
ADELFE, a Methodology for Adaptive
Multi-Agent Systems Engineering

Carole Bernon*, Marie-Pierre Gleizes*, Sylvain Peyruqueou**, Gauthier Picard*

*Institut de Recherche en Informatique de Toulouse
118 route de Narbonne, 31062 Toulouse Cedex 4, France

{bernon, gleizes, picard}@irit.fr

**Artal Technologies
Parc Technologique du Canal, 31520 Ramonville Saint-Agne, France

peyruqueou@artal.fr

Abstract. Adaptive software is used in situations where either the environment is
unpredictable or the system is open. This paper presents a methodology named
ADELFE, which is led by the Rational Unified Process (RUP) but is devoted to
software engineering of adaptive multi-agent systems. ADELFE guarantees that the
software is developed according to the AMAS theory1. We focus this presentation
on the additions of ADELFE regarding the three first core workflows of the RUP.
Therefore, during the requirements phase, the environment of the studied system
must be defined and characterized. Then, in the analysis phase, the engineer is
guided to decide to use adaptive multi-agent technology and to identify the agents
through the system and the environment models. Finally, the design workflow of
ADELFE must provide the cooperative agent’s model and helps the developer to de-
fine the local agents’ behavior. We illustrate the methodology by applying it to a
case study: a timetable design.

1. Introduction

Today applications are more and more complex and a possible solution to deal with this
complexity is the use of agent-based or multi-agent based software. Usually this kind of
software considers an environment where all is predictable. However, applications are
more and more dealing with environments that are unpredictable and submitted to
changes like the Internet or the real world in which robots can evolve. They require more
robustness, more autonomy, more complexity; they require adaptive software. In [̃13],
according to the DARPA definition, it is said “self-adaptive software evaluates its own
behavior and changes behavior when the evaluation indicates that it is not accomplishing
what the software is intended to do, or when better functionality or performance is possi-
ble”. The multi-agent community generally considers the Multi-Agent Systems (MAS) as
being adaptive because agents are autonomous, situated, pro-active, social… The condi-
tion for the system to adapt is to be composed of autonomous agents. In our point of view,
this kind of adaptation is weak adaptation and all existing multi-agent systems are adap-
tive in this sense.

1 The AMAS theory is developed and applied for the last 8 years at the Research Institute in Computer Science

in Toulouse (IRIT). See http://www.irit.fr/SMAC

We call “strong adaptation” of a multi-agent system, the ability this system possesses
to take into account unpredictable events in order to react to evolutionary environments in
order to realize its “right” task. This new generation of MAS represents the next challenge
in programming. To theoretically study MAS with strong adaptation capability, we devel-
oped an Adaptive MAS (AMAS) theory [̃5][̃8].

The aim of this paper is then to present a methodology, named ADELFE, able to guide
and help a designer when he wants to build an adaptive multi-agent system based on the
AMAS theory, presented in section 2. An important point is that the agents considered in
this theory are not adaptive, only the whole system is. In the third section of this article, a
brief overview of ADELFE is given. In the section 4, ADELFE is applied to a timetabling
case study to present in a more detailed way the different steps of the methodology. Be-
fore concluding this document, the main strengths and limits of ADELFE and its contribu-
tions, with regard to other methodologies, are given in the section 5.

2. The AMAS Theory

The first aim of this theory is to realize MAS having the “classical” characteristics given
in [̃7] to build a society of situated agents. But, from our point of view, such a MAS is
also plunged into an environment and must reach a behavioral adequacy (by reproducing
the behavior of a simulated society) or a functional one (by performing the right task, the
task for which the system has been built). In our vision, the important notion is the collec-
tive; the AMAS theory must then lead to a coherent collective activity that realizes the
right task.

We then proved the following theorem [̃8]: “For any functionally adequate system,
there is at least a cooperative interior medium system which fulfills an equivalent function
in the same environment”. Therefore, we focused on the design of cooperative interior
medium systems in which agents are in cooperative interactions.

