfunk MCs. The island in the lower right
contains a mixture of different pieces by Papa Roach,
Limp Bizkit, Guano Apes, and others which are partly
very aggressive. The other islands contain two more
or less arbitrary mixtures of pieces, although the one
located closer to the Bomfunk MCs island has stronger
beats.

Below the map are visualizations of the model vec-
tors for the periodicity and spectrum features. The
visualizations reveal that the user defined organization
is not completely arbitrary with respect to the features
extracted from audio. For example, the periodicity
histogram has the highest peaks around the Bomfunk
MCs island and the spectrum histogram has a charac-
teristic shape around the Classical music island.

When the focus is on spectral features the island
of Classical music is split into two islands where one
represents piano pieces and the other orchestra. On
the other hand, when the focus is on periodicity a
large islands is formed which accommodates all Classi-
cal pieces. This island is connected to an island where
also non-Classical music can be found such as the song
Little Drummer Boy by Crosby & Bowie or Yesterday
by the Beatles. Although there are several differences
between the maps the general orientation remains the
same. In particular the island in the upper right always
accommodates the pieces by Bomfunk MCs.

For this demonstration all layers of the Aligned-
SOMs were initialized based on the predefined organi-
zation. Between two corners of the triangular Aligned-
SOM structure 13 intermediate SOMs where trained.
The complete structure contained 73 SOMs. The dis-



Figure 2: Screenshot of the HTML-based user interface. The navigation unit is located in the upper left, the
map to its right, and beneath the map are visualizations of the model vectors. On the left are the model vectors
describing the periodicity histograms. On the right are the spectrum histogram model vectors.

tances between two corners was the same as the dis-
tance between two adjacent units within a layer. The
structure was batch trained using 100 iterations and a
final neighborhood radius of 0.1 (Gaussian neighbor-
hood function). Further details of this application can
be found in [4].

3.2 Musical Performance Strategies

The second application is part of a large data mining
project4 whose goal is to study fundamental principles
of expressive music performance [9]. Performances by
concert pianists are measured with respect to timing
and loudness fluctuations. The goal is to find charac-
teristic patterns that give insight into typical interpre-
tation strategies used by pianists.

The dataset used for this particular experiment con-
sists of performances of Mozart piano sonatas, played
by internationally renowned pianists. Each perfor-
mance is described in the dimensions tempo, loudness,
and time. An example of one such time series in the
form of a smoothed trajectory in the two-dimensional
tempo-loudness space is shown in Figure 3, with tempo

4http://www.oefai.at/music

Figure 3: Part of a smoothed trajectory.

on the vertical axis and loudness on the horizontal axis.
If the pianist plays faster and louder the trajectory
moves toward the upper right while it moves toward
the lower left if the pianist reduces the tempo and plays
softer. The trajectories are cut into overlapping seg-
ments with a length of a few seconds.

At the current research state it is not clear how to
best represent the performance trajectories to capture
the main characteristics. Some of the open questions
are related to the weighting of the tempo and loudness



dimensions, strength of the trajectory smoothing, and
the normalization of the data.

Regarding the normalization there are five forms of
particular interest which can be categorized in three
levels. The first level is no normalization, the sec-
ond level is normalizing the mean, the third level is
to normalize mean and variance. The effect of the sec-
ond level is that the focus is only on absolute changes
regarding loudness or tempo. On the third level the
focus is only on relative changes. Within the second
and third levels two ways of normalizing the data are
distinguished, namely, normalizing locally over a short
segment of the trajectory or normalizing globally over
a longer sonata part.

The upper left part of Figure 4 shows the connection
between the five forms of normalizing the data. In
addition, two dimensions are included which control
the weighting between loudness and tempo, and the
degree of smoothing the trajectories. For each of these
different ways to extract features changes in the density
distribution of trajectories are analyzed.

A screenshot of the HTML user interface is shown in
Figure 4. The user interface is divided into three parts.
The first part contains the navigation unit and a visu-
alization of the SOM model vectors (codebook). The
second part contains the Smoothed Data Histograms
(SDH) visualization for each pianist. To make differ-
ences between the SDH visualizations more apparent,
in addition, the individual SDHs are visualized after
subtracting the average SDH. The third part contains
the SDH visualizations of each sonata part.

Three markers are used to indicate the current po-
sition in the navigation unit. One marker indicates
the normalization, one the weighting with respect to
loudness and tempo, and the third marker indicates
the degree of smoothing. Between two extremes seven
intermediate positions are used. Therefore, given the
overall structure, over 3,800 SOMs would need to be
trained to allow every possible combination of the three
markers. Due to computational considerations the
combinations are limited such that a marker can only
be moved to the intermediate nodes (small circles) if
the other two markers are located on main nodes (big
circles), thus, reducing the number of SOMs to 127.

The codebook visualizes the trajectory segments as
blue lines with a red dot marking the end. The
blue shadings represent the variance of the data items
mapped to the unit. The number in the lower right of
each unit displays the number of data items mapped
to the respective unit.

One example of a rather trivial result is the influence
of the loudness-tempo weighting when no normaliza-
tion is applied. When the focus is only on loudness
major differences between the pianists are clearly rec-
ognizable in the SDH visualization. In particular, the
recordings by Batik are much louder than others while
Schiff is by far the softest. On the other hand, the

SDH visualizations of the sonatas are very similar and
hardly distinguishable. Both observations are intuitive
since the CD recordings vary in terms of average loud-
ness. Thus, the distinctions made with this normaliza-
tion are not due to specifics of pianists, but rather to
specifics of the recordings.

On the other hand, if the focus is on tempo, then the
differences between the pianists diminish, except for
Gould. Comparing the SDH with the codebook reveals
that the performances by Gould are outliers since they
are either extremely fast or slow. The SDH of the
sonatas reveals that they are very distinguishable in
terms of tempo which is obvious since some are simply
faster than others.

This distinction between sonatas is lost when nor-
malizing the mean either locally for a segment or glob-
ally for a whole sonata part. When normalizing the
mean locally the SDH of the pianists reveals that
Gould plays very frequently patterns of relative con-
stant loudness and tempo. When removing the average
from the SDH visualization Pires is quite the opposite
to Gould and frequently performs very strong modu-
lations of loudness and tempo. Schiff seems to vary
tempo more than loudness. This is underlined when
exploring the impact of the loudness-tempo weighting.
When focusing only on loudness the performances of
Schiff are very similar to those by Gould while focus-
ing on tempo reveals that there are strong similarities
between Pires and Schiff.

The Aligned-SOM structure was initialized by set-
ting the orientation of all layers according to the map
representing local variance and mean normalization
with equal weighting of loudness and average smooth-
ing. First, the five main nodes where trained with
the batch Aligned-SOM algorithm. The maps be-
tween the main nodes were interpolated. The nodes on
the dimensions loudness-tempo and raw-smooth where
trained subsequently. First, their orientations were ini-
tialized according to the orientation of the respective
main normalization node. Then they were trained in-
dependently of all other nodes. However, in each it-
eration the model vectors of the respective main node
were not updated. Further details of this application
can be found in [5].

4 Conclusions

Aligned-SOMs are a new approach to utilize the vi-
sualization abilities of Self-Organizing Maps. In this
paper the algorithm together with two applications in
the music domain were presented. First results seem
promising. The idea of Aligned-SOMs is to enable the
user to interactively explore the effects of computing
similarity in different ways. For each of these different
views of the same data a SOM is trained and all SOMs
are aligned so that the user can smoothly browse from
one similarity aspect to another. Recent developments



Figure 4: Screenshot of the user interface used for exploring the effects of the feature extraction on the expressive
performances of Mozart piano sonatas.

in hardware technology have made the necessary com-
putations feasible.
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