METAL

The METAL Machine Learning
Experimentation Environment V3.0
(METAL-MLEE)

Manual — Version 3.0

Johann Petrak
johann@ai.univie.ac.at

Austrian Research Institute for Atrtificial Intelligence

October 17, 2002

Contents

1

Introduction

Installation

2.1
2.2
2.3
2.4

System Requirements
Software Requirements
Obtaining and Installing the Program
Source code by other authors included in the package

What METAL-MLEE Does

Standard Database Format

4.1
4.2
4.3

NamesFile
DataFile.
Formal Format Description

The Programs

51

5.2
53

54

55

5.6

5.7

Main experimentation programun_exp

5.1.1 SYNOPSIS . . . v v e e
5.1.2 ImportantOptions
5.1.3 Specifyinga CPU timelimit
5.1.4 Specifying learning algorithms

5.1.5 Passing parameters to the learning algorithms 13

Algorithm interface programs
Extracting information from the resultsarse_results
5.3.1 Synopsisandoptions
Normalize time measuremengarse_times
5.4.1 Synopsisandoptions
Checking the database formelteck_database.pl
5.5.1 Synopsisandoptions
Checking experiment outputheck_results.pl
5.6.1 Synopsisandoptions
Other programs and helper files included in the distribution
5.7.1 Calculate quick measures from names fifggse_names

5.7.2 Select a subset of featurgsoject
5.7.3 Sampleinterfacescripts
5.7.4 The Clementine command line interfangn_clem
5.7.5 Calculate landmarkandmark.pl

6 Adapting METAL-MLEE
6.1 Adding Learning Algorithm Interface Scripts
6.2 Adding Preprocessing Algorithms

7 Running Experiments

8 Structure and Organization of Output Data
8.1 Thelogfile
8.2 Theresults file
83 Thestats file
8.4 Thedct file
8.5 Thetargetsfiles
8.6 Thepredictionfiles

9 Solutions to frequent problems

10 Glossary of Frequently Used and Exotic Terms

25

26
26
26
28
29
29
29

29

30

1 Introduction

This manual describes tHdETAL Machine Learning Experimentation Environment
(METAL-MLEE for short) and how it is used in a meta—learning settiMETAL—

MLEE is a set of programs, supporting files, and standards that allow the organized,
self-documenting and distributed execution of machine learning experiments. The re-
sults obtained by these experiments can be used as new meta—data for the METAL Data
Mining Advisor (cite: theadvisorstuff).

This manual is an abridged version of [Petrak 2002a] and contains additional informa-
tion about the use MIETAL-MLEE in the METAL meta—learning context.

Additional information on other components that are needed for meta—learning can be
found in (cite: rankingstuff?) and(cite: DCT/GSI stuff). The main source of informa-
tion for the METAL—tools in the internet imww.metal-kdd.org

METAL-MLEE helps in obtaining the meta—data for new databases and algorithms
that is needed for meta—learning. It is a set of programs and Perl-scripts that help you
run the necessary experiments in an orderly fashion and create a set of standardized
output files.

METAL-MLEE can be used to obtairror estimatesCPU time measurementand

other data about the performance of machine learning algorithms on a specific database.
These measurements will automatically be stored in a set of output files, together with
other data likedatabase characteristica description of the experimentation environ-
ment and parameters, and a detailled log of the experiment.

The output files serve as the basis for meta—learning, providing the necessary data for
thedata mining advisolcite: doc about local dma) or other meta—learning schemes.

A more detailled description of what tiETAL-MLEE does is given in Section 3.

2 Installation

2.1 System Requirements

METAL-MLEE has been developed and tested for SPARC computers running the So-
laris operating system, however it will work on most LINUX and probably also other
UNIX systems. It also works on a MS-Windows (32-bit) system with the support of the
free cygwinsoftware (seavww.cygwin.com). The known limitations of function-

ality for certain configurations and operating systems are mentioned in Section 5 and
in the descriptions of the individual programs. The functionality under MS Windows
is restricted due to poor support for ressource limitation and CPU time profiling that
is available on the command level for this family of operating systems (the CygWin
package only provides a subset of the functionality needed to fully support all features
of METAL-MLEE).

2.2 Software Requirements

The following software is needed to be installed on your system in ordéEJrAL—
MLEE to work.

e Perl version 5.000 or higher. Thperl command must be in the binary search
path. For the Perl-scripts to work as commands,pged binary or a link to
it must be available irusr/local/bin . Otherwise, the scripts must be in-
voked using theperl scriptname syntax.

e A C/C++ compiler, preferablgcc /g++ This is not needed if you have a com-
puter with one of the hardware architectures and operating systems for which
precompiled binaries are included (see below)

e Gnu make version 3.77 or higher (earlier version might work but have not been
tested). This is only needed if you need to compile binaries yourself.

e XLISPSTAT version 3.51 or higher. XLISPSTAT is a portable LISP system with
statistical functions, it is available frorhttp://www.stat.umn.edu/
~luke/xls/xlIsinfo/xlIsinfo.html . Thexlispstat command must
be in the binary search path.

e the programmd5sum from the free portable GNUextutils package.
This package can be obtained frdmttp://www.gnu.org/software/
textutils/textutils.html . This program is not essential, however. If
it is missing, no MD5 hashes will be calculated for the databasesnitfsum
command should be in the binary search path. If it is not, the location can be
specified in the configuration fileonfig.pm . The subdirectorysrc/md5
also contains a version of that program that can be built and installed into the
bin subdirectory usingnake. To use that versiorgonfig.pm needs to be
adapted accordingly.

¢ In addition you need one or more learning algorithms for use METAL-
MLEE (see Section 6 for more information on the requirements for learning
algorithms).

On most LINUX or UNIX-like systemperl , md5sum a compiler, ananake will
already be installed.

For MS-Windows computers, the easiest way to get all these for free is to install the
CygWin software packagevivw.cygwin.com).

2.3 Obtaining and Installing the Program

METAL-MLEE is distributed as gzipped tarballs fromwvww.metal-kdd.
org/download . You must download the sources amsilee-metal-
src.tgz . Optionally, you can download precompiled binaries for
x86/linux (mlee-metal-binpclinux.tgz), x86/windows with cyg-
win (mlee-metal-binpccygwin.tgz) or sparc/solaris mlee-metal-
binsparcsolaris.tgz).

Uncompress and extract the archimégee-metal-src.tgz . This will create a di-
rectory with the namenlee that contains several subdirectories.

If you also downloaded an archive with binaries, uncompress and extract this one

too - it will create an additional subdirectolyinpccygwin , binpclinux , or
binsparcsolaris within themlee directory. Change into that directory and check
if you can run the precompiled binaries: typdct -h and./shuffle -h . Both

commands should produce as an output a short summary of command line options. If
this works, copy all files into the directorybin

If you cannot or do not want to use the precompiled binaries, compile the programs:
Change into thenlee directory and typenake all . This will compile the DCT and
shuffle programsand place it into the subdirectoiry .

If you do not have thend5sumcommand already installed and working on your sys-
tem, typemake md5sum This will compile the md5sum program and place it into
the subdirectorpin . You have to change the setting for thID5BIN variable in the
configuration filescripts/config.pm to indicate the complete path of thon
directory.

Finally you probably need to adaptE TAL-MLEE to the learning algorithms you are
using. Section 6 gives instructions how to do that.

METAL-MLEE is now ready for use. If you wish you can place the subdirectory
script in the binary search path. You can then directly invoke the commands
from there by simply entering the nanpeovidedthe perl program is installed in
/usr/local/bin . If perl is installed somewhere else you can either make a link
in /usr/local/bin , or change the Perl-scripts so that the first line indicates the
correct position, or simply invoke the scripts like thgerl <fullpathnameof-

script>

2.4 Source code by other authors included in the package

Nearly all of the programs included in tMETAL-MLEE package has been written by
the author of this document. However the following code by other authors is included:

e The check_database.pl script has originally been written by Carlos
Soares.

e The shuffle program uses a C++ wrapper to the C-code of Mersenne
Twister pseudo random number generator, written by Takuji Nishimura. The
original C-code for PRNG is licensed under the GPL.

e the Source code for the md5sum program included irstbhedirectory is copy-
righted to RSA Data Security, 1991-1992. See the comment in theafise.c
for details.

3 What METAL-MLEE Does

The main purpose dfIETAL-MLEE is to obtain meta—data, i.e. data about the per-
formance of learning algorithms on different databases (these databases that are used
to gather performance data for the learning algorithms are also d¢slesidatabases

to distinguish them from the databases of meta—data obtained in the process). The
term performanceof an algorithm includes such measurable propertiesstimmated

error on unseen dataCPU time needetbr the training and the evaluation phase, and
complexityof learned model.

METAL-MLEE can be used to:

e Check if the format of a base—database conforms to the standard database format
(see Section 4).

e Carry out an error estimation experiment to obtain error estimates for one or
more learning algorithms for a base—database. Error estimation strategies include
crossvalidation, holdout estimates and leave-one-out.

e Obtaindata characteristicfor a base—database
e Obtain additionatlatabase measuremerits a base—database.

e Calculate error estimates and other statistical measures to describe the perfor-
mance of the learning algorithm and statistically compare different learning al-
gorithms.

e Document the details of an experimentation run for future reference.
e Extract ameta databas&om the output files created for each experiment.

e Manage and make comparable experiments that were carried out on different
machines.

e Normalize CPU time measurements for measurements obtained on different ma-
chines.

For use with the data mining advisatite: advisor stuff)), METAL-MLEE is used in
a standardized way. This is described in Section 7.

4 Standard Database Format

In order to be usable witMETAL-MLEE, databases must be in a standard format.
This format is similar to the formats used by t@¢.5 [Quinlan 1993] and”5.0 ma-

chine learning algorithms, but with additional constraints. If your database does not
conform to the format explained below in more detail, it needs to be converted.

For each database, two files are required: one filej#ta-file that contains the actual
data in ASCIl-coded, comma—separated variables (CSV) format, and another file, the
namesfile that contains the names and types of the variables in the data file. A con-
vention that must be observed for use WIETAL-MLEE is that both files must have

the same name and be located in the same path, but differ in their fileexderesion

the data file has the extensiatata while the names file has the extensioames .

The part of the filename without the extension that is necessary to uniquely identify a
specific pair of files for a database is calfddstem

Hence, a database for use WMHEETAL-MLEE always consists of two files, the names
and data files, and can be specified by the part of the name that is common to both files,
the filestem.

METAL-MLEE can handle both regression and classficiation problems, i.e. both nu-
meric and discrete target variables. In both cases, the target variable has to be the last
variable in the comma-separated list of fields that make up the individual records in the
data file.

The restrictions on the format of the database have been imposed to be able to use as
many learning algorithms as possible without having to perform costly database format
conversions. Note that depending on which learning algorithms you use and how the
interface scripts that plug these learning algorithms MEBTAL—MLEE are written, it

might be possible to use a format that does not obey all of the constraints given below.
For example, the limitation that the labels used for classes may not be used for discrete
attributes has been introduced to make it easier to supporippper rule learning
algorithm. If you do not use this algorithm or if you enhance the interface script for
this algorithm, that constraint on the databases need not be enforced any longer.

4.1 Names File

The names file describes the name and types of the fieldsttrdsutes in the data

file. The format of the names file differs slightly if the target variable is continuous
(i.e. the database is used for a regresion problem) or discrete (the database is used for
a classification problem):

e The first line for a classification database contains a comma separated list of
possible class labels and is terminated by a dot. Each class label must be a valid
atom (see below for the definition) that does not occur as a value of any of the
other discrete attributes.

e The first line for a regression database contains the name of the last attribute
defined in the names file, followed by a dot.

¢ All other lines contain attribute descriptions, in order of appearance of the corre-
sponding fields in the data file.

e An attribute description consists of an attribute name that starts in column 1,
followed by a colon and a blank, followed by either the word "continuous" for
real—-valued attributes or a comma separated list of values for a discrete—valued
attribute. Discrete values must be atoms and cannot be integers.

o All attribute descriptions must be terminated by a dot.
e Names must be atoms.

e For classification databases, the values for discrete attributes may not include
values that are used as class labels.

e The names file contains nothing else. More specifically, it must not contain any
comments as allowed f&@5.0 nor any blank lines.

e The missing value indicator is not part of the value list or otherwise listed in the
attribute description.

An atomis a string of characters that does not contain blanks, other whitespace, special
characters or accented characters and has a maximum length of 32 characters. The
string can contain numeric digits, but must start with an alphabetical character.

4.2 Data File

The data file contains one new-line terminated record for each case in the database.
Each record is a comma separated list of either numeric values, atoms, or the missing
value indicator.

e Every atom that occurs in a field must be mentioned in the corresponding at-
tribute description in the names file.

Numeric values must be represented in a way that can be read in with the C
scanf function using the “%g” directive.

The missing value indicator for both numeric and discrete fields is an unquoted
question mark.

e The atoms used for discrete fields must not be quoted.

Data records must not be terminated by a dot.

4.3 Formal Format Description

Here is a definition of the file formats, in a meta—language similar to Backus-Naur with
Perl-like regular expressions. NUMVALUE is not defined — it should be a string that
can be parsed to a numeric value by thedanf function and format directive “%g".

atom := [a-z][a-z0-9]{0,29}

namesfile := targetline NEWLINE (attrdefline){1,N}
targetline := attrname DOT | labellist DOT
attrname := atom
labellist := atom [COMMA atom]*
attrdefline := (attrname COLON SPC labellist) |

(attrname COLON SPC ’continuous’) DOT
DOT =
COLO
COMM
SPC ="
datafile := (valuelist NEWLINE){1,N}
valuelist := value COMMA value [COMMA value]*
value := (atom | NUMVALUE)

>Z||
T

5 The Programs

The following section describes each of the programs ilMBETFAL—-MLEE in more

detail. Note that all programs will accept tHe option that will show an explanation

of all valid options and the version and versiondate of the program. The following
documentation only contains explanations of those options that are releveant for the
use of METAL-MLEE for use with thedatamining advisar For a more complete
documentation of the programs see [Petrak 2002a].

10

5.1 Main experimentation program: run_exp
Therun_exp program performs the follwing tasks for a given base database:

e Optionally run the data characterization program

e Run a parallel error estimation for a list of specified learning algorithms for
which interface programgsee 5.2) exist. A 10-fold crossvalidation procedure
will usually be carried out for this, but other estimation procedures can be spec-
ified.

e Create a file with the correct target values for each estimation fold.
e Create files with the predicted target values for each fold and learning algorithm.

e Measure thge CPU times for each fold and learning algorithm spent for the train-
ing and the evaluation phase.

e Create alog file that contains the details of the experiment and creatsthis-
file that contains a machine-readable set of meta—data about the experiment.

e Optionally create performance statistics for all algorithms and algorithm pairs by
running therun_stats program. This will create thetats-file with a machine
readable set of meta—data about learning algorithm performance.

For the error estimation, the input base—database will be randomly shuffled and split
into one or more pairs of training- and evaluation data. The proguamexp needs

a random seed to control the random shuffling. The random seed defines the exact
way how the data is being shuffled and partitioned. This allows to run the program on
different machines, at different times, with different learning algorithms and still obtain
comparable error estimates and comparable files with predictions.

The program creates a standardized set of output files in the output directory specified
(see Section 8).

5.1.1 Synopsis

run_exp -h
run_exp -f stem -s seed [-v] ...

5.1.2 Important Options

The following describes just the subset of options that are important for use in the
METAL-setting:

-h : Show detailled usage information, defaults, and program version.

-f stem : The filestem, including the full path to the location of the database. In other
words, the full filename of the data or names file without the extension (requried).

-s seed : The seed to be used for the random number generator that determines how
the data file will be shuffled before the estimation procedure is being carried out. If
no seed is given, the value 1 will be used. The special value "norand" will supress
random shuffling and keep the ordering of the database file. This parameter is
ignored for estimation strategy "leave one out".

11

-regr : Indicate that the database describes a regression problem (i.e. the target vari-
able is numberic). If omitted, a classification problem (i.e. the target variable is
discrete) is assumed.

-dt path : The path to the directory that should be used to store temporary files.
Default is/tmp . This directory must be on a device that has enough free space
to hold all the intermediate files. Note that unless optionor -d or -lad is
specified, temporary files should get removed at the end of an experiment. How-
ever due to several reasons the directory can fill up with leftover files, so be sure
to remove unneded ones regularily.

-d : Switch on debug mode: this will show much more information in the log file and
on the console (-d implies -v which will show everything that goes into the logfile
on the console too)

-lad : Switch on debugging for interface scripts. This will pass the opiibro all the
interface scripts, causingat more output from the interface scripts get logged in
the logfile.

5.1.3 Specifying a CPU time limit

METAL-MLEE allows you to specify a CPU time limit for each call of an external
learning algorithm programm. This is necessary since otherwise the only way to end
an experiment where one of the algorithm loops or takes too much time would be to
terminate the whole experiment, loosing all the data for all the algorithms. You can
specify the CPI time limit, in seconds, using optin:

run_exp -f stem -s 1 -t 3600
This example sets the CPU time limit to one hour. (The default is 43200 seconds, or
12 hours, use the value 0 to unlimit CPU time usage)

Note however that not all OS’s support this. Currently this is not possible under Win-
dows. On some systems that do not support this but do support killing processes the
coded workaround that tries to kill the process after a specfified numeéamgednot

CPU!) seconds might work, but this is not guaranteed either.

5.1.4 Specifying learning algorithms

Learning algorithms are always invoked througterface scripts If you want to use

a learning algorithm witiMETAL-MLEE for which there is not already an interface
script included in thescripts subdirectory, you need to create a new one (see Sec-
tion 6). Interface scripts for learning algorithms are namad cla_laname for
classification algorithms andun_rla_laname for regression algorithms, where
laname is the name under which the learning algorithm should be knowtB®AL—
MLEE.

To invoke one or more algorithms for an experiment, give this name of the algorithm
as an argument to thein_exp option-l . In order to use more than one algorithm,
specify the optionl multiple times, e.g.:

run_exp -f somestem -s 1 -l algl -l alg2
This example shows how to specify to run algorithaiggl andalg2 .

Instead of specifying the list of learning algorithms every time, you can specify the list
to be used as a default in the configuration ¢itafig.pm

12

5.1.5 Passing parameters to the learning algorithms

Interface scripts both execute the training and the prediction phase of a learning algo-
rithm. In order to specify to which phase the parameter should be passed, you need to
specify a “sub option”:
run_exp -f stem -s 1 -l "algl -at -A"

-l "alg2 -ae '-r 1.1 -s 2.1' "
This example shows how to add the optign to the call of algorithmalgl for the
training phase and options 1.1 -s 2.1 to the testing phase of algorithaig2 .
You can use suboptiora to specify what to pass to both the training and the testing
phase calls.

You can also use the same algorithm twice with different parameter settings. However
for this to work, you also have to specify differesgorithm sufficegor each of the
different calls:

run_exp -f somestem -s 1 -l 'algl -at "-¢c 0.1" -asuf c0.1l’

-l 'algl -at "-¢c 0.2" -asuf c0.2’
This suffix will be appended everywhere the algorithm name is mentioned, i.e. statis-

tics, the log and results file will now contain entries for an algoridgdglc0.1 and
an algorithmalg1c0.2

5.2 Algorithm interface programs

Interface programs are used to provide the main experimentation pregrarexp

with one standard interface to many different learning algorithms. In order for this to

work, learning algorithms must fulfill some requirements that are listed in Section 6

which also explains how to adapt and add interface programs for new learning algo-
rithms.

Interface programs must reside in the same directory asutheexp . The follow a
simple naming schemeun_cla_xxx for an interface program to a classification
learning algorithm namegxx andrun_rla_yyyy for an interface program to a
regression learning algorithm namgwgyy . To specify a learning algorithm as an
argument taun_exp or in the configuration fileonfig.pm only the name of the
learning algorithm must be given (i.exx oryyyy only).

All interface programs take the same set of options. For testing purposes, or when
debugging problems encountered during the executiammfexp it can be useful

to directly run an interface program. For this, a pair of training and testing datasets
and a names file must exists (i.e. three files with the same filestem and the following
extensions:data ,.test andanames).

Here are the most important options for manually running an interface script:

-h : Show all possible options and a short explanation.

-istem STEM : The file stem (including the path) that identifies the three files (data,
test, and names file) needed. When invoked from withirrtime exp program
the filestem will usually also include the seed and the process ID to avoid duplicate
file names for the temporaryly created files.

-tmppath PATH : Where to store intermediate or temporary data. This is currnetly
not used byrun_exp since the training/test/names files are stored in the tem-
porary directory anyways and it is easier to derive other filenames for temporary
files directly from this filestem.

13

-a args : Pass additional arguments to all calls of the algorithm (training and testing)

-at args : Additional arguments for the training call

-ae args : Additional arguments for the testing (evaluation) call

-cpulimit n : Try to limit the CPU time limit to that many seconds (might not work
on all systems)

-kmodel file : Copy the model to this file

-nopgm dont actually call external programs, for debuggin

-portable /-noportable : Usually the program tries to figure out how to limit
CPU time and how to determine the system/user CPU time needed for the algo-
rithm on a specific system. Theortable switch can be used to run (exper-
imental) code that will try to do everything with Perl-code that is as portable as
possible. Note that portable mode still has its flaws — especially the termination
of processes does not work correctly on most systems. Hihwable option
is used-cputime limit will be interpreted as a limit foelapsed runnningime
instead of CPU time.

-k : Do not delete intermediate datasets

-d : Switch on debug mode

-v : Switch on verbose mode

5.3 Extracting information from the results: parse_results

This program will make it easier to extract the interesting information from the files
generated for an experiment. The standard files that are normally created are the files
ending in the following extensions:.results=~.dct=, =.log=, and=.stats= (see Sec-

tion 8). The=.log= file contains a log of all actions performed and the other three files
contain result data (and are often collectively referred teeaslt fileg. These three

files contain lines of the format:

Some qualified variablename: value

Each line contains a value for a variable. The value is everything after the colon (a
value can be multidimensional, i.e. consist of more than one word, but usually just is a
single word or number). The variable name is everything before the colon and consist
of several words. The following line gives the value of the error estimate for algorithm
=c50boost=in cross validation fold 2 of repitition O instats ~ file:

Error c¢50boost 0 2: 0.34123110000

The =parse_results= program can be used to extract the values for certain vari-
ables and create a file that contains just the values of these variables, separated by
commas organized by lines. The program can be used to generate one line for
each filestem, one line for each filestem/algorithm combination or one line for each
filestem/algorithm/crossvalidation-fold combination or one line for each filestem/pair-
of-algorithms combination.

The following example demonstrates how the program can be used to extract different

types of data:

% Is

allrep_2.dct allrep_2.stats led24_2.results segment_2.dct segment_2.stats
allrep_2.results led24_2.dct led24_2.stats segment_2.results

% parse_results ** -f %DS -f %LA -f stats.Error
allrep_2,basedef,0.032873806998939555
allrep_2,basedef200,0.032873806998939555
allrep_2,baserand,0.9899257688229056

14

allrep_2,c50boost,0.009544008483563097
allrep_2,c50rules,0.009278897136797455

allrep_2,clemRBFN,0.032873806998939555
allrep_2,lindiscr,0.08510074231177095
allrep_2,ltree,0.008748674443266172
allrep_2,micib1,0.024920466595970307
allrep_2,micnb,0.05726405090137858
allrep_2,ripper,0.010604453870625663

% parse_results ** -breakup ds -f %DS -f results.DBSize -f results.N_discrete_attr
allrep_2,3772,21

led24_2,3200,24

segment_2,2310,0

5.3.1 Synopsis and options

parse_results -h
parse_results filelist -f fieldspec [-f fieldspec ...]
[-breakup ds | la | lapair | foldla]
[-o outfile] [-n outnamesfile] [-fn] [-hostnorm] [-algnorm alg]
[-s sep] [[m mv] [-mnp Xx] [-strip]
[ignoredc] [-ignoreresults] [-ignorestats]

filelist . The list of files to process. The easiest way to do this is to use a glob-
pattern. For example, if there is a subdirectory below the current directory for each
filestem and you want to process all results files for all filestems, the simplest way
to specify this is */*.{dct,results,stats}

-f fieldspec : This option can occur more than once and specifies (in order)
the list of fields to include in the output. Aeldspec is either a quali-
fied fieldname, a special fieldname or a function. A qualified fieldname is of

the formfilspec.fieldname wherefilespec is one ofstats , dct , or
results and thefieldname is the name portion of one of the fields that oc-
cur in that file, e.gdct.Nr_attributes or stats.Error . The following

special field names canbe usedl Athe name the learning algorithm (not for
breakup=ds)%D3he filestem as extracted from the file processed (i.e. this will
usually include the seed and eny suffixes - the 'true’ filestem can be extracted us-
ing results.Filestem or results.InFilestem ; %FLDthe fold num-
ber (only for breakup=foldla)2%REPthe repeat numbe6LAland %LA2the
names of both learning algorithms for breakup=lapair. Functions must get spec-
ified in the formNAME(arg) . The following functions are currently defined:
AVG SUMCOUNTMIN, MAXwill all calculate the corresponding function over
all fields that match a regular field name pattern. For example to find the maxi-
mum value for all fields with a name that starts witttr_Count_All_Value
in the dct file, useMAX(dct.Attr_Count_All_Value.*)’ . Note that
the pattern must be a Perl-type regular expression, not a glob pattern. This
featrue cannot be used to calculated functions over qualified variable names, e.g.
'MAX(results.Traintime.*)’ with breakup=ds wilhotwork. The func-
tion ACC(field) will calculatel-field

-breakup x : Specify for which level of detail the program will create individual
lines in the output. the default la , which produces one line for each combi-
nation of filestem and learning algorithm. The optlapair will generate one
line of output for each combination of filestem and pairs of learning algorithms,

15

ds generates one line of output for each filestemfahdla generates one line
for each combination of filestem, learning algorithm and crossvalidation fold

-0 filename : Specify a file where to write the output to (if not given: standard
output).

-n filename : Specify a file where to write a C4.5 names file for the output — the
program will try to guess the type and possible values of attributes and will also try
to convert field names to something that is usable with most learning algorithms
that use C4.5 format. Note that the generated file will just contain a line for
each field in the output and is thus not directly usable for C4.5 (for this you need
to remove the line for the last field and add a class label definition line at the
beginning instead).

-fn : include a line with fieldnames as the first line of output — this is useful for many
programs that can process CSV files (&y.

-hostnorm file -algnorm alg : Specify the name of a file that contains host
normalization data. All fields continaing the string “time” will then automatically
get normalized based on the timing factors for each hosalgiiorm alg is
given, the times will be expressed as a multiple of the time the algoritigm
needed. For more information on time normalization see the next section.

-s sep : Usesep to separate fields instead of commas

-m mv: Usemvinstead of a question mark to indicate missing values.

-mnp x: Usex instead ofmvto indicate a value for which no field has been found in
the input files.

-strip : Strip strange characters from all non-numeric output. This can help to make
the output more easily digestable by other programs.

-ignoredct , -ignoreresults , ignorestats : Do not process the corre-
sponding files. This can speed up processing significantly.

5.4 Normalize time measurementsparse_times

The METAL-MLEE package is intended to simplify the process of obtaining machine
learning experimentation results that possibly get carried out on different hosts. The
run_exp script collects the timing information returned from the interface scrips and
puts them into theresults file. However, CPU time measurements obtained on
different hosts are not comparable. The taspaifse_times is to analyze the ex-
perimentation results that were obtained on different machines for the same dataset,
using the same seed and algorithms. From the times measured on different machines,
the program will create a table of factors which roughly represent the relative perfor-
mance increase or decrease relative to one reference host. The table generated can
then be used by thegarse_results script normalize all time measurements to the
reference machine.

WARNING: this feature should be used with extreme caution! You should be aware
that the factor can only be used as a very rough aproximation to the speed differences
between two machines. Several factors make this approach rather inaccurate:

¢ the CPU time measurement itself can depend on the load on the system and other
factors that vary over time on the same system.

e any inaccuracies will be multiplied if the measurements are close to the mea-
surement resolution of the system. Because of thip#inse_times program
will ignore all time measures 0.1.

16

o different machines will optimize different instruction mixes and thus the speedup
depends on the instruction mix needed for a specific execution. This means that
different learning algorithms on the same dataset can show different speedups,
and that the same algorithm will show different speedups for different datasets.

5.4.1 Synopsis and options

parse_times -host hostname -from YYYYMMDD -to YYYYMMDD
[-calc avg | last | median] [-xlispstat filename] filelist

filelist A list of .results. files to process, each containing timing information
for the same set of learning algorithms on the same dataset.

-calc x What to do if several measurements for the same algorithm and host are
found (this will be the case if the experiment gets repeated on the same machine
and therun_exp option-o is not given, causing all results to get appended
in the same file instead of overwriting old results). Possible valuesaag:—
calculate the averagejedian — calculate the median; addst — use the last
(most recent) value found.

-xlispstat filename write data for subsequent processing in XLISPSTAT or
LISP to this file.

-from YYYYMMDD -to YYYYMMDDThe generated table will contain this date as
the date identifying the start and end of the validity period for the factors. Since
machines can get upgraded or other things can change significantly over time that
will influence the speedup factor, you can restrict the validity of the factor to a
certain time period. Thearse_results program will automatically use the
factor from the correct time period based on the experimenation date found in the
results files.

5.5 Checking the database formatcheck_database.pl

The scripttheck database.pl will check the format of a database for compliance
with the standard database format needed by METAL (see Section 4). Note that unless
you specify the optionnocheckformat , this script will automatically get called

from run_exp in order to make invalid results caused by a wrong format — which
might otherwise go undetected — less likely.

5.5.1 Synopsis and options

check_database.pl -f filestem [-regr] [-limit maxerrs] [-max maxlines]
[-dbg] [-0]

-f filestem . Filestem (and path) of the database to process. The files
<filstem>.data and<filestem>.names must exist.

-regr : Indicate that the database is for a regression, not classification problem.

-limit n : Limit the number of errors reported to

-max n: Limit the number of input records to be processed. This will increase speed
but decrease to likelihood of finding rare errors.

-dbg : Switch on debug mode

-0 : Save the output in a file with the narmélestem>.check_metal

17

5.6 Checking experiment output:check_results.pl

A single run ofrun_exp can create many files and a a very larlpgy file, so it
is often hard to quickly determine if some algorithm failed and in which fold of the
experiment. Theheck_results.pl makes this easier.

5.6.1 Synopsis and options

check_results.pl -h
check _results.pl -f stem [-N n] [-| algl [-| alg2] ...] [-v] [-d] [-dd]

-f stem The file stem of the files to chedhcluding the seed, i.e that part of the
filename up and including the seed.

-N n The number of folds. If this is not specified the program will guess from the files
it finds.

-l alg Can be specified more than once to provide the list of learning algorithms. If
none is specified the program will try to guess the list of learning algorithms from
what is there.

-v_More verbose output.

-d Debug — implies -v.

-dd Even more debug messages.

5.7 Other programs and helper files included in the distribution
5.7.1 Calculate quick measures from names filegparse_names

Theparse_names program calculates a few measures about the number of attributes,
and number of values for discrete attributes from a names file. These measures are
included in theresults file.

parse_names -f namesfile
The output shows:

Type_data : The type of data fileclass orregr

N_continuous_attr : The number of numeric attributes

N_discrete_attr : The number of nun-numeric attributes

N_total_discrete vals : The total number of values added up over all discrete
attributes.

Avg_discrete vals : The average number of values over all discrete attributes.

Log_discrete_combinations : The natural logarithm of the product of the

number of values of all discrete attributésg(I1%|a;|) where|a;| is the number
of values for discrete attribute numb@r

Avg_discrete_combinations : The value of
Log_discrete_combinations divided by the number of discrete at-
tributes.

N_classes : The number of classes.

5.7.2 Select a subset of featuregroject

This script selects a list of attributes from the input files specified by the infilestem and
writes a set of output files specified by the outfilestem:

18

project infilestem outfilestem attrlist

attrlist should be a comma-separated list of attribute numbers, where numbering
starts with one. To pass this as a single argument it might be necessary to enclose the
list in single or double quotes (depending on the shell you are using).

The script expects alata , a.names , and a.test file to exist and will create the
corresponding output files.

NOTE: The script uses theut command internally to select the attributes. Many
preinstalledcut commands only allow for a small number of fields and short records

to be processed. Therefore, for most databases, the GNU-cut command or an equivalent
version without these limitations should be used. You can specify the path ¢athe
command in theonfig.pm configuration file if it should differ from the one in the
binary path.

5.7.3 Sample interface scripts

The scripts subdirectory in theMETAL-MLEE distribution contains several in-
terface scripts for classification learning algorithms, regression learning algorithms,
preprocessing algorithms and landmark measurement algorithms. These files can be
used to adapMETAL—MLEE to other learning algorithms by using them as templates.

The following interface scripts for classification learning algorithms are included:

run_cla_TEMPLATE A template file that is explained in greater detail in Section 6.

run_cla_basedef ,run_cla_basedef200 : Aninterface to thdaseclearn
learning algorithm, which essentially “learns” the most frequent class from the
input database. Thbasedef200 interface runs thdéaseclearn learning
algorithm for only the first 200 records in the database. The learning algorithm
is available for download frorhttp://www.ai.univie.ac.at/oefai/
ml/metal/software/index.html#baseclearn .

run_cla_baserand : Uses thebaseclearn learning algorithm internally, but
uses a random class label determined from the names file instead of the most
frequent one.

run_cla_c45rules , run_cla_c45tree . An interface to a modified version of
thec4.5 andc4d.5rules programs. The modified version of ¢4.5 is available
from http://www.ai.unvie.ac.at/~johann/c45o0efai (The modi-
fied version adds several new features, but the necessary features are: portability
to Win32 and a program to assign class labels to a test dataset)

run_cla_c50boost , run_cla_c50rules , run_cla c50tree= These are in-
terface scripts to the commercially available C50 learning algorithm, a succes-
sor of c4.5. The programs are availableh#tp://www.rulequest.com
You also need a modified version of the program that assigns the class la-
bels, which is available dtttp://www.ai.univie.ac.at/oefai/ml/
metal/software/index.html#c5test .

run_cla_clemMLP , run_cla_clemRBFN These are interface scripts to the
Clementine learning algorithms MLP and RBFN, respectively. The interface
scripts use the programun_clem internally to call the Clementine learning
algorithm in batch mode. See the description of that program for details.

run_cla_lindiscr The interface to the linear discriminant algorithumDiscr
(availabilty details?)

19

run_cla_ltree The interface to the linear tree learning algorithtnee (avail-
abilty details?)

run_cla_milcibl The interface to a 1NN learning algorithm that is based on the
MLC++ machine learning library (availability?)

run_cla_nb The interface to a naive-bayes learning algorithm that is based on the
MLC++ machine learning library

run_cla_ripper The interface to thepper learning algorithm. The program is
available from ???

The following interface scripts for regression learning algorithms are included:

run_rla_baggedrt The interface script to the regression tree algoritinl
Available from ????

run_ral_cart The interface to the cart learning algorithm that is implemented in
r4.1

run_rla_clemMLP , run_rla_clemRBFN The interface to the MLP and RBFN
learning algorithms of Clementine.

run_rla_cubist The interface to thecubist regression rule algorithm,
available from http://www.rulequest.com You also need a modi-
fied version of the program that predicts new values, which is available at
http://www.ai.univie.ac.at/oefai/ml/metal/software/
index.html#cubist_test

run_rla_cubistdemo The interface to the demo version of thaubist
program (will only process a limited number of records) You also need
a modified version of the program that predicts new values, which
is available at http://www.ai.univie.ac.at/oefai/ml/metal/
software/index.html#cubist_test .

run_rla_kernel The interface to the kernel regression learning algorithm that is
implemented int4.1

run_rla_lIr The interface to a linear regression model learner that is implemented

inrt4.1
run_rla_mars The interface to thenars learning algorithm (availability?)
run_rla_rtplt The interface to the ??7? learning algorithm that is implemented in
re4.1
run_rla_svmtorch The interface to the support vector machine algorithm

svmtorch , available from ???
The following interface scripts for measuring/landmarking algorithms are included:

run_cma_lindiscr This interface to the linear discriminant algorithnmDiscr
(see classification learning algorithm interfaces).
run_cma_Im1 (experimental)
run_cma_micnb Use themlcnb learning algorithm as a landmark.
run_cma_nodes This interfaces to theandmarks.pl script that calculates sev-
eral landmarks. See below a more detailled descriptidarafmarks.pl

The following interface scripts for preprocessing algorithms are included:

run_cpa_disc The interface to the discretization progratiscretiser . The
interface script also needs the wrapper satipt_wrapper.perl . Both pro-
grams are available from ????

run_cpa_fselC50T The interface to a simple feature selection algorithm
that uses thec5.0 decision tree learning algorithm for a quick guess
to find relevant attributes. The script also needs #teb_list pro-

20

gram and theproject program internally. Theatrib_list program
is available fromhttp://www.ai.univie.ac.at/oefai/ml/metal/
software/index.html#atrib_list .

run_cpa_fselQl The interface to a simple feature selection algorithm that com-
pares the class-posterior means of attributes to guess their relefselC¥l .
The program is available fromttp://www.ai.univie.ac.at/oefai/
ml/metal/software/index.html#fselQ1 . The interface uses the
project program internally.

5.7.4 The Clementine command line interfacerun_clem

Therun_clem program simplifies the use of Clementine learning algorithms from
the command line. The program analyzes the input files and creates the necessary
information to modify a template Clementine stream file which is then used in a batch-
mode run of Clemeninte. Thecript directory contains stream templates for the
learning algorithms MLP, RBFN and C5, these are callécstr , mip.str , and
rbfn.str

WARNING: the method described has only been tested with version 5.0.1. There was
an unresolved problem whith the version 5.1 when it first came out but this has not
been rechecked since (which???7?)

run_clem -h
run_clem -f filestem -m method {-train|-test} [-p n|c] [-d path]
[-r stem] [-cmd cmd] [-nc] [-i] [-s seed] [-c4] [-v] [-VI]

-f filestem : The input filestem - there must be.mames and a.data file
for training mode, or anames and a-m method : The complete filename
(including the path if necessary) of the stream file template to be used.

-train | -test . Indicate training or test mode. In training mode, a model file is
created, in test mode, the model file is used to create a file containing the predicted
values for the target variable.

-p n|jc : This is needed internally for modifying the stream file. Usually it can be
guessed from the input names file. Use “n” for numeric and “c” for discrete target
variables.

d path : The directory where generated files should be stored. These are the modified
stream files, the model file, and the generated “analysis” and “matrix” files.

r stem : The filestem to use for the generated files. The default is
originalstem>.<method>

-cmd cmd: The command to use to call the Clementine program (default:
clementine).

-nc : Do not remove temporary files after termination — useful for debugging.

-i : Interactive — run the generated stream in an interactive Clementine session, in-
voking the Clemetine GUI. This can help with finding problems and checking if
everything is done correctly.

-s seed : A random seed - this can be used for streams that need a randomization
seed internally.

c4: Accept data and test files where the records are terminated by a dot (if not specified:
dont expect/accept the terminating dot)

v: Verbose output

-vl : Show logfile and verion info but not all the info that is shown with theoption.

21

5.7.5 Calculate landmarks:landmark.pl

This Perl—-script calculates landmark measurements for a database and is used internally
by the landmark interface scripts.

6 Adapting METAL-MLEE

If you want to useMETAL-MLEE with other learning algorithms than those for which
interface scripts (see 5.2) already exist, you need to create interface scripts for that
purpose.

In a similar way, you can also add additional preprocessing algorithms.

Adapting METAL-MLEE to additional algorithms essentially consists in adding the
necessary interface programs. The best way to do this is to copy and adapt an existing
interface program for a similar algorithm. The interface programs are written in Perl,
some knowledge of Perl will be necessary to create a new interface program.

For each type of algorithm, there is a heavily commented template file that can be used
as a basis for a new interface program.

In order to run a certain list of interface scipts automatically (insteading of specify-
ing them using thel option of therun_exp script), edit theconfig.pm script

and change the lists of script names given there for the default classification, de-
fault regression, default classification data—measurement and default regression data—
measurement algorithms.

6.1 Adding Learning Algorithm Interface Scripts
In order to be usable witMETAL-MLEE, the folliwng conditions must be fulfilled:

e The learning algorithm should be able to read a training file that is in a format
similar to the format of thedata file described in Section 4. Similarily, the
meta—data required be the algorithm should be in a from that can be derived
from the names file. Unless the learning algorithm can use the data and names
files directly, it will be necessary to include a conversion filter in the interface
program.

e The learning algorithm should generate a persistent model file that can be used
to later assign values for the target variable for new data records.

¢ Itshould be possible to separately call the training and prediction (testing) phases
of the algorithm.

e The prediction/testing function of the algorithm should take the model file gen-
erated in the training phase andata file and generate a file that contains only
the predictions for each of the cases indla¢a file, one prediction in each line.

e NOTE: the prediction function of the algorithm should output the prediction error
which needs to be captured in the interface script and returned to the main driver
programrun_exp . This program will regard a learning algorithm for which
no prediction error is returned as failed and abort the testing for that learning

22

algorithm. If the prediction function does not output the error, a dummy value
must be used unless the something went wrong (see below). The correct predic-
tion error will be calculated by thein_stats ~ program and be available in the
Stats file anyway.

For classification learning algorithms refer to the temptate cla_ TEMPLATE , for
regression learning algorithms referrton_rla_ TEMPLATE .

#!/usr/local/bin/perl

01 use vars qw($pgmname $pgmpath S$trainargs %k $args

02 $testargs $predfile $filestem);

03 use Getopt::Long;

04 use File::Basename;

05 $pgmname = $0;$pgmpath = dirname($pgmname);

06 push(@INC,$pgmpath);

07 require run_lib;

08 require config;

09 beginLA("LANAME","VERSION");

10 startCMD("mylearner -f $filestem -model $filestem.$la.model
$args $trainargs");

11 my $mytmpl = ™

12 while (defined($_=getLine())) {

13 if (/"Size: ([0-9]+))) {

14 $mytmpl = $1; ## remember the number $

15 }

16 }

17 $k{"Size"} = $mytmpl;

18 $k{"Traintime"} = stopCMD();

19 startCMD("mylearner -test -f $filestem -model $filestem.$la.model
-p $predfile $args S$testargs");

20 while (defined($_=getLine())) {

21 if (/"Error rate:\s+([0-9\.]+)/) {

22 $k{"Error'"} = $1,

23}

}
25 $k{'Testtime"} = stopCMD();
26 rmFile("$filestem.tmp");
27 endLA();

Figure 1: Theun_cla_ TEMPLATE file

Figure 1 shows theun_cla_ TEMPLATE file with all comments removed and line
numbers added. To adapt the file to some learning algorithm, copy it to a file
run_cla_xxx (for a classification algorithm) whepsexx is the name of the learning
algorithm. Follow the advice given in the comments in the template file to program the
interface file for your learning algorithm.

Here a few notes on adapting the template:

e Lines 1 to 8 should be kept untouched

e The LANAME in line 9 should be the same as the algorithm name portion of
the interface file (i.e. the same as the partinrun_cla_xxx). VERSION
should reflect the version of the interface file (if you want to diferenciate be-
tween different versions of the learning algorithm, include that version info in
the LANAME, e.g.myla2.1)

e Line 10 should contain the command needed to call the training phase of the
learning algorithm. The variablgfilestem will contain the filestem of the

23

three files that are prepared before each invocation of the interface file (the data,
test, and names file). The variab®args and$trainargs are the values
passed via the optiona and-at respectively.

e Lines 12 to 15 show a loop that will process each of the lines that is output to
stdandard output or standard error by the learning algorithm. Within the loop
you can search the output for (numeric) information that you want to pass back
to run_exp which will automatically record them in theesults file and
calculate averages. NOTE: you must process all output lines in such a while
loop, using thedefined($_=getLine()) condition, or the interface will
not work properly! If you do not need any information from the output, simply
remove lines 13 to 15.

e Line 17 shows how to pass back the information to the _exp program:
simply assign the value to a hash variable where the hash key is the desired name
of the variable.

¢ Lines 18 should be kept unchanged: it shows how to finisistéieCMD block
that was opened in line 10 and record the time used up by the training phase of
the learning algorithm.

e Line 19 starts the evaluation/prediction phase of the learning algorithm by calling
a different program or the same program with the apropriate options for predic-
tion. The variableptestargs will contain the value for the optiorae .

e Lines 20-24 show how to process the standard output of the algorithm. As for the
training phase all lines must be processed that way. In additionexp will
only work correctly if you pass back the prediction error in the vari&ter
as shown. If your algorithm does not output the prediction error to standard
output, you can work around the problem by passing back an arbitrary value and
ignoring the errors in theesult file later, using the errors from thstats
file instead (this is recommended anyway, since the errors instats file
are more accurate)

e Line 25 finishes thestartCMD block for the prediction phase and should be
kept unchanged.

e Line 26: thermFile function should be used to remove any temporary and
working files the algorithm might have created.

e Line 27 must be kept unchanged.

6.2 Adding Preprocessing Algorithms

Preprocessing algorithms will change the database before the learning algorithm is ap-
plied. For eacliun_exp experimentation run, you can optionally specify one prepro-
cessing algorithm. That algorithm will be called for each fold of the crossvalidation. In
order forrun_exp to be able to call the preprocessing algorithm, an interface script
must be provided.

Preprocessing algorithms, like learning algorithms, have to process the training and
testing sets for each fold separately. A typical interface script will contain two calls to
the preprocessing program, one for the training file and one for the test file.

24

Note: The preprocessing algorithm should never use information from the class labels
in the test set! The preprocessing algorithm should always carry out exactly the same
preprocessing transformation on the test set as on the training set. If the preprocess-
ing algorithm adapts itself to the input dataset you must take care that this does not
happen when the test set is processed! For example, a class-aware discretization algo-
rithm should discretize the numeric attributes in the test set in exactly the same way as
it discretizes the attributes in the trainingset instead of calculating new discretization
intervals, based on the specific information in the test set.

This is important, because of the practical reason that otherwise the content or format
of the generated training and test files could be incompatible, but more importantly,
because of the theoretical reason that anything else would be cheating — using informa-
tion from the test set that should be regarded as completely unavailble for the estimation
procedure.

As with the interface scripts for learning algorithms, use one of the scripts included in
the package as a template.

7 Running Experiments

First make sure the data is in standard format (see Section 4). The main experimenta-
tion program by default does a quick check, but you should use the checking program
check_database.pl on the full database. Depending on the format your data is
originally in, the steps to convert it into METAL-format might be very different.

Here are some hints what kind of conversion might be necessary:

¢ |t might be necessary to convert fiels from DOS to UNIX format

e The database should be available in a format that is as close as possible to “CSV”
(comma-separated values) format. Many programs that export CSV format will
put non-numeric values in quotes; these have to be removed for METAL format.

e Be careful that removing special characters originally used for non-numeric val-
ues but not allowed in the METAL format will not cause several different values
to get mapped to one value!

e Missing values are often coded as “empty strings”. Missing values must be coded
as question marks for METAL format, both for numeric and non-numeric fields.

METAL-MLEE lets you choose rather freely how to run the necessary experiments:
run different algorithms on different machines, run different databases on different
machines, run different algorithms on the same machine but at different times etc.

You should consider the following points when planning the experiments:

e For each experiment you should have a separate output directory. If you run dif-
ferent algorithms for the same database at different times on the same machine,
you can simply reuse the output directory: the new target/prediction files will
be added to the directory, and thiesults and.log files will be appended
with the new data (unless the optiem for run_exp is specified, which will
overwrite the olderesults and.log files.

25

e If you run experiments on the same file system, take care that different experi-
ments will not use identical files to prevent data lass_exp uses temporary
file names for some files to prevent this, but output files might still be identical.

e If you run some algorithms for a database on machine A and other algorithms
on machine B it is advisable to use different output directories for these runs
and then merge the created files. Results must be merged by copying to-
gether the generategred , .target , .dct files and concatening together
all .results files to the final.results file and all.log files to the fi-
nal .log file. The scriptexp_append_results will do this for a source
and a target directory: the source directory must contain a subdirectory for each
filestem for which an experiment was run. The destination directory will con-
tain a subdirectory for each filestem. Copying together is done by repeatedly
compying partly results for several filestems from different source directories to
the same destination directory.

¢ Running different algorithms on different machines will it make harder to com-
pare CPU time measurements even for the same file stem.

e The simplest way to carry out an experiment is to run all algorithms for a filestem
on the same machine in a single rurrofi_exp .

8 Structure and Organization of Output Data

8.1 Thelog file

For each experiment a log file with the nafilename_seed.log is created. The

log file contains the log of whaun_exp has been doing. Ifun_exp is invoked
several times for the same filestem and seed in the same output directory, each new
log will be added to the end of any existing one, unless the optofoverwrite) has

been givento theun_exp command. The log will contain more information from the
run_exp command ifthed (debug) option was given and will also include debuggin
information from the interface scripts called if the optitexd was given.

8.2 Theresults file

The :results file contains a group of variables that describe the experiment and
database, and another group of varibales that contain information for each combination
of algorithm, fold, and repetition.

File : The full path and filestem to the database processed.

Filestem : The filestem without any path as used in the output files. If a suffix is
added to the output file names (e.g. when a preprocessing algorithm is used), that
suffix will be included here. In other words, this is the part of the filestem that will
be used in the output files before theseed> part.

InFilestem : The filestem without any path as specified for thecommand line
option ofrun_exp . This will never contain any suffixes.

ModelType : Eitherclassification orregression

Start : The start date and time of the experiment, in standard UNIX date format.

26

User : The login name of the user running the experiment

Host : The (short) hostname of the machine on which the experiment was run.

OS The (short) name of the operating system.

System : More detailled information about the operating system, version and archi-
tecture.

CPUIlimit : The CPU time limit specified for this experiment; the value 0 means no
limit.

Seed: The random seed used for the randomization of the crossvalidation folds.

Version run_exp : The program version alin_exp

Samplespec: n/n : The values given (or the default values) for tsamp and
-hsamp options ofrun_exp .

Preprocessing : The name of the preprocessing algorithm, or empty

DBSize : The number of records in thdata file of the input database.

DBdataMD5: The MD5 key of thedata file. This can be used to check if exactly
the same file has been used for different experiments.

DBnameMD5The MD5 key of thenames file.

Type_data =, N_continuous_attr , N_discrete_attr ,
N_total _discrete vals , Avg_discrete_vals ,
Log_discrete_combinations , Avg_discrete_combinations ,

N_classes : These values are the output of tharse_names program and
are explained in Section 5.7.1.

Learner : For each learning algorithm there is one line with this key, giving the name
of the learning algorithm.

Learner_Parameters <learner> : for each learner a line giving all the param-
eters as specified on then_exp command line.

DCT _Totaltime : The total CPU time measured for the DCT algorithm, if it was
run.

Evalmethod : The evaluation method used — onexefal , holdout , cstho , or
loov .

Evalparms : The parameters used for the method, separated by commas. In addi-
tion, for each method, there is a special set of keywords that individually give
the values for the evaluation parameters, e.g. xfml : XVAL_folds and
XVAL_repeat .

DBSizeTrain <r> <f> : The actual size of the training data for repetitior»
and fold<f> .
DBSizeTest <r> <f> : The actual test size per repetition/fold.
Error <r> <f> <alg> : The holdout error (error of the learned model on the test

set) for algorithm<alg> for that repeition/fold. This is the error as reported
from the interface script, not as measured by filve_stats script from the
target/predictions files.

Resubsterror <r> <f> <alg> : The resubstitition error (error of the model on
the training set), if reported by the interface script.

Size <r> <f> <alg> : The model size, ifand as reported by the interface script.

Testtime <r> <f> <alg> : The time needed for the testing step in CPU seconds,
as reported by the interface script.

Traintime <r> <f> <alg> : The time needed for the training step in CPU sec-
onds, as reported by the interface script.

Totaltime <r> <f> <alg> : The time needed for both the training and testing
step, in CPU seconds, as reported by the interface script. For some learning al-
gorithms it might not possible easily to get individual training and testing times

27

since they carry out both steps in one program run. For this onlydkedtime
value will be different from the missing value indicator.

Status <alg> : The final status of the experiment for this algorithm. This is es-
timated from the output of the interface scripts. Eitb&rif everything worked
well, timeout if the CPU time limit was ??ynknown if the status could not
be determined, andlok if something went wrong (e.g. the algorithm crashed).

Error <alg> : The final average error as calculated from the individuals error re-
ported by the interface script.

Resubsterror <alg> : The final average Resubstitution error.

Size <alg> : The final average model size.

Testtime <alg> : The final average testing time.

Traintime <alg> : The final average training time.

Totaltime <alg> : The final average total time.

Stop : The date and time when the experiment was finished, in standard UNIX date
format.

8.3 The.stats file

The stats file contains all the measures that get calculated frompted and
targets files by therun_stats program (theun_stats program gets called
automatically at the end @fin_exp unless explicitly supressed).

The variables in thestats file for classification—type experiments:

Error <alg> <rep> <fold> : The error of the model learned by algorithm
<alg> from the training set and evaluated on the testset for repitiep> and
fold <fold>

Error <alg> : The error averaged over all classifications from all folds and repi-
tions. Note that this will be different from the average of the fold/repitions Errors
above, if fold sizes are not the same for all folds.

StdDevOfError <alg> . The standard deviation of the errors for all
folds/repitions.

StdErrOfError <alg> : The standard error of the errors for all folds/repitions
(i.e. the standard deviation divided by the squareroot of the number of errors)

Correct-Wrong <algl> <alg2> : The number of cases where the classification
was correct for algorithrealgl> and wrong for algorithnxalg2> .

Wrong-Correct <algl> <alg2> : The number of cases where the classification

was wrong for algorithnxalgl> and correct for algorithrgalg2> .
pvalMcNemar <algl> <alg2> : The p-value of the McNemar test for identical
distributions of wrong/correct and correct/wrong counts.

pvalPairedTTest <algl> <alg2> : The p-value of a paired t-test for the er-
rors.

p-val_McNemar <algl> <alg2> : OBSOLETE and only kept for backward
compatibility!

The variables in thestats file for regression—type experiments:

ErrorSSE : Sum of squared errors

ErrorMSE : Mean squared error

ErrorRMSE : Root mean squared error
ErrorNMSE : Normalized mean squared error
ErrorMAD : Mean absolute differences

28

ErrorNMAD : Normalized mean absolute deviation
RSquare : correlation coefficient between targets and predictions
p-MeanDiffZero <algl> <alg2> . p value for the test for equal means

8.4 The.dct file

The DCT program and its output are documented in [DCT doc].

8.5 The targets files

For each fold of the crossvalidation, a file containing only the targets of the test file
for this fold gets stored in the results directory. The name of this file is of the form
<filestem>_ <seed>_ <fold>.targets

These files are necessary for th@_stats program to calculate error estimates and
similar measures.

8.6 The prediction files

For each combination of learning algorithm and fold of the crossvalidation, a
file containing only the predictions of this learning algorithm for the test file
gets stored in the results directory. The name of this file is of the form
<filestem>_<seed>_<fold>_<alg>.pred

These files are necessary for th@_stats program to calculate error estimates and
similar measures.

9 Solutions to frequent problems

The experiment fails and | cannot figure out why? If something goes wrong, al-
ways carefully look into the log file. If there is no hint what went wrong, repeat the
experiment with the added optiords and-lad . This will create ehugelodfile, since

all the output of all learning algorithms will be included, but usually contains the cru-
cial information about what went wrong. Some things to check for: are all programs
that are needed from the interface scripts in the binary search path? The helper pro-
grams too? Is the directory used to store temporary files on a device that has enough
free space to hold all the temporary files? Are there leftover temporary files from earlier
runs that clobber up space?

A CPU timeout was specified, but the algorithms run much longer? On some
systems — mainly Windows — the CPU limitation mechanism does not work. Unfortu-
nately there is no solution for this as of now.

A CPU timeout was specified, but the algorithm seems to never stop?Apart from

the cause given in the previous problem, it is also possible that the learning algorithm or
some other algorithm that gets called (indirectly via interface scripts) fromexp

is waiting for input from the standard input stream. In that case, the algorithm is halted,

29

does not consume CPU time and thus, never stops. One reason for this behaviour could
be that a licensed learning algorithm is requesting a license code.

It seems for some of the folds there are empty train/test files? If the database is
very small and there are many different class labelsskhdfle program will not be

able to do stratification correctly without leaving some of the files empty. In that case,
simply turn off stratification (optiorstart 0).

10 Glossary of Frequently Used and Exotic Terms

advisor ;. — data mining advisor
base database: a database that is used for experimentation to obtaimetadata

data characteristics : the collection of measurements obtained for a base database by
the — DCT program and— landmarkers A subset of these characteristics are
used as meta—data.

database measurements — Data characteristic®btained by the— DCT program.

DCT program : A program that calculates many different database measurements
from a database. For more information on that program see [DCT doc].

data file : A comma separated variables (CSV) file that contains the actual data for
a database. Each line contains one database entry as a comma separated list of
ASCII values. See Section 4 for details.

data mining advisor : A web-based application that uses meta—data obtained with
METAL-MLEE to build a model that will give algorithm ranking recommenda-
tions for new databases.

experiment : The process of carrying out a complete run of evaluation steps for all
learning algorithms for one base database.

filestem : the common part of the the two files (the "data—" and the "names" — file)
that together are used to describe a database. This is the filename without the file
extension. See Section 4.

interface script : A script that makes a learning algorithm program usable with the
main METAL-MLEE experimentation programyn_exp .

landmark : A — database characteristicalculated by running a fast learning algo-
rithm on the database.

meta—data : a collection of data describing: base databaseand the performance of
learning algorithms on these base databases.

meta—database: a collection of meta—data that is used fermeta—learning

ranking : A recommendation of the> data mining advisois given as a ranking: a
ranked list of algorithms - the most recommended first, the least recommended
last.

30

results files : The collection of all files that are generated as a result of an experiment:
the.stats file, the.results file, the.dct file, and others (see Section 8).

.result file : One of the files that gets generated during an experiment. The file name
extension of that file isresults , hence the name.

References

[Petrak 2002a] Petrak J.: The Machine Learning Experimentation Environment
(MLEE) - User's Guide and Manual. In preparation.

[Quinlan 1993] Quinlan J.R.: C4.5: Programs for Machine Learning, Morgan Kauf-
mann, Los Altos/Palo Alto/San Francisco, 1993.

[DCT doc] The dct documentation.

31

