
LEARNING BINARY CODES FOR EFFICIENT
LARGE-SCALE MUSIC SIMILARITY SEARCH

Jan Schlüter
Austrian Research Institute for Artificial Intelligence, Vienna

jan.schlueter@ofai.at

ABSTRACT

Content-based music similarity estimation provides a
way to find songs in the unpopular “long tail” of com-
mercial catalogs. However, state-of-the-art music similar-
ity measures are too slow to apply to large databases, as
they are based on finding nearest neighbors among very
high-dimensional or non-vector song representations that
are difficult to index.

In this work, we adopt recent machine learning methods
to map such song representations to binary codes. A lin-
ear scan over the codes quickly finds a small set of likely
neighbors for a query to be refined with the original expen-
sive similarity measure. Although search costs grow lin-
early with the collection size, we show that for commercial-
scale databases and two state-of-the-art similarity measures,
this outperforms five previous attempts at approximate near-
est neighbor search. When required to return 90% of true
nearest neighbors, our method is expected to answer 4.2
1-NN queries or 1.3 50-NN queries per second on a collec-
tion of 30 million songs using a single CPU core; an up to
260 fold speedup over a full scan of 90% of the database.

1. INTRODUCTION

Content-based music similarity measures allow to scan a
collection for songs that sound similar to a query, and could
provide new ways to discover music in the steadily grow-
ing catalogs of online distributors. However, an exhaustive
scan over a large database is too slow with state-of-the-art
similarity measures. A possible solution are Filter-and-
Refine indexing methods: To find the k nearest neighbors
(k-NN) to a query, a prefilter returns a small subset of the
collection, which is then refined to the k best items therein.

Here, we consider the following scenario: (1) We have
a commercial-scale music collection, (2) we want to return
on average at least a fraction Q of the items an exhaustive
scan would find, and (3) we cannot afford costly compu-
tations when a song enters or leaves the collection (ruling
out nonparametric methods, or precomputing all answers).
We then search for the fastest indexing method under these
constraints.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2013 International Society for Music Information Retrieval.

Compared to existing work on approximate k-NN search,
what makes this quest special is the nature of state-of-the-
art music similarity measures, and a low upper bound on
database sizes: The largest online music store only offers
26 million songs as of February 2013, while web-scale im-
age or document retrieval needs to handle billions of items.

Among the first approaches to fast k-NN search were
space partitioning trees [1]. McFee et al. [12] use an ex-
tension of k-d trees on 890,000 songs, reporting a 120 fold
speedup over a full scan when missing 80% of true neigh-
bors. No comparison to other methods is given.

Hash-based methods promise cheap lookup costs. Cai
et al. [2] apply Locality-Sensitive Hashing (LSH) [6] to
114,000 songs, but do not evaluate k-NN recall. Torralba
et al. [23] learn binary codes with Restricted Boltzmann
Machines (RBMs) for 12.9 mio. images, achieving 80%
50-NN recall looking at 0.2% of the database and deci-
sively outperforming LSH. Using similar techniques, other
researchers learn codes for documents [16] and images [8,
13], but, to the best of our knowledge, never for songs.

Pivot-based methods map items to a vector space only
using distances to landmark items. Rafailidis et al. [15]
apply L-Isomap to 9,000 songs. Schnitzer et al. [19] apply
FastMap to 100,000 songs, achieving 80% 10-NN recall
looking at 1% of the collection. Chávez et al. [3] map items
to byte vectors with good results, but on our data, their
approach needs 50% of a collection to find 80% of 1-NN.

In what follows, we will adapt the most promising meth-
ods for application on two music similarity measures and
evaluate their performance under our scenario.

2. FILTER-REFINE COST MODEL

The cost of answering a query using a filter-and-refine ap-
proach can be decomposed into the cost for running the
prefilter and the cost for refining the selection to k items:

costfiltref(n, k) = costfilt(n, k) + costref(nfilt(n, k), k)

We assume that the refine step is a linear scan over the
candidates returned by the prefilter, picking the k best:

costref(nf , k) = nf · (R+ log(k) · S), (1)

where R is the cost for computing the distance of a query
to a candidate, and log(k) · S is the cost for updating a
k-element min-heap of the best candidates found so far. 1

1 This model is not entirely correct, as the heap is generally not up-
dated for each item. However, for k ≤ 100 � nf , we found the sorting
cost to be indeed linear in nf , which is all we need for our argument.

http://www.ofai.at
mailto:jan.schlueter@ofai.at


As a baseline method meeting our requirement of find-
ing on average a fractionQ of the true neighbors, we adopt
a zero-cost prefilter returning a fraction Q of the dataset:

costbaseline(n, k) = costref(Q · n, k)

Under these assumptions, using a prefilter gives the fol-
lowing speedup factor over the baseline:

spu(Q,n, k) =
costref(Q · n, k)

costfiltref(n, k)

=

(
costfilt(n, k) + costref(nfilt(n, k), k)

Q · costref(n, k)

)−1

= Q ·
(

costfilt(n, k)

costref(n, k)
+

nfilt(n, k)

n

)−1

= Q ·
(
ρt(n, k) + ρs(n, k)

)−1
(2)

We see that making the prefilter fast compared to a full
scan (small ρt) is just as important as making the filter se-
lective (small ρs). More specifically, we need to minimize
the sum of the two ratios to maximize the speedup factor.

As we will see in our experiments, some existing meth-
ods put too much emphasis on a fast prefilter, resulting in
ρt(n, k) being orders of magnitude smaller than ρs(n, k)
especially for large databases. In this work we will bal-
ance the two ratios better to maximize the performance.

3. MUSIC SIMILARITY MEASURES

For our experiments, we choose two very different similar-
ity measures: One based on high-dimensional vectors, and
another based on Gaussian distributions.

3.1 Vector-Based Measure

Seyerlehner et al. [20] propose a set of six Block-Level Fea-
tures to represent different aspects of a song’s audio con-
tent, totalling in 9448 dimensions. These features work
well for genre classification and tag prediction [21], and
similarity measures based on them ranked among the top
three algorithms in the MIREX Audio Music Similarity
(AMS) tasks 2010–2012. For the similarity measure, the
six feature vectors are individually compared by Manhat-
tan distance, and the resulting feature-wise distances are
combined to form the final similarity estimation.

To combine the feature-wise distances, they must be
brought to similar scale. Instead of finding six appropriate
scaling factors on an arbitrary dataset, Seyerlehner et al.
normalize the feature-wise distance matrices for the han-
dled collection: This Distance Space Normalization (DSN)
processes each distance matrix entry by subtracting the
mean and dividing by the standard deviation of its row and
column. 2 The six normalized matrices are added up and
normalized once again to form the final similarities.

While the normalizations seem unnecessarily complex,
Flexer et al. [5] recently showed that they remove hubs –
items appearing as neighbors of undesirably many other
items – and are vital to achieve state-of-the-art results.

2 When it is infeasible to compute full distance matrices, the song-
wise distance statistics can be approximated from a random subset of the
collection and stored with each feature vector.

3.2 Gaussian-Based Measure

As a second method, we use the timbre model proposed
by Mandel and Ellis [11]: Each song is represented by the
mean vector and covariance matrix of its frame-wise Mel-
Frequency Cepstral Coefficients (MFCCs). 3 Song dis-
tances are computed as the symmetrized Kullback-Leibler
divergence between these multivariate Gaussian distribu-
tions [17, p. 24], and normalized with DSN.

This measure does not reach state-of-the-art performance
on its own, but forms the main component of [14], which
ranked among the top two algorithms in the MIREX AMS
tasks 2009–2012. Furthermore, it is easy to reproduce and
allows direct comparison to Schnitzer et al. [18, 19].

4. INDEXING METHODS

We will evaluate seven different methods for fast k-NN
search: One oblivious to the indexed dataset, four based
on song models and two based on song similarities.

4.1 Locality-Sensitive Hashing (LSH)

For vectors in an Euclidean space, the family of projec-
tions onto a random line, followed by binary threshold-
ing or fixed-width quantization, is locality-sensitive: For
such projections, two close items are more probable to be
mapped to the same value than two items far apart [6].

LSH usesL·K projections to map each item xi toL dis-
creteK-dimensional vectors hl(xi). Using L conventional
hash-table lookups, it can quickly find all items xj match-
ing a query q in at least one vector, ∃l≤Lhl(q) = hl(xj).

Here, this serves as a prefilter for finding neighbor can-
didates. Increasing K makes it more likely for candidates
to be true nearest neighbors, but strongly reduces the can-
didate set size. Increasing L counters this, but increases
query and storage costs. As a complementary way to in-
crease the number of candidates, Multi-probe LSH [10]
considers items with a close match in one of their vectors.

4.2 Principal Component Analysis (PCA)

PCA finds a linear transformation y = W ′x of Euclidean
vectors xi ∈ X to a lower-dimensional space minimizing
the squared reconstruction error

∑
i‖xi −WW ′xi‖22.

Nearest neighbors in the low-dimensional space are good
candidates for neighbors in the original space, so a linear
scan over items in the low-dimensional space serves as a
natural prefilter. The candidate set size can be tuned at will
to achieve a target k-NN recall. Increasing the dimension-
ality of the space allows to reduce the candidate set size,
but increases prefilter costs.

4.3 Iterative Quantization (ITQ)

ITQ [7] finds a rotation of the PCA transformation mini-
mizing squared reconstruction error after bit quantization
of the low-dimensional space:

∑
i‖xi −W b(W ′xi)‖22,

where bi(z) is 1 for positive zi and 0 otherwise.

3 Specifically, we use frames of 46 ms with 50% overlap, 37 Mel bands
from 0 Hz to 11025 Hz and retain the first 25 MFCCs.



It can serve as a prefilter just like PCA, but using bit
vectors reduces computational costs for the linear scan.
For compact bit codes, neighbors within a small hamming
distance of a query can alternatively be found with a con-
stant number of conventional hash table lookups.

4.4 PCA Spill Trees

K-d Trees [1] are binary trees recursively partitioning a
vector space: Each node splits the space at a hyperplane,
assigning the resulting half-spaces to its two child nodes.
Spill Trees [9] allow the half-spaces to overlap, making it
less likely for close items to be separated. McFee et al. [12]
additionally propose to choose hyperplanes perpendicular
to a dataset’s principal components, and to strongly restrict
the depth of the tree. In the resulting PCA Spill Tree, each
item ends up in one or more leaves, with similar items of-
ten sharing at least one leaf. Locating the leaves for an
item is linear in the database size [12, Sec. 3.6], but can be
avoided by precomputing all leaf sets.

As in [12], we regard all items in the leaf sets of a query
to be candidate neighbors. The candidate set size can be
increased by decreasing the tree depth or by increasing the
overlap at each node.

4.5 Auto-Encoder (AE)

An AE finds a nonlinear transformation of inputs to a low-
dimensional or binary code space and back to the input
space, minimizing the difference between inputs and re-
constructions (e.g., `2 distance for Euclidean input vec-
tors). Similar to PCA and ITQ, candidate neighbors to a
query can quickly be found in the code space.

The transformation is realized as an artificial neural net-
work and can be optimized with backpropagation. For
deep networks, it is helpful to initialize the network weights
using Restricted Boltzmann Machines (RBMs). Salakhut-
dinov et al. [16] were the first to use a deep AE for ap-
proximate nearest neighbor search, under the term Seman-
tic Hashing, and describe the method in detail.

4.6 Hamming Distance Metric Learning (HDML)

HDML [13] finds a nonlinear transformation to a binary
code space optimized to preserve neighborhood relations
of the input space. Specifically, for any triplet (x, x+, x−)
of items for which x is closer to x+ than to x− in the input
space, it aims to have x closer to x+ than to x− in the
code space. Again, the transformation is realized as an
artificial neural network, optimized with backpropagation,
and HDML can be used as a prefilter just like ITQ or AE.

4.7 FastMap

FastMap [4] maps items to a d-dimensional Euclidean space
based on their (metric) distances to d previously chosen
pivot pairs in the input space. Schnitzer et al. [19] show
how to apply FastMap to Gaussian-based models and pro-
pose an improved pivot selection strategy we will adopt.

FastMap serves as a prefilter like PCA, but supports
non-vector models as it is purely distance-based.

5. EXPERIMENTS

We will now compare the seven indexing methods empiri-
cally, conducting a range of retrieval experiments.

5.1 Dataset and Methodology

From a collection of 2.5 million 30-second song excerpts
used in [18, 19], we randomly select 120k albums of 120k
different artists. We use 10k albums (124,013 songs) for
training, 20k albums (246,117 songs) for validation and
the remaining 90k albums (1,101,737 songs) for testing. In
addition, we use 20k albums (253,347 songs) of the latter
as a smaller test set.

For each applicable combination of similarity measure
and indexing method, we will train different parameteriza-
tions of the method on the training set and determine the
speedup over the baseline (Eq. 2) for retrieving on aver-
age 90% of the 1 or 50 nearest neighbors on the validation
set. We will then evaluate the best parameterizations on
the small test set to ensure we did not overfit on the vali-
dation set, and use the large test set to assess the methods’
scalability.

5.2 Vector-based Measure

To be able to compute the speedup, we first determine
the costs of the similarity measure. 4 Computing 1 mil-
lion 9,448-dimensional Manhattan distances takes 2.361 s,
finding the (indices of) the smallest 100 distances takes
1.17 ms, and both costs scale linearly with the collection
size, as assumed in Eq. 1. Costs for the approximate DSN
are negligible (see Sect. 3.1). For prefilters based on a lin-
ear scan, computing 1 million 80-dimensional `2 distances
takes 22 ms, and computing 1 million 1024-bit hamming
distances takes 9.8 ms. The costs of finding the best candi-
dates in a linear scan depend on the candidate set size; we
will use separate measurements for each case.

PCA: We start by evaluating PCA as a prefilter, as it
proved useful as a preprocessing step for most other filters
as well. To mimic how the similarity measure is combined
from six features, we first apply PCA to each feature sep-
arately, compressing to about 10% of its size, then rescale
each feature to unit mean standard deviation (this brings
the distances to comparable ranges, and forms good inputs
for the AE later) and stack the compressed features to form
an 815-dimensional vector. Finally, we apply another PCA
to compress these vectors to a size suitable for prefiltering.

In Table 1, we see that this cuts down query costs: For
retrieving 90% of the true nearest neighbors, prefiltering
with a linear scan over 40-dimensional PCA vectors takes
ρt = 0.56% the time of a full scan and only needs to exam-
ine ρs = 0.26% of the database afterwards, resulting in a
110 fold speedup over the baseline (0.9/(0.0052+0.0026),
Eq. 2). For retrieving 50-NN, it needs a larger candidate
set, increasing the prefilter costs (higher sorting costs to
find the candidates), but still achieving a 47 fold speedup.

4 All timings are reported on an Intel Core i7-2600 3.4 GHz CPU with
DDR3 RAM, use a single core, and leverage AVX/POPCNT instructions.
Implementations are in C, carefully optimized to maximize throughput.



Method
1-NN 50-NN

ρt(%) ρs(%) spu ρt(%) ρs(%) spu
PC

A

20 dim 0.38 0.59 93x 0.58 1.85 37x
40 dim 0.56 0.26 110x 0.71 1.20 47x
80 dim 1.01 0.18 76x 1.16 1.12 40x

L
SH

8 bit 0.00 17.23 5x 0.00 23.82 4x
16 bit 0.00 6.66 14x 0.00 11.00 8x
20 bit 0.00 4.68 19x 0.00 8.42 11x

m
p-

L
SH

128x16 bit 0.83 11.12 8x 0.83 34.18 3x
64x32 bit 0.83 6.03 13x 0.83 12.23 7x
32x64 bit 0.83 3.65 20x 0.83 7.59 11x
16x128 bit 0.83 3.58 20x 0.83 7.11 11x
1x256 bit 0.10 3.85 23x 0.10 7.98 11x
8x256 bit 0.83 2.80 25x 0.83 6.22 13x

IT
Q 64 bit 0.03 5.43 16x 0.03 9.94 9x

128 bit 0.05 4.74 19x 0.05 8.27 11x
Spill Tree 0.00 10.25 9x 0.00 21.27 4x

A
E

64 bit 0.03 2.14 41x 0.03 4.40 20x
128 bit 0.05 0.57 144x 0.05 2.47 36x
256 bit 0.10 0.24 265x 0.10 1.28 65x
512 bit 0.21 0.14 258x 0.21 0.93 79x
1024 bit 0.42 0.09 177x 0.42 0.70 81x

Fa
st

M
ap 40 dim 0.77 1.56 39x 1.11 3.72 19x

80 dim 1.20 1.36 35x 1.53 3.43 18x
128 dim 1.73 1.20 31x 2.03 3.07 18x

Table 1. Results for the vector-based music similarity
measure on the validation set of 246,117 songs: Ratio of
prefilter time to full scan (ρt), ratio of candidate set to
dataset size (ρs) and resulting speedup over baseline (spu)
for retrieving 90% of 1 and 50 true nearest neighbors.

Varying the vector dimensionality changes the tradeoff be-
tween ρt and ρs, but does not improve the speedup.

LSH: We apply different versions of LSH to the 815-
dimensional intermediate PCA representation. 5 First, we
follow Slaney et al. [22] to compute optimal quantization
width, dimensionality and table count for 90% 1-NN recall
under the assumption that all projections are independent
(it suggests 92.192, 25 and 430, respectively). To reach our
target 1-NN recall, we need a 3-fold increase in table count
and obtain ρs = 16.52%, which is not competitive. Turn-
ing to binary LSH, we fix the dimensionality K to 8, 16 or
20 bit and increase L until we reach 90% recall (for 20 bits
and 50-NN, we need 8353 hash tables). Even assuming
zero prefilter costs, speedup is far below PCA. As a third
alternative, we use a simple version of multi-probe LSH:
We fix L and K, but consider all buckets within a ham-
ming distance of r to the query in any of the tables. We
increase r to reach the target k-NN recall, still achieving
moderate speedups of up to 25x only.

ITQ directly builds on the PCA transform above, but
maps items to bit vectors. Instead of directly tuning the

5 PCA is a useful stepping stone as the DSN (Sect. 3.1) invalidates any
theoretical guarantees of LSH finding the nearest neighbors in the original
space. Directly working on the 9448-dimensional vectors, rescaling the
six components to comparable range, consistently gave worse results.

0.1% 1% 10% 100%
candidate set size / database size

0%

20%

40%

60%

80%

100%

tr
ue

 5
0-

NN
 a

m
on

g 
ca

nd
id

at
es

AE, 1024 bit
AE, 256 bit
PCA, 40 dim
FastMap, 40 dim
mp-LSH, 4x256 bit
ITQ, 128 bit
PCA Spill Tree

Figure 1. 50-NN recall versus candidate set size for the
vector-based music similarity measure on the test set of
253,347 songs, averaged over all 253,347 possible queries.

candidate set size, we consider all items in a hamming ball
of radius r around the query (in code space), and tune r.
This avoids the sorting costs for finding the candidates.
ITQ has small ρt, but large ρs, resulting in low speedups.

PCA Spill Tree: We build a tree with spill factor 0.1
(the best performing in [12]) and adjust the depth to reach
our target recall. Assuming zero prefilter costs, it achieves
poor speedups as it needs very large candidate sets.

AE: We train a deep AE on the 815-dimensional inter-
mediate PCA representation, pretrained with stacked RBMs
as in [8]. We use an encoder architecture of 1024-256-128-
64 layers for the shorter codes, 1024-512 and 2048-1024
for the two longer codes. 6 We encourage binary codes by
adding noise in the forward pass as in [16]; especially for
128 bits and more, this worked better than thresholding as
in [8]. For 256 bits and less, it also helped to encourage
zero mean code unit activations as in [13, Eq. 12].

We use the learned codes as in ITQ. We obtain a prefilter
which is both faster than PCA and more selective, achiev-
ing a 265 fold speedup for 1-NN and 81 fold speedup for
50-NN queries. Note how the accuracy of longer codes
pays off for 50-NN, while shorter codes win for 1-NN.

HDML did not yield any improvement over AE.
FastMap is about twice as fast as LSH or ITQ, but falls

behind AE and PCA.
We evaluate the best-performing instantiations of each

method on the small test set and find results to be very
similar to Table 1. As the relative prefilter costs ρt stay
the same anyway, we only show how the candidate set size
ρs and 50-NN recall interact (Fig. 1). We can see that the
1024-bit AE again only needs about 0.7% of the dataset to
find 90% of 50-NN, and we see that AE and PCA perform
best over a wide range of target recall values. Besides,
comparison with [12, Fig. 4] shows that our PCA Spill Tree
performs similar to its first publication.

6 Results are robust to the exact architecture as long as there is at least
one layer before the code layer, and the first layer is wide enough.



Method
1-NN 50-NN

ρt(%) ρs(%) spu ρt(%) ρs(%) spu
PC

A 20 dim 6.18 16.03 4x 10.96 29.80 2x
40 dim 6.00 14.04 4x 11.11 28.79 2x

A
E

64 bit 0.06 11.89 8x 0.06 19.36 5x
128 bit 0.11 6.95 13x 0.11 15.77 6x
1024 bit 0.91 4.76 16x 0.91 13.13 6x

H
D

M
L

128 bit 0.11 1.46 57x 0.11 3.73 23x
256 bit 0.23 1.37 56x 0.23 3.93 22x
2x128 bit 0.23 1.15 65x 0.23 3.12 27x
4x128 bit 0.45 1.09 58x 0.45 3.02 26x
1024 bit 0.91 1.20 43x 0.91 4.65 16x

Fa
st

M
ap 40 dim 2.03 2.62 19x 3.37 6.48 9x

80 dim 2.78 1.85 19x 3.85 4.94 10x
128 dim 3.98 1.81 16x 5.03 4.85 9x

Table 2. Results for the Gaussian-based music similarity
measure on the validation set of 246,117 songs.

5.3 Gaussian-based Measure

Again, we first determine the costs of the similarity mea-
sure: Computing 1 million symmetric Kullback-Leibler
(sKL) divergences between 25-dimensional full-covariance
Gaussian models takes 1.085 s, using precomputed inverse
covariance matrices as in [17, Ch. 4.2]. Note that most in-
dexing methods evaluated above are vector-based and not
applicable to Gaussian models, so we expect the most from
HDML and FastMap, but still try AE and PCA to be sure.

AE: In order for learned codes to be useful, they must
reflect the input space. For the input space at hands, it
seems natural to learn codes by minimizing the sKL di-
vergence between inputs and reconstructions. For this to
work, the AE must be forced to output valid covariance
matrices Σ, otherwise it quickly learns to produce recon-
structions that push the sKL divergence unboundedly be-
low zero. We solve this by representing models in terms of
the mean vector and Cholesky decomposition of Σ (mul-
tiplying the reconstructed Cholesky decomposition by it-
self transposed always gives a positive-semidefinite Σ), but
our sKL-optimizing AEs only learn to reconstruct the cen-
troid of all training data. Interestingly, however, ordinary
`2-optimizing AEs benefit from the modified input rep-
resentation. Using the same architectures as in Sect. 5.2
and a similar preprocessing (we separately compress mean
vectors and Cholesky decompositions with PCA to 99.9%
variance, then scale to unit mean standard deviation), we
obtain moderate speedups of up to 16x.

PCA on the same representation performs poorly.
HDML learns codes from triplets of items (x, x+, x−),

see Sect. 4.6. We select x+ among the k+ nearest neigh-
bors of x, and x− outside the 500 nearest neighbors. Dur-
ing training, we gradually increase k+ from 10 to 200. In-
stead of training a randomly initialized network as in [13],
we fine-tune the existing AEs. We obtain good results
with 128-bit codes, but longer codes do not improve the
speedup. To close the gap between ρt and ρs, we instead

0.1% 1% 10% 100%
candidate set size / database size

0%

20%

40%

60%

80%

100%

tr
ue

 5
0-

NN
 a

m
on

g 
ca

nd
id

at
es

HDML, 4x128 bit
HDML, 128 bit
FastMap, 80 dim
AE, 1024 bit
PCA, 40 dim

Figure 2. 50-NN recall versus candidate set size for the
Gaussian-based music similarity measure on the test set of
253,347 songs.

Method
1-NN 50-NN

ρt(%) ρs(%) spu ρt(%) ρs(%) spu

H
D

M
L 128 bit 0.11 1.19 69x 0.11 3.14 28x

2x128 bit 0.23 0.93 78x 0.23 2.61 32x
4x128 bit 0.45 0.88 67x 0.45 2.08 36x

Fa
st

M
ap 40 dim 1.56 0.94 36x 2.17 2.27 20x

80 dim 2.53 0.85 27x 3.14 2.19 17x
128 dim 3.67 0.69 21x 4.20 1.86 15x

Table 3. Results for the Gaussian-based music similarity
measure on the test set of 1.1 million songs.

employ multiple 128-bit codes handled as in mp-LSH, ob-
taining an up to 65 fold speedup over the baseline.

FastMap is faster than AE, but slower than HDML. Re-
sults fall a bit behind [19] because unlike Schnitzer et al.,
we evaluate against nearest neighbors found with DSN.

Again, Fig. 2 demonstrates that our conclusions also
hold for the test set and a wide range of target recall values.

5.4 Scalability

Finally, we evaluate how the best-performing approaches
scale with the collection size. For the large test set of 1.1
million songs, it is computationally infeasible to compute
the exact DSN, and we do not want to evaluate an approxi-
mate retrieval algorithm against approximate ground truth.
Thus, we will limit ourselves to the Gaussian-based mea-
sure, omitting the DSN altogether (as in [19]).

From Table 3, we find that the results scale better than
linearly, because all methods need smaller candidate sets.
For FastMap, the improvement is partly explained by eval-
uating against non-DSN neighbors: On the validation set,
this alone improves the speedup by about 60% (it does not
improve HDML, which seemingly learned the DSN well).

Still extrapolating linearly from the validation set to 30
million songs, the best methods are expected to answer
4.2 1-NN queries or 1.3 50-NN queries per second on the
vector-based measure, and 2.2 1-NN queries or 0.9 50-NN



queries per second on the Gaussian-based one, using a sin-
gle CPU core, with 90% true nearest neighbor recall. 7

6. DISCUSSION

We have shown how to learn binary codes for song rep-
resentations of two state-of-the-art music similarity mea-
sures that are useful for fast k-NN retrieval. Furthermore,
we have demonstrated that for collection sizes encountered
in MIR, a k-NN index based on a linear scan can outper-
form sublinear-time methods when we require a particular
accuracy – even more so as scan-based methods are em-
barrassingly parallel and can be easily distributed or per-
formed on a GPU. Note that our experiments explicitly tar-
getted commercial-scale collections and song-level search.
For user collections, PCA or FastMap will be preferable
as they can quickly adapt to any dataset; training AE and
HDML took 20 and 180 minutes, respectively. For sim-
ilarity search on a finer scale (e.g., 10-second snippets),
collections could grow to require sublinear-time methods.

For future work, it may be worthwhile to evaluate the
binary representation in different scenarios: Do we obtain
qualitatively good results using the codes alone, omitting
the refine step? Do the codes prove useful for classification
or clustering?

7. ACKNOWLEDGEMENTS

The author would like to thank Mohammad Norouzi for
publishing his HDML implementation, and Maarten Grach-
ten for fruitful discussions.

This research is supported by the Austrian Science Fund
(FWF): TRP 307-N23. The Austrian Research Institute for
Artificial Intelligence is supported by the Austrian Federal
Ministry for Transport, Innovation, and Technology.

8. REFERENCES
[1] J. L. Bentley. Multidimensional binary search trees used

for associative searching. Commun. ACM, 18(9):509–517,
September 1975.

[2] R. Cai, C. Zhang, L. Zhang, and W.-Y. Ma. Scalable music
recommendation by search. In Proc. of the 15th Int. Conf. on
Multimedia (ACM-MM), 2007.

[3] E. Chávez, K. Figueroa, and G. Navarro. Proximity search-
ing in high dimensional spaces with a proximity preserving
order. In Proc. of the 4th Mexican Int. Conf. on Artificial In-
telligence (MICAI), 2005.

[4] C. Faloutsos and K.I. Lin. Fastmap: A fast algorithm for in-
dexing, data-mining and visualization of traditional and mul-
timedia datasets. In Proc. of the ACM SIGMOD Int. Conf. on
Management of Data, 1995.

[5] A. Flexer, D. Schnitzer, and J. Schlüter. A mirex meta-
analysis of hubness in audio music similarity. In Proc. of the
13th Int. Soc. for Music Information Retrieval Conf. (ISMIR),
Porto, Portugal, 2012.

7 This assumes all models are held in main memory, which can be
practically achieved by distributing queries over a cluster. Preliminary ex-
periments also indicate that the vector-based models can be compressed
to 10% of their size with a minor impact on accuracy (also cf. [21]), re-
moving a possible memory bandwidth bottleneck for the refine step.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proc. of the 25th Int. Conf.
on Very Large Data Bases, 1999.

[7] Yunchao Gong and Svetlana Lazebnik. Iterative quantization:
A procrustean approach to learning binary codes. In Proc. of
the IEEE Int. Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2011.

[8] A. Krizhevsky and G. Hinton. Using very deep autoencoders
for content-based image retrieval. In Proc. of the 19th Europ.
Symp. on Artificial Neural Networks (ESANN), 2011.

[9] T. Liu, A. W. Moore, A. Gray, and K. Yang. An investiga-
tion of practical approximate nearest neighbor algorithms. In
Neural Information Processing Systems 17 (NIPS). 2005.

[10] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-
probe LSH: Efficient indexing for high-dimensional similar-
ity search. In Proc. of the 33rd Int. Conf. on Very Large Data
Bases, 2007.

[11] M. Mandel and D. Ellis. Song-level features and support vec-
tor machines for music classification. In Proc. of the 6th Int.
Soc. for Music Information Retrieval Conf. (ISMIR), pages
594–599, 2005.

[12] B. McFee and G. Lanckriet. Large-scale music similarity
search with spatial trees. In Proc. of the 12th Int. Soc. for
Music Information Retrieval Conf. (ISMIR), 2011.

[13] M. Norouzi, D. Fleet, and R. Salakhutdinov. Hamming dis-
tance metric learning. In Neural Information Processing Sys-
tems 24 (NIPS). 2012.

[14] T. Pohle, D. Schnitzer, M. Schedl, P. Knees, and G. Wid-
mer. On rhythm and general music similarity. In Proc. of the
10th Int. Soc. for Music Information Retrieval Conf. (ISMIR),
2009.

[15] D. Rafailidis, A. Nanopoulos, and Y. Manolopoulos. Nonlin-
ear dimensionality reduction for efficient and effective audio
similarity searching. Multimedia Tools Appl., 51(3):881–895,
2011.

[16] R. Salakhutdinov and G. Hinton. Semantic hashing. Int. Jour-
nal of Approximative Reasoning, 50(7), 2009.

[17] D. Schnitzer. Mirage – high-performance music similarity
computation and automatic playlist generation. Master’s the-
sis, Vienna Univ. of Technology, 2007.

[18] D. Schnitzer. Indexing Content-Based Music Similarity Mod-
els for Fast Retrieval in Massive Databases. PhD thesis, Jo-
hannes Kepler Univ. Linz, Austria, 2011.

[19] D. Schnitzer, A. Flexer, and G. Widmer. A filter-and-refine
indexing method for fast similarity search in millions of mu-
sic tracks. In Proc. of the 10th Int. Soc. of Music Information
Retrieval Conf. (ISMIR), 2009.

[20] K. Seyerlehner, G. Widmer, and T. Pohle. Fusing block-level
features for music similarity estimation. In Proc. of the 13th
Int. Conf. on Digital Audio Effects (DAFx), 2010.

[21] K. Seyerlehner, G. Widmer, M. Schedl, and P. Knees. Auto-
matic music tag classification based on block-level features.
In Proc. of the 7th Sound and Music Computing Conf. (SMC),
Barcelona, Spain, 2010.

[22] M. Slaney, Y. Lifshits, and J. He. Optimal parameters for
locality-sensitive hashing. Proceedings of the IEEE, 100(9),
2012.

[23] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large
image databases for recognition. In Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2008.


	1. Introduction
	2. Filter-Refine Cost Model
	3. Music Similarity Measures
	3.1. Vector-Based Measure
	3.2. Gaussian-Based Measure

	4. Indexing Methods
	4.1. Locality-Sensitive Hashing (LSH)
	4.2. Principal Component Analysis (PCA)
	4.3. Iterative Quantization (ITQ)
	4.4. PCA Spill Trees
	4.5. Auto-Encoder (AE)
	4.6. Hamming Distance Metric Learning (HDML)
	4.7. FastMap

	5. Experiments
	5.1. Dataset and Methodology
	5.2. Vector-based Measure
	5.3. Gaussian-based Measure
	5.4. Scalability

	6. Discussion
	7. Acknowledgements
	8. References

