
ZERO-MEAN CONVOLUTIONS FOR
LEVEL-INVARIANT SINGING VOICE DETECTION

Jan Schlüter
Austrian Research Institute for
Artificial Intelligence, Vienna
jan.schlueter@ofai.at

Bernhard Lehner
Institute of Computational Perception,

Johannes Kepler University Linz, Austria
bernhard.lehner@jku.at

ABSTRACT

State-of-the-art singing voice detectors are based on clas-
sifiers trained on annotated examples. As recently shown,
such detectors have an important weakness: Since singing
voice is correlated with sound level in training data, clas-
sifiers learn to become sensitive to input magnitude, and
give different predictions for the same signal at different
sound levels. Starting from a Convolutional Neural Net-
work (CNN) trained on logarithmic-magnitude mel spec-
trogram excerpts, we eliminate this dependency by forc-
ing each first-layer convolutional filter to be zero-mean
– that is, to have its coefficients sum to zero. In con-
trast to four other methods – data augmentation, instance
normalization, spectral delta features, and per-channel en-
ergy normalization (PCEN) – that we evaluated on a large-
scale public dataset, zero-mean convolutions achieve per-
fect sound level invariance without any impact on predic-
tion accuracy or computational requirements. We assume
that zero-mean convolutions would be useful for other ma-
chine listening tasks requiring robustness to level changes.

1. INTRODUCTION

Automatically annotating the presence of singing voice in a
music recording is a challenging task, as singing voice cov-
ers a wide range of notes and expressions, is often accom-
panied by several other instruments, and may be confused
with instruments capable of producing similar melody con-
tours. Recent approaches try to capture this variability by
training strong classifiers such as deep neural networks
on annotated data [9, 12, 14, 20, 22]. While they achieve
high accuracies on standard benchmark datasets, classifiers
may exploit correlations between inputs and targets that are
present in both the training and test data, but are not seman-
tically meaningful (such a classifier is sometimes called a
horse [24]) or unwanted (leading to algorithmic bias [6]).
In [13], we demonstrated that three state-of-the-art singing
voice detectors – both with hand-designed and learned fea-
tures – exploit a dependency between singing voice and
sound level present in common datasets.

c© Jan Schlüter, Bernhard Lehner. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Jan Schlüter, Bernhard Lehner. “Zero-Mean Convolutions for
Level-Invariant Singing Voice Detection”, 19th International Society for
Music Information Retrieval Conference, Paris, France, 2018.

−50 −40 −30 −20 −10 0

magnitude (dB FS)

0

10k

20k

30k

nu
m

be
ro

ff
ra

m
es threshold singing

no singing

Figure 1: Spectrogram frames of the Jamendo training set
containing singing voice tend to have larger magnitudes. A
simple threshold allows distinguishing the classes with an
accuracy of 61% (8.5 percent points above the baseline).

We can reveal this dependency in a simple experiment:
We compute spectrograms for all files of the Jamendo data-
set [18] and sum up the linear magnitudes for each frame.
The distribution of magnitudes in the training set is clearly
skewed towards larger values for frames containing singing
voice (Figure 1). Choosing an optimal threshold, we can
distinguish vocal from nonvocal frames at an accuracy of
61.1%. With the same threshold, we correctly classify
59.0% of the validation and 68.7% of the test set frames.
This is a strong enough improvement over predicting the
majority class (52.6%, 51.4% and 53.7%, respectively)
that any classifier will pick up this cue. Note that for clar-
ity of presentation, we omitted typical preprocessing steps
such as mel scaling, logarithmic magnitude compression
or bandwise standardization, but results hardly differ (0.3
percent points improved) with these steps included.

Of course this confound does not stem from inherent
characteristics of singing voice, but from production habits
in commercial music – if a track contains vocals, those are
mixed to stand out. Thus, it affects many other Western-
music datasets (we verified this for RWC [8,16], MSD100
[17], and tracks containing vocals in MedleyDB [3]) that
are commonly used for singing voice detection research.

