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Abstract. Detecting musical onsets is the first step for many aspects of
music analysis, but still lacks accuracy for polyphonic music signals. We
perform an initial exploration of the effectiveness of using Convolutional
Neural Networks for this task. On a dataset of about 100 minutes of
music with 26k annotated onsets, our first experiments slightly surpass
the best existing method while requiring less manual preprocessing. The
results suggest new directions for improving on the state of the art in
onset detection.

1 Introduction

Musical onset detection — i.e., finding the starting points of musically relevant
events in audio data — lies at the heart of higher-level music analysis tasks such
as beat detection, tempo estimation and transcription. On a spectral represen-
tation, finding onsets is closely related to edge detection in images: Onsets are
characterized by a change of spectral content over time, and often even accompa-
nied by wide-band transients clearly visible in a spectrogram (Fig. 1). Oriented
edges in images can be found by convolution with small filter kernels even of
random values (Fig. 2). This lead to the idea of training a Convolutional Neural
Network (CNN) to find onsets in spectrogram excerpts: If even random patches
detect edges, it should easily learn a set of suitable filter kernels for the task.
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Fig. 1. A spectrogram ex- Fig. 2. Convolving an image (left) with random 5x5 ker-
cerpt with marked onsets. nels resembles oriented edge detectors (center and right).
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Fig. 3. One of the two Convolutional Neural Network architectures used in this work.
Starting from a stack of three spectrogram excerpts, convolution and max-pooling in
turns compute a set of 20 feature maps classified with a fully-connected network.

2 Related Work

Convolutional learning architectures on music audio data have been evaluated
for genre and artist classification [10,11,4], tagging [7], key detection [4] and
chord detection [8]. Although the results are promising, CNNs have never been
applied to the comparably low-level task of onset detection. Lacoste and Eck
[9] learn an onset detector on spectral data with neural networks, but propose
convolution for future work only.

The state-of-the-art in onset detection uses a bidirectional Recurrent Neural
Network (RNN) on cent-scaled magnitude spectrograms preprocessed with a
time difference filter [5]. In this work we will build on the latter, replacing the
RNN with a CNN and omitting the time difference preprocessing, relying on the
network to learn appropriate filters by itself.

3 Method

CNNs are feed-forward neural networks characterized by their convolutional lay-
ers computing sets of feature maps, each of which is obtained by convolving the
output of the layer below with a filter kernel. Optionally, a convolutional layer
can be followed by a pooling layer that subsamples each feature map by retain-
ing, e.g., only the maximum value in non-overlapping 2x2 pixel cells. To be used
for classification, the computation chain of a CNN ends in a fully-connected net-
work that integrates information across all locations in all maps. This type of
architecture defines the state-of-the-art on several computer vision tasks [6].
Here, we apply it to spectrogram excerpts centered on the frame to classify,
training with binary labels to distinguish onsets from non-onsets (see Figure 3).
Computer vision usually uses square filters, and square pooling. In spectrograms,
the two dimensions represent two different modalities, though, and we found
rectangular shapes to be more effective (cf. [8]). In particular, as the task mostly
entails finding changes over time, we use filters wide in time and narrow in
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Precision Recall F-measure

Fully-connected Net (arch. 1) 0.843 0.815  0.828
Convolutional Net (arch. 2) 0.905 0.866  0.885
Convolutional Net (arch. 3) 0.885 0.854  0.869
Bi-directional RNN (2012) [5,2] 0.006 0.830  0.866
Bi-directional RNN (2013) [5,3] 0.892 0.855  0.873

Table 1. Performance of different architectures and the state-of-the-art.

frequency, and as the task requires results of high time resolution, but is oblivious
to frequency, we perform max-pooling wide in frequency and narrow in time.?

4 Experimental Results

We evaluate the method on the dataset of mostly polyphonic music used in [2,3].
Following [1], we compute three magnitude spectrograms with a hop size of 10 ms
and window sizes of 23 ms, 46 ms and 93 ms. We apply an 80-band Mel filter from
27.5 Hz to 16 kHz and scale magnitudes logarithmically. We normalize frequency
bands to zero mean and unit variance (constants computed on a hold-out set).
We found the RNN of [5] to use about +70ms of context for a decision, so we
fix the network input to blocks of 15 frames in our experiments.

We evaluate three architectures: (1) A fully-connected network with two hid-
den layers of 256 units, (2) the architecture in Fig. 3, (3) the same, except using
5x5 kernels and 1x2 pooling. All networks were trained for 100 epochs with gra-
dient descent on mini-batches of 256 examples at a fixed learning rate of 0.05.

For testing, the network output is smoothed over time, then thresholded.
As in [2,3], a reported onset is considered correct if it is not farther than 25ms
from an unmatched target annotation; any excess detections and targets are false
positives and negatives, respectively. From the precision/recall curve obtained
by varying the threshold, we report metrics for the point of optimal F-measure.
As in [2,3], all results are obtained in 8-fold cross-validation.

Table 1, upper part shows that both CNN architectures outperform the fully-
connected net, and that rectangular filters (arch. 2) improve over similarly-sized
square filters (arch. 3). In the lower part, we see that the best CNN performs
slightly better than both the RNN reported in [2, p.5] (which won the MIREX
onset detection task 2012) and its refined version reported in [3, Table 1].

5 Discussion

CNNs perform comparable to the RNN defining the state-of-the-art, with less
manual preprocessing, but at higher computational costs. The results are not

3 Incidentally, this type of max-pooling has recently been used to make a light-weight
hand-crafted onset detector robust to vibrato [3]. Here it is part of the model, sur-
rounded by automatically learned pre-processing and post-processing filters.
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particularly surprising, but raise interesting questions we will address in future
research: How are the two models related, and what can we learn from how
they solve the task? Can the RNN profit from ideas of the CNN such as local
connectivity and pooling? Besides, this is just an initial exploration of using
CNNs for onset detection, leaving much room for experiments: How do CNNs
compete in an online setting without information about the future? Do CNNs
profit from time difference preprocessing, even though they seem capable to learn
it? Can we improve the performance using implicit bagging [6] or pretraining [4]?
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