Structure Inference in Sum-Product Networks using Infinite Sum-Product Trees

Martin Trapp1,2, Robert Peharz3, Marcin Skowron4, Tamas Madl1, Franz Pernkopf2, and Robert Trappl1

1Austrian Research Institute for Artificial Intelligence
2Graz University of Technology
3Medical University of Graz

Abstract

Sum-Product Networks (SPNs) are a highly efficient type of a deep probabilistic model that allows exact inference in time linear in the size of the network. In previous work, several heuristic structure learning approaches for SPNs have been developed, which are prone to overfitting compared to a purely Bayesian model. In this work, we propose a principled approach to structure learning in SPNs by introducing infinite Sum-Product Trees (SPTs). Our approach is the first correct and successful extension of SPNs to a Bayesian nonparametric model. We show that infinite SPTs can be used successfully to discover SPN structures and outperform infinite Gaussian mixture models in the task of density estimation.

1 Introduction

Sum-Product Networks (SPNs) \cite{6, 21} are a highly efficient type of deep probabilistic models and have been successfully applied to various generative and discriminative tasks, e.g. \cite{21, 12, 5, 18, 2}. In recent years, several approaches to structure and parameter learning of SPNs have been proposed, e.g. \cite{8, 13, 18, 20, 24, 1, 9, 28, 29}. SPNs can be defined recursively, as weighted sums and products of smaller SPNs, with univariate or multivariate probability distributions as leaf nodes. In a complete and decomposable SPN \cite{21, 17}, all children of a sum node have the same variable scope as the sum, whereas the children of each product partition the product’s scope into non-empty disjoint sub-scopes. Complete and decomposable SPNs can be represented as a sum of induced trees \cite{28, 29}. The generative process of normalized SPNs can be described informally by: (1) selecting an induced tree T with probability proportional to its weights: $P(T) \propto \prod_{w \in T} w$ and (2) sampling the observation from the leaf node distributions of the induced tree. Therefore, the posterior distribution of any Bayesian nonparametric extension of SPNs depends on the notion of induced trees. We introduce infinite Sum-Product Trees (SPTs), the first Bayesian nonparametric extension of SPNs with a posterior distribution based on induced trees. Previous work \cite{15} neglected induced trees in their posterior construction and did not report quantitative results and comparisons to existing approaches. We show that our infinite SPTs allow to discover SPN structures with high modelling performance while maintaining a good generalisation behavior.

2 Model

In order to define our generative process for infinite SPTs, the following simplifying but not very restrictive assumptions are made: (1) All leaf distributions are univariate; (2) all product nodes have two children; (3) sums and products occur in an alternating fashion and (4) the root node is a sum. Additional to those assumptions, we augment an SPN structure with so-called group nodes. Each
Figure 1: In infinite SPTs, sums of a SPN are augmented by additional sums (group nodes) one level below them, which allow product nodes that apply the same partition of their scope to be grouped together. Note that $V_i \neq V_j \forall (i, j) \in \{a, b, c, d\}$ and all V_i with $i \in \{a, b, c, d\}$ are non-empty sub-scopes of V. Moreover, $V_a \cup V_b = V$, $V_a \cap V_b = \emptyset$ and $V_c \cup V_d = V$, $V_c \cap V_d = \emptyset$.

group node, which is essentially an additional sum, groups together products which share the same partition of their scope. Figure [1] illustrates the basic structure of infinite SPTs with additional group nodes and induced trees in the model construction. Note that the number of group nodes, children of sum S with variable scope V, is equal to $\{\lfloor |V|/2 \rceil \}$, where $\{ \}$ is the Stirling number of the second kind and $|V|$ is the cardinality of the scope. In order to enumerate each partition of scope $V = \{1, \ldots, D\}$, we index every possible partition of scope into two non-empty disjoint sub-scopes resulting in the index set $U = \{1, \ldots, \lfloor |V|/2 \rceil \}$. Similar to the definition of SPNs, the generative process of infinite SPTs is defined recursively. Consider N observations with dimensionality D, where we denote $x_{n,d}$ to be the value of the d^{th} variable of observation $n \leq N$. The generative process of infinite SPTs can be described as follows:

Starting at the root node:

1. If the scope $V_S \subseteq V$ for the current node S is multivariate:
 - Draw weights w_S to the $\lfloor |V_S|/2 \rceil$ group nodes from a Dirichlet distribution with hyper-parameter α_S.
 - According to w_S draw the latent assignments $c_{S,n}$ to the group nodes and draw the partition assignment of each group node $u_{c_{S,n}} \in U$ uniformly without replacement.
 - For each selected group node, draw latent assignments $z_{c_{S,n}}$ for the observations at the group node from a Chinese restaurant process with hyper-parameter $\beta_{c_{S,n}}$ to product nodes.
 - For each selected product, partition the scope into non-empty disjoint sub-scopes according to $u_{c_{S,n}}$ and for each child of the product, apply the infinite SPN process for the observations at the child recursively.

2. Else for node S with univariate scope $d \in V$:
 - Draw latent leaf assignments $c_{S,n}$ from a Chinese restaurant process with hyper-parameter γ_S and draw distribution parameters $\theta_{c_{S,n}}$ from an appropriate prior.
 - Generate the value of the d^{th} dimension for the n^{th} observation from an appropriate leaf node distribution parametrized with $\theta_{c_{S,n}}$.

Our MCMC inference algorithm uses Gibbs sampling and is based on the work by [16]. The algorithm scales linearly in the number of observations and active sums in the network and includes inference over the hyper-parameters. Detailed descriptions of the MCMC inference algorithm are omitted due to space constraints. With increasing dimensionality of the data, the infinite SPT learns increasingly complex and deep hierarchical representations of the data. Similar to the crosscat model [25] the
infinite SPT has asymptotic capacity in terms of the number of observations and the dimensionality of the data. Moreover, the infinite SPT can be used to analyse heterogeneous data. In contrast to previous work in the field, e.g. [3, 14, 26], observations are generated from induced trees, which are selective SPNs ([19]) inside the infinite SPT.

3 Experiments and Future Work

We present results on artificial and real-world datasets with different dimensions and complexity. To assess the performance of our approach we measure the density estimation performance of the infinite SPT on the Old Faithful geyser dataset (processed as described by [25]), the Chemical Diabetes dataset [23], (using the dimensions: glucose area, insulin area and insulin resistance) and the Iris dataset [11]. In addition, we demonstrate latent variable discovery capacities of infinite SPTs on the Chemical Diabetes and a movie script dialogs dataset. In all experiments, we initialize our infinite SPT using a sequential construction of the structure. We used conjugate priors and sampled the hyper-parameters for the Chinese restaurant processes from independent Gamma priors [10].

Density Estimation Figure 2 illustrates that infinite SPTs are better able to explain the data compared to infinite Gaussian mixture models (GMM) [22]. Infinite SPT favor deep structures, due to the construction of the prior on induced trees. allowing the model to fit complex distribution more easily than a shallow model ([7]), e.g. infinite GMMs. With growing dimensionality, the distribution modelled by an infinite SPT will differ from those modelled by an infinite GMM with increasing probability. In our experiments we used a univariate Normal-Normal distribution as base distribution for all methods. Table 1 shows the average 10-fold cross-validation log predictive densities computed as in [27] for (1) infinite GMMs and (2) infinite SPTs. On all datasets, the infinite SPT obtains significantly better average 10-fold cross-validation log predictive densities than infinite GMMs.
Latent Variable Discovery In addition, we analysed the clustering capacities qualitatively on the Chemical Diabetes dataset and show preliminary results on a complex real-world dataset of movie script dialogs. The resulting grouping on the Chemical Diabetes dataset is illustrated in Figure 3 with positions obtained from a linear discriminant analysis. In order to visualize the group assignments, we used multidimensional scaling \[4\] to transform the binary assignment vectors (each representing an induced tree inside the infinite SPT) into an one dimensional space. Alternatively, the binary assignment vectors could be clustered using a hierarchical clustering, allowing for inspection of the hierarchy learned by the infinite SPT. The real-world dataset of movie script dialogs is based on utterances of four different mentor characters: Yoda and Obi-Wan Kenobi from Star Wars, Morpheus from The Matrix and Juan Sánchez Ramírez from Highlander. We extracted 62 utterances and used a one-hot coding based on the 25 most frequent words (excluding stop words) to encode each utterance. Moreover, each utterance was manually annotated by a human expert in terms of a latent characteristic, e.g. weakness revealing utterance. We use an infinite SPT model with Beta-Bernoulli distributions to identify latent groupings of those utterances. Preliminary results are shown in Figure 4.

Future Work In future work we will explore: (1) implementation of infinite SPT exploiting parallel computations; (2) hierarchical priors for leaf node parameters and (3) explore alternative representations that allow for more flexible and complex network structures than the infinite SPT, e.g. node sharing. As the current experiments show promising results, we will conduct a wider variety of experiments to investigate the capabilities of our approach in more detail.

Acknowledgments

This research is partially funded by the Austrian Science Fund (FWF) under grant no. P 27530.
References