In [13], we argue that to avoid this, datasets should in-
clude a sufficient number of instrumental tracks, which
cannot feature vocals as the most prominent instrument.
And indeed, for the enlarged dataset in [13], there is hardly
any linear correlation between input magnitude and class
(Figure 2). However, there is still a strong statistical depen-
dency, with vocal frames exhibiting a different magnitude
distribution from nonvocal frames, enabling a better-than-
chance prediction of the class from the input magnitude.

http://ofai.at
http://ofai.at
mailto:jan.schlueter@ofai.at
http://www.cp.jku.at
http://www.cp.jku.at
mailto:bernhard.lehner@jku.at


−50 −40 −30 −20 −10 0

magnitude (dB FS)

0

100k

200k
nu

m
be

ro
ff

ra
m

es

singing

no singing

Figure 2: For a dataset including many purely-
instrumental tracks, input magnitude and class are not lin-
early correlated, but still show a clear statistical depen-
dency exploitable by a classifier.

7:34 7:38 7:42

+6 dB

0 dB

pr
ed

ic
tio

ns

-6 dB

song A

(a) correlated

1:45 1:49 1:53

pr
ed

ic
tio

ns

song B

(b) anti-correlated

0:45 0:49 0:53

pr
ed

ic
tio

ns

song C

(c) uncorrelated

Figure 3: Presenting a state-of-the-art classifier with the
same music excerpt at altered sound levels reveals a strong
sound level dependency. (a) For some songs, increasing
the level by 6 dB increases the classifier’s output. (b) For
some, this dependency is inverted. (c) For some, vocals are
only detected at the original sound level (second row).

When training a state-of-the-art network on this dataset,
it develops a complex sound level dependency: for some
test files, predictions are correlated with input magnitude
(Fig. 3a), for others, they behave conversely (Fig. 3b) or
decrease for any deviation from the original level (Fig. 3c).
If and which of these cases applies to a given input seems
to depend on the content, not only the original sound level,
and sometimes varies from model to model, but the effect
appears reliably.

While a closer investigation of the underlying reasons
would be highly interesting, for now we content ourselves
with stating that this effect is unwanted. As changing the
sound level of a music recording does not change the pres-
ence of singing voice, we would like a singing voice detec-
tor to be invariant to the scale of the input signal. In [13],
we show how to achieve this for a system based on hand-
designed features. In this work, we propose and evalu-
ate different ways to achieve the same for a Convolutional
Neural Network (CNN) trained on mel spectrograms, out-
performing the hand-designed system.

The remaining paper is structured as follows: In the
next section, we review related work on singing voice de-
tection and level invariance. Section 3 explains the CNN-
based baseline system as well as five methods to improve
its robustness to level changes, and Section 4 evaluates
these methods experimentally. Finally, Section 5 summa-
rizes our findings and their implications.

2. RELATED WORK

From early approaches [2] to recent ones [9,12,14,20,22],
singing voice detection has mostly been addressed with
classifiers trained on audio features. Berenzweig et al. [2]
based their system on an existing speech recognizer, com-
bined with cepstral coefficients and classified with a simple
Gaussian model. Leglaive et al. [12] trained a bidirectional
Recurrent Neural Network (RNN) on preprocessed mel
spectra, Lehner et al. [14] trained a unidirectional RNN on
a set of hand-designed features. Schlüter et al. [22] define
the current state of the art using a CNN on logarithmic-
magnitude mel spectrograms trained with data augmenta-
tion; we will use their public implementation as a starting
point. More recent work uses CNNs in attempts to lower
annotation effort by learning from song-wise labels [20],
or by deriving labels from pairing songs with instrumental
versions [9]. The related tasks of auto-tagging (i.e., deter-
mining song-wise labels) and singing voice separation are
also tackled with CNNs, but will not be considered here.

Apart from our work [13], to the best of our knowl-
edge, invariance to the sound level has not been addressed
in the context of singing voice detection, but at least Mauch
et al. [15] and Sturm [24, Sec. III.B] recognized it as a pos-
sible confounding factor for music information retrieval
systems. In speech recognition, early approaches based
on Mel-Frequency Cepstral Coefficients (MFCCs) discard
the 0th coefficient [4, Eq. 1], effectively becoming invariant
to the scale of the input signal. Modern CNN-based sys-
tems processing spectrograms or raw signals achieve ro-
bustness by using large networks and datasets (e.g., 38 mil-
lion parameters and 7000 hours in [1]). For smaller CNNs,
Wang et al. [26] recently proposed to process spectrograms
with an automatic gain control of learnable parameters,
termed per-channel energy normalization (PCEN). We will
include this method in our experiments.

3. METHOD

In the following, we will describe the state-of-the-art
method we used as a starting point, and five modifications
aiming to reduce its sound level dependency (which was
demonstrated in Figure 3).

3.1 Baseline

We base our work on the system of Schlüter et al. [22],
in the variant they made available online 1 and described
in [21, Sec. 9.8]. From monophonic input signals sampled
at 22 kHz, it computes magnitude spectrograms (frame
length 1024, hop size 315 samples), applies a mel filter-
bank (80 bands from 27.5 Hz to 8 kHz) and scales mag-
nitudes as log(max(10−7, x)). A CNN classifies 115-
frame excerpts of these spectrograms into vocal/nonvocal.
It starts with batch normalization [10] across the batch and
time axis without learned scale and bias – this effectively
standardizes each mel band over the training set as in [22],
but can adapt to changes to the frontend during training,

1 https://github.com/f0k/ismir2015/tree/phd_
extra, accessed 2018-03-30

https://github.com/f0k/ismir2015/tree/phd_extra
https://github.com/f0k/ismir2015/tree/phd_extra


which we need for PCEN. This is followed by two convo-
lutional layers of 64 and 32 3×3 filters, respectively, 3×3
max-pooling, 128 and 64 3×3 convolutions, 128 3×18
convolutions, 4×1 pooling, and three dense layers of 256,
64 and 1 units, respectively. Each convolutional and dense
layer is followed by batch normalization and leaky recti-
fication max(x/100, x) except for the final layer, which
uses a sigmoid unit for binary classification.

During training, 50% dropout is applied before each
fully-connected layer, and inputs are augmented with pitch
shifting and time stretching up to ±30%, and random fre-
quency band filters of up to ±10 dB, before mel scaling.

At test time, we turn the CNN into a fully-convolutional
net, replacing dense layers by convolutions and adding di-
lations as described in [23]. This allows computing pre-
dictions over a full spectrogram without redundant com-
putations that would occur when feeding overlapping 115-
frame excerpts. All batch normalizations use statistics col-
lected during training, not statistics from test examples.

3.2 Data Augmentation

A sure way to prevent classifiers from exploiting particular
correlations in the training data is to remove these corre-
lations from the data. Data augmentation attempts to re-
move or reduce correlations by varying the training exam-
ples along the confounding dimension. In our case, to re-
duce the dependency between input magnitude and target
shown in Figures 1, 2, we scale input signals randomly by
up to ±10 dB in addition to the existing augmentations.

3.3 Instance Normalization

As a more drastic measure, we replace the initial batch nor-
malization with instance normalization [25], i.e., we sep-
arately standardize each 115-frame excerpt to zero mean
and unit variance per mel band, both at training and at test
time. This is in contrast to batch normalization, which uses
batch-wise rather than excerpt-wise statistics during train-
ing, and fixed dataset-wise statistics 2 for testing.

Instance normalization trivially results in a representa-
tion that is fully invariant to scaling the input signal. How-
ever, it prevents using the CNN as a fully-convolutional
net at test time, since every excerpt needs to be processed
separately. In Section 4.4, we will see how this affects
computation time.

3.4 Spectral Delta Features

Scaling the input signal results in a shift of the logarithmic-
magnitude mel spectrogram. Delta features, i.e., the
elementwise difference between a frame and its predeces-
sor, are invariant to such an offset. They are commonly
used as supporting features to include temporal informa-
tion in frame-wise classification, but have also been used
successfully as the only input for RNN-based musical on-
set detection (albeit in a rectified form, [5]) and might be
sufficient for singing voice detection.

2 For simplicity, an exponential moving average of batch-wise statis-
tics collected during training, as suggested for validation in [10, Sec. 3.1].
Importantly, the normalization is independent of the input at test time.

3.5 PCEN

Proposed by Wang et al. [26], per-channel energy nor-
malization (PCEN) processes a mel spectrogram of linear
magnitudes (i.e., replacing the logarithmic scaling) as

Yt,f =

(
Xt,f

(ε+Mt,f )
αf

+ δf

)rf
− δ

rf
f , (1)

where M is an estimate of the local magnitude per time
step and frequency band computed using a simple infinite
impulse response (IIR) filter:

Mt,f = (1− sf )Mt−1,f + sfXt,f (2)

The division byM implements an automatic gain control,
which is followed by root compression (for 0 < rf < 1).
Wang et al. parameterize αf := exp(α̂f ), δf := exp(δ̂f ),
rf := exp(r̂f ) and learn α̂, δ̂, r̂ as part of a neural net-
work. Learning the logarithms ensures that α, δ, r remain
positive. Instead of learning s, Wang et al. replaceM with
a convex combination of precomputed IIR filters of differ-
ent smoothing factors s and learn the combination weights.