The specificity of the theory resides in the fact that we do not code the global function
of the system within the agents. The global function of this system emerges from the col-
lective behavior of the different agents composing it. Each agent possesses the ability of
self-organization i.e. the capacity to locally rearrange its interactions with others depend-
ing on the individual task it has to solve. Changing the interactions between agents can
indeed lead to a change at the global level and this induces the modification of the global
function. This capacity of self-organization at the lowest level enables to change the
global function without coding this modification at the upper level of the system. Self-
organization is founded on the capacity an agent possesses to be locally “cooperative”,
this does not mean that it is always helping the other ones or that it is altruistic but only
that it is able to recognize cooperation failures called “Non Cooperative Situations” (NCS,
which could be related to exceptions in classical programs) and to treat them. The local
treatment of NCS is a means to build a system that does the best it can when a difficulty is
encountered. Such a difficulty is primarily due to the dynamical nature of the environment
of the system, as well as the dynamics of the interactions between agents. More precisely
an agent can detect three kinds of NCS:
• when a signal perceived from its environment is not understood and not read without

ambiguity;

• when the information perceived does not induce the agent to an activity process;
• when concluding results lead to act in a useless way in the environment.

The agents, called cooperative agents, we are considering to build AMAS are com-
posed of five parts contributing to their behavior: skills (what the agent is able to do),
representations of the world (the knowledge it has about itself, about the others or about
its environment), an interaction language (to communicate with others or with its envi-
ronment), aptitudes (the capacities it possesses to reason on its knowledge) and a social
attitude led by what we call cooperation.

Any designer needs a methodology to guide him when building a complex application.
In the multi-agent domain, some methodologies exist [̃9][̃16] but few of them are able to
deal with notions such as dynamics or evolving environment. This is the main reason
why, from our point of view, a methodology suited for AMAS design is required. Fur-
thermore, we want this methodology used by any designer and not only by those special-
ized in adaptive multi-agent systems because this would be a means to popularize this
kind of programming.

3. A Short Overview of the ADELFE Methodology

This section highlights how ADELFE differs from object-oriented and other agent-
oriented existing methodologies and where and how it handles the strong adaptation of the
system to an evolutionary environment.

ADELFE2 [̃1] is based on object-oriented methodologies, follows the Rational Unified
Process (RUP) [̃10] and uses UML and AUML [̃12] notations. Some steps had been added
in the classical workflows to be specific to adaptive MAS. It is not a general methodology
such as GAIA [̃17] or TROPOS [̃6] but it has a niche which concerns applications that
require adaptive multi-agent system design using the AMAS theory. ADELFE covers the
entire process of software engineering like MESSAGE [̃4], PASSI [̃3] and TROPOS. In
this paper, we only focus on the three first workflows, as shown in figure 1. At each work-
flow, the designer could backtrack to previous results to update or to complete them.

The requirements workflow, which is also taken into account in TROPOS, is a fun-
damental step in software engineering. In the AMAS theory, the adaptation process starts
from the interactions between the system and its environment. Therefore, it is important to
give a model of the environment during this workflow. The environment model consists
in three steps: determining the actors, defining the context and characterising the envi-
ronment.

In the analysis workflow, we added two steps to the RUP: the identification of the
agents and the adequacy of the AMAS theory. ADELFE focuses on the identification of
the agents like in AAII [̃11], MESSAGE and PASSI. In the previous workflow, the de-
signer has identified the entities of the system, now ADELFE must help him to identify
what entities will be agents. In ADELFE, the notion of agent is restrictive; we are only

2 ADELFE is a national project started in December 2000 and supported by the French Ministry of the Econ-

omy, Finance and Industry. The different partners of this project are: IRIT (University of Toulouse III) and
L3I (University of La Rochelle) from academia and are ARTAL and TNI from industry.

interested in finding cooperative agents as described in the previous section. The designer
has some guidelines: an agent is an entity previously defined, this entity may be faced
with unexpected events and it may have evolutionary representations about itself, other
agents or about its environment and/or evolutionary skills.