We deviate from their approach in two respects:

1. We fix αf := 1, as any other choice will make Y
dependent on the scale ofX .

2. We parameterize sf := exp(ŝf ) and learn ŝ directly
as part of the neural network. 3 Wang et al. noted
that option in [26, Sec. 3], but did not explore it.

The IIR filter must process the input sequentially, and
thus is not a good fit for massively parallel computation
devices such as Graphical Processing Units (GPUs). We
will see how this affects computation time in Section 4.4.

3.6 Zero-Mean Convolution

Spectral delta features are just one of many ways to com-
pute differences in the spectrogram that are invariant to
adding a constant to the input. For example, we could
just as well compute differences between neighbouring fre-
quencies. More generally, any cross-correlation with a
zero-mean filterW will remove a global offset c fromX:

((X + c) ∗W )t,f =
∑
i,j

(Xt+i,f+j + c)Wi,j

=
∑
i,j

Xt+i,f+jWi,j + c
∑
i,j

Wi,j = (X ∗W )t,f

The last step uses our assumption of a zero-mean filter,∑
i,jWi,j = 0. The first convolutional layer of our CNN

already computes 64 separate cross-correlations of the in-
put with learnable filters W (k), where k indexes the 64
filters. We enforce these to be zero-mean by parameteriz-

ing W (k)
i,j := Ŵ

(k)
i,j − 1

MN

∑
i,j Ŵ

(k)
i,j and learning Ŵ

(k)
,

where M = N = 3 is the filter size.

3 We could also use a sigmoid function to ensure 0 < sf < 1, but in
practice, the bound sf < 1 was not at a risk to be broken during learning.



0.0

2.5

5.0

7.5
cl

as
si

fic
at

io
n

er
ro

r(
%

)

baseline
-9 -6 -3 0 +3 +6 +9

5.80

augmentation
-9 -6 -3 0 +3 +6 +9

5.74

instance norm.
-9 -6 -3 0 +3 +6 +9

6.24

delta features
-9 -6 -3 0 +3 +6 +9

6.64

PCEN (α = 1)
-9 -6 -3 0 +3 +6 +9

6.22

zero-mean conv.
-9 -6 -3 0 +3 +6 +9

5.52

Figure 4: Classification error on our test set for each method with modified input gain between -9 dB to +9 dB. Error bars
indicate the standard deviation over five networks. To facilitate comparison, the result at 0 dB is printed at the top.

4. EXPERIMENTS

To compare the five methods and the baseline, we trained
and tested each of them on a large public singing voice de-
tection dataset, comparing the quality of their predictions,
robustness to level changes, and computational demands.

4.1 Dataset

For our previous work [13], we curated a dataset combin-
ing data from Jamendo [18], RWC [8, 16], MSD100 [17],
a music video game, YouTube and several instrumental al-
bums. Compared to existing corpora, it is larger and more
diverse, both in terms of music genres and by including
purely instrumental music pieces – it can be insightful to
test a singing voice detection system on music that does not
feature vocals as the predominant instrument (for example,
Figures 3a,b show excerpts of two instrumental pieces).

In total, the dataset contains almost 80 h of music, split
up (without artist overlaps) into 20 h for training, 17.5 h for
validation, and 42 h for testing. For a more detailed listing,
we refer the reader to [13, Table I].

4.2 Training

Networks are trained to minimize cross-entropy loss on
mini-batches of 32 excerpts with ADAM [11]. Weights are
initialized following Saxe et al. [19], PCEN parameters δ̂f
and r̂f to zeros, ŝf to log(0.025), when used. Compared to
the public implementation of the baseline system, we use
an adaptive learning rate schedule to cope with the larger
dataset. We start at a learning rate of 0.001 and drop it to
a tenth whenever the training loss 4 did not reach a new
minimum for 10 consecutive mini-epochs of 1000 updates
each. At each drop, we reset the network weights to the
previous minimum. On the third drop, we stop training.

4.3 Evaluation

After training, we compute framewise predictions (net-
work outputs between 0.0 and 1.0) for all validation and
test recordings at their original sound level as well as
all test recordings at gains of -9 dB, -6 dB, -3 dB, +3 dB,
+6 dB, +9 dB. 5 Each sequence of predictions is smoothed

4 We did not run into any overfitting, possibly because the network was
originally designed for a much smaller dataset, and found it beneficial to
base the schedule on the training loss rather than the validation loss.

5 Gains are applied to the input signal expressed as floating-point sam-
ples, so positive gains cannot result in clipping.

Nvidia Nvidia Intel
Titan Xp GTX 970 i7-4770S

baseline 1.7 s 3.0 s 15.2 s
augmentation 1.7 s 3.0 s 15.2 s
instance norm. 42.5 s 103.1 s 643.1 s
delta features 1.7 s 3.0 s 15.2 s
PCEN 6.9 s 9.0 s 15.5 s
zero-mean conv. 1.7 s 3.0 s 15.2 s

Table 1: Computation time required for predicting singing
voice in one hour of audio with each method, for two GPUs
and a CPU (using a single core).

in time with a sliding median filter of 800 ms. We deter-
mine the optimal classification threshold for the smoothed
predictions of the validation set at its original sound level,
and apply this threshold to all other predictions. Finally,
we compute the classification error for the test recordings,
separately for each applied gain.

4.4 Results

Figure 4 depicts our results. The leftmost group of bars
shows the classification error of the baseline system: It
reaches 5.8% error for the original recordings, but per-
forms worse when scaling the input signals, up to an error
of 7.6% for -9 dB (a scale factor of 10−9/10 ≈ 0.126).

Training with examples of modified gain apparently
does not help: Results at original sound level are compa-
rable to the baseline, and the sound level dependency is as
strong as before. Apparently, the augmentation does not
sufficiently weaken the dependency between input magni-
tude and target label. Furthermore, it may not add anything
over the existing frequency filtering augmentation, which
applies a random gain to a random frequency range.

All remaining methods are invariant to an input gain by
construction, so they achieve the same classification er-
ror regardless of the gain. 6 In terms of accuracy, spec-
tral delta features perform worst, at an error of 6.6%. In-
stance Normalization and PCEN (with fixed αf parameters
as explained in Section 3.5) are noticeably better, but still
fall significantly behind the baseline system at 6.2% error.

6 Note that the converse is not true: a system achieving the same classi-
fication error for altered inputs may still be level-dependent, by improving
for some examples and failing on others. In [13], we propose an evalua-
tion scheme to rule out this case, but it is not needed here.



When not fixing α, PCEN reaches an error of 5.9% at
0 dB, but is as level-dependent as the baseline, with learned
αf between 0.5 and 0.8 (results not included in Figure 4).
Finally, zero-mean convolutions slightly exceed the classi-
fication accuracy of the baseline system while still being
robust to level changes.

As an additional criterion, Table 1 compares the test-
time computational demands of the different variants. Us-
ing the baseline system, computing framewise singing
voice predictions for one hour of audio (with spectrograms
already computed) takes 1.7 seconds with a high-end GPU,
3 seconds with a consumer GPU, and 15 seconds on a sin-
gle CPU core. Since data augmentation and zero-mean
convolutions only affect training, and since spectral delta
features are cheap to compute, all three are just as fast
as the baseline. The IIR filter of PCEN is inherently se-
rial, hindering parallelization. This is not a problem in
single-threaded CPU computation, but up to 4× slower
than the baseline on GPU. Finally, Instance Normalization
requires processing each 115-frame network input sepa-
rately, preventing reuse of computation in overlapping ex-
cerpts. While still fast enough for real-time processing,
this poses a huge disadvantage, and is up to 42× slower
than the baseline.

5. CONCLUSION

After demonstrating that singing voice detectors are sus-
ceptible to partly base their prediction on the absolute mag-
nitude of the input signal, we explore five different ways
to reduce or eliminate this dependency in a CNN-based
state-of-the-art system. They have different strengths and
weaknesses, but one method turned out to be optimal in
terms of classification error, robustness to level changes
and computational overhead: parameterizing the filters of
the first convolutional layer to be zero-mean. When pro-
cessing logarithmic-magnitude spectrograms, this removes
any constant offset resulting from changing the input gain.

Introducing level invariance with zero-mean convolu-
tions is easy and does not measurably affect training time.
This might be useful in other machine listening tasks that
should not take the sound level into account – either to sta-
bilize predictions against changes in the input gain, as in
our case, or even to improve learning from data of varying
loudness. To facilitate reuse, our implementation of all five
methods is available online. 7

A dissatisfying aspect of our solution is that it required
understanding the problem and introducing a constraint in
the parameter space of the neural network. While this is
a reasonable way to make progress, it would be helpful to
find a method that forces the network to learn this con-
straint from data. A possible candidate would be Unsuper-
vised Domain Adaptation [7], although initial experiments
did not turn out successful. Level-invariant singing voice
detection might be a useful test bed, since we already know
what a level-invariant CNN can look like.

7 https://github.com/f0k/ismir2018 or
http://jan-schlueter.de/pubs/2018_ismir.zip

In the broader context of the discussion on horses [24]
(systems that rely on confounding factors for their pre-
dictions), our work identified a system to be a horse, and
found a way to fix the aspect it identified. Most probably,
the system is still partly using the wrong cues, and future
work could iteratively find and fix this. However, this may
not be the best road to follow: both finding and avoiding
confounds is difficult. We discovered the loudness con-
found after noticing that including the 0th MFCC in the
feature set of a classifier unexpectedly improved results,
following this trail by testing classifiers with altered ex-
amples. Avoiding it required very different approaches for
a hand-designed feature set [13] and the CNN addressed
here. Another confound, a hypersensitivity of our system
to sloped lines in a spectrogram, was discovered by look-
ing at false negatives and false positives, but attempts to
avoid it were fruitless [21, p. 190]. A different angle of at-
tack on horses would be to research ways to constrain the
learning system to mimic human perception, such that it
cannot use cues that humans would not consider in the first
place.

6. ACKNOWLEDGEMENTS

This research is supported by the Vienna Science and
Technology Fund (WWTF) under grants NXT17-004 and
MA14-018. We also gratefully acknowledge the support of
NVIDIA Corporation with the donation of two Tesla K40
GPUs and a Titan Xp GPU used for this research. Last, but
not least, we would like to thank the anonymous reviewers
for their valuable input.

7. REFERENCES

[1] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J.
Casper, B. C. Catanzaro, et al. Deep Speech 2: End-to-
end speech recognition in english and mandarin. arXiv
e-prints, abs/1512.02595, 2015.

[2] A. L. Berenzweig and D. P. W. Ellis. Locating singing
voice segments within music signals. In IEEE Work-
shop on the Applications of Signal Processing to Audio
and Acoustics (WASPAA), pages 119–122, New Paltz,
NY, USA, October 2001.

[3] R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Can-
nam, and J. P. Bello. MedleyDB: A multitrack dataset
for annotation-intensive MIR research. In Proceedings
of the 15th International Society for Music Information
Retrieval Conference (ISMIR), Taipei, Taiwan, October
2014.

[4] S. B. Davis and P. Mermelstein. Comparison of para-
metric representations for monosyllabic word recog-
nition in continuously spoken sentences. IEEE Trans-
actions on Acoustics, Speech and Signal Processing,
28(4):357–366, August 1980.

[5] F. Eyben, S. Böck, B. Schuller, and A. Graves. Univer-
sal onset detection with bidirectional long short-term
memory neural networks. In Proceedings of the 11th

https://github.com/f0k/ismir2018
http://jan-schlueter.de/pubs/2018_ismir.zip


International Society for Music Information Retrieval
Conference (ISMIR), pages 589–594, Utrecht, Nether-
lands, August 2010.

[6] B. Friedman and H. Nissenbaum. Bias in computer
systems. ACM Transactions on Information Systems,
14(3):330–347, July 1996.

[7] Y. Ganin and V. Lempitsky. Unsupervised domain
adaptation by backpropagation. In F. Bach and D. Blei,
editors, Proceedings of the 32nd International Confer-
ence on Machine Learning (ICML), volume 37 of Pro-
ceedings of Machine Learning Research, pages 1180–
1189, Lille, France, July 2015. PMLR.

[8] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka.
RWC music database: Popular, classical, and jazz mu-
sic databases. In Proceedings of the 3rd International
Conference on Music Information Retrieval (ISMIR),
pages 287–288, Paris, France, October 2002.

[9] E. J. Humphrey, N. Montecchio, R. Bittner, A. Jans-
son, and T. Jehan. Mining labeled data from web-
scale collections for vocal activity detection in mu-
sic. In Proceedings of the 18th International Society
for Music Information Retrieval Conference (ISMIR),
Suzhou, China, October 2017.

[10] S. Ioffe and C. Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In F. Bach and D. Blei, editors, Pro-
ceedings of the 32nd International Conference on Ma-
chine Learning (ICML), volume 37 of Proceedings
of Machine Learning Research, pages 448–456, Lille,
France, July 2015. PMLR.

[11] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In Proceedings of the 3rd In-
ternational Conference on Learning Representations
(ICLR), San Diego, CA, USA, May 2015.

[12] S. Leglaive, R. Hennequin, and R. Badeau. Singing
voice detection with deep recurrent neural networks.
In Proceedings of the 40th IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 121–125, Brisbane, Australia, April
2015.

[13] B. Lehner, J. Schlüter, and G. Widmer. Online,
loudness-invariant vocal detection in mixed music sig-
nals. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 26(8):1369–1380, August 2018.

[14] B. Lehner, G. Widmer, and S. Böck. A low-latency,
real-time-capable singing voice detection method with
LSTM recurrent neural networks. In Proceedings of
the 23rd European Signal Processing Conference (EU-
SIPCO), pages 21–25, Nice, France, August 2015.

[15] M. Mauch and S. Ewert. The audio degradation tool-
box and its application to robustness evaluation. In Pro-
ceedings of the 14th International Society for Music In-
formation Retrieval Conference (ISMIR), pages 83–88,
Curitiba, Brazil, November 2013.

[16] M. Mauch, H. Fujihara, K. Yoshii, and M. Goto. Tim-
bre and melody features for the recognition of vocal
activity and instrumental solos in polyphonic music. In
Proceedings of the 12th International Society for Mu-
sic Information Retrieval Conference (ISMIR), pages
233–238, Miami, FL, USA, October 2011.

[17] N. Ono, Z. Rafii, D. Kitamura, N. Ito, and A. Liutkus.
The 2015 signal separation evaluation campaign. In
International Conference on Latent Variable Analy-
sis and Signal Separation (LVA/ICA), pages 387–395,
Liberec, France, August 2015.

[18] M. Ramona, G. Richard, and B. David. Vocal detection
in music with support vector machines. In Proceedings
of the 33rd IEEE International Conference on Acous-
tics, Speech, and Signal Processing (ICASSP), pages
1885–1888, Las Vegas, NV, USA, March 2008.

[19] A. M. Saxe, J. L. McClelland, and S. Ganguli. Ex-
act solutions to the nonlinear dynamics of learning in
deep linear neural networks. In Proceedings of the 2nd
International Conference on Learning Representations
(ICLR), Banff, Canada, April 2014.

[20] J. Schlüter. Learning to pinpoint singing voice from
weakly labeled examples. In Proceedings of the 17th
International Society for Music Information Retrieval
Conference (ISMIR), New York City, NY, USA, Au-
gust 2016.

[21] J. Schlüter. Deep Learning for Event Detection, Se-
quence Labelling and Similarity Estimation in Music
Signals. PhD thesis, Johannes Kepler University Linz,
Austria, July 2017.

[22] J. Schlüter and T. Grill. Exploring data augmentation
for improved singing voice detection with neural net-
works. In Proceedings of the 16th International Society
for Music Information Retrieval Conference (ISMIR),
Málaga, Spain, October 2015.

[23] T. Sercu and V. Goel. Dense prediction on sequences
with time-dilated convolutions for speech recognition.
In NIPS Workshop on End-to-end Learning for Speech
and Audio Processing, Barcelona, Spain, November
2016.

[24] B. L. Sturm. A simple method to determine if a mu-
sic information retrieval system is a “horse”. IEEE
Transactions on Multimedia, 16(6):1636–1644, Octo-
ber 2014.

[25] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky. Instance
normalization: The missing ingredient for fast styliza-
tion. arXiv e-prints, abs/1607.08022, July 2016.

[26] Y. Wang, P. Getreuer, T. Hughes, R. F. Lyon, and R. A.
Saurous. Trainable frontend for robust and far-field
keyword spotting. In Proceedings of the 42nd IEEE
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), pages 5670–5674, March
2017. arXiv:1607.05666.


	1. Introduction
	2. Related Work
	3. Method
	3.1. Baseline
	3.2. Data Augmentation
	3.3. Instance Normalization
	3.4. Spectral Delta Features
	3.5. PCEN
	3.6. Zero-Mean Convolution

	4. Experiments
	4.1. Dataset
	4.2. Training
	4.3. Evaluation
	4.4. Results

	5. Conclusion
	6. Acknowledgements
	7. References