Because an adaptive MAS is not a technical solution for every application, ADELFE is
the only methodology providing a tool to help a designer to decide if the AMAS theory is
adequate to implement his application. For example, if the algorithm required to resolve
the task is already known, if the task is not complex, if the system is closed or if no unex-
pected events can occur, this kind of programming is useless.

In the design workflow, the agent model and the NCS model are added to the RUP.
The AAII methodology is dedicated to BDI agents, ADELFE is also dedicated to a spe-
cific architecture of agent: cooperative ones. Using the agent model, the designer must
then describe the architecture of a cooperative agent by giving the components realising
its behaviour. A MAS which is not in a cooperative interaction with its environment needs
to adapt itself to it. But, according to the AMAS theory, the global function of the system
is not coded, only the local behaviour of the agents composing the society is coded. The
adaptation will then be managed by these agents through the NCS model. An agent which
locally detects cooperative failures acts to change its interaction with others to remove this
state. The NCS of an agent must be described by the designer, they depend on the applica-
tion. To help him, ADELFE provides the designer with generic cooperative failures such
as incomprehension, ambiguity, uselessness or conflict. ADELFE also provides tables
with fields to fill up concerning the name of the NCS, its generic type, the state in which
the agent must be to detect it, the conditions of its detection and what actions the agent
must perform to treat it.

…

1. Define the studied system
2. Determine the system context

3. Determine the entities
4. Characterize the environment

5. Express the use cases

10. Express the detailed architecture
and the agent model

11. Give each agent architecture
12. Express NCS

13. Give class diagrams

Design
Workflow

Analysis
Workflow

Requirement
Workflow

9. Study interactions between components
8. Identify agents

7. Verify the AMAS adequacy
6. Analyse the domain and identify components

 Figure 1. Overview of the three first core workflows of ADELFE.

4. Step-by-Step Details of the Methodology

In this section, we present the different steps of the ADELFE methodology. A case study
about timetabling problem3 illustrates the methodology at each step. The main actors of
this case study are teachers and students who need to book several rooms to achieve theirs
tasks. This case study has been chosen because it is based on a non-predictable environ-
ment and it is an open problem. Actually, some rooms could become unavailable because
of some kind of problem or a teacher’s availability could change and giving a solution to
this problem means adapting in order to react to these dynamic changes of the environ-
ment. Furthermore, this problem can be extended to a diary management, for example, in
which new people, and so new agents, must be added in the running system; this problem
can be considered are being open.

4.1. Requirements Workflow

The aims of this stage are to define the system to be, to transform this view in a use-case
model, and to organize and to manage the requirements (functional or not) and their pri-
orities. In fact, at this stage, the designer has to define the function of the studied system
and to model its environment.

Definition of the studied system. This definition is the result of the analysis of the re-
quirements set artifact. The output of this step is a keyword set defining the system. From
the user requirements, for the timetabling problem, the following keywords and concepts
are highlighted: planning, rooms, teachers, students, constraints, organization and con-
straint managing. As an outlook, the problem can be viewed as the organization of teach-
ers and students in rooms (and all the participants are subject to constraints). This problem
belongs to the constraint satisfaction problems class.

Definition and Environment Modeling. A detailed definition of the environment of the
system is necessary to develop adaptive systems, which are able to respond to any change.
This step firstly focuses on what may be in interaction with the studied system in terms of
passive or active entities, or constraints. In our example, teachers, students, the planning
manager and the room manager are active entities because they are able to change by
themselves their own constraints or they can interact with the system. Rooms are passive
because they represent resources and they cannot modify their characteristics by them-
selves. The PPN (or National Pedagogic Plan) is the database that contains all the infor-
mation concerning the courses (maximum number of sessions per week, hour quotas for
each formation, etc): it is a passive entity.

In a second time, this step must define the context of the system. It requires a charac-
terization of data flows and interactions between passive or active entities and the system.
This step produces collaboration diagrams and sequence diagrams (entity/system or en-
tity/entity). In our example, there are two kinds of data flows between the system and

3 We elaborated this example as a case study to compare and discuss different methodologies and

multi-agent platforms for the ASA Group of the Artificial Intelligence French Association.

passive entities: when the system consults the PPN and when the system consults room
constraints. When an active entity wants to interact with the system, it may only have to
change constraints (owner constraints or room constraints). In the other sense, the system
interacts with the active entity by displaying the planning.

The third stress of this step is to characterize the environment according to the classifi-
cation given by Russell in [̃14]. This characterization may enable the designer to detect
some special use cases that aim to respond to the environment behavior. In the case study,
we can characterize the environment of the system as following:
• Dynamic: the evolution of the active entities does not depend on the system, it is un-

predictable from the point of view of the system;
• Accessible: the environment can obtain information on the state of the environment;
• Non-deterministic: the system is not able to know what could be the effects of its ac-

tions on the active entities;
• Continuous: the number of interactions between the system and the entities is infinite.

Determination of the Use Cases. The main objective of this step, which ends the re-
quirements workflow, is to clarify the different functionalities the system has to respond
to. Only the active entities are implied in these use cases, which are the results of a func-
tional requirements set. The use cases for the timetabling problem are shown in figure 2.

4.2. Analysis Workflow

From a multi-agent point of view, the identification of the agents must take place in this
workflow. The analysis workflow has to develop an understanding of the system, its struc-
ture in terms of components and to know if the AMAS theory is required.

Domain Analysis and Architecture Study. Domain analysis is a static view and an ab-
straction of the real world and the linked entities. Considering separately each use-case by
defining scenarios, the designer has to divide the system into entities. The result of this

 Figure 2. The use cases and their related actors for the timetabling problem.

step is a set of entities in preliminary class diagrams. Teacher, CourseManager,
StudentGroup, Room, RoomManager and PPN classes appear naturally as real world
entities. In a second time, we tried to determine what entities could be useful for our sys-
tem. We propose a board to visualize the organization (the Grid and Cell classes) and
the ConstraintManager class to control constraints for each entity that owns a Con-
straint class instance. Cells represent intersections of different dimensions (days,
rooms, etc).

Adequacy of the AMAS Theory. This step aims to help the designer to decide if the
AMAS theory is adequate to solve his problem because, for certain applications, this kind
of programming can be useless. A software has been developed with several criteria to
study the adequacy at two levels:
• At the global level to answer the question “is a system implementation using AMAS

needed?”
• At the local level to try to answer the question “do some components need to be im-

plemented as AMAS?” i.e. is some decomposition or recursion useful during design?

For the case study, the decision tool clearly suggests to use the AMAS to design the
global level. Moreover, the tool indicates that some entities could be decomposed as
AMAS. So, once the agents are identified, the designer has to reuse the method on them,
as developed below.

Agent Identification. In this step, we are only interested in agents that enable a designer
to build our sort of AMAS. The designer has to determine which entities fit with this
agent type. This identification is done considering the notion of cooperative agent and the
agent’s characteristics such as autonomy, locality, requirement of interactions, individual
goal to achieve, capacity of negotiation. Firstly, we have to know where a lot of evolution
or dynamic is required. Then, for each entity identified during the domain analysis, we
must examine if it has to face up to unpredictable events and has to treat Non Cooperative
Situations. Teachers and students are autonomous, have local views, are plunged in the
rooms and have to negotiate to find partners and to resolve resource problems. This kind
of situations may create cooperation failures (NCS). At this stage, we identify teachers
and students groups as being cooperative agents. All other entities are considered as ob-
jects.

Adequacy of the AMAS Theory at the Local Level. If the first step of adequacy to the
AMAS theory indicates a possible decomposition, each agent has to be analyzed as a
system. The goals of an agent, Teacher or StudentGroup, are to find different places
and partners to follow or to give each course. These goals raise the problem of ubiquity.
Agents cannot be at different place at different moments. Therefore, we propose to create
one agent per course for each teacher or student group. Two agent levels are distin-
guished:
• RepresentativeAgent (RA): at the highest level, it represents a teacher or a stu-

dent group within the system;

• BookingAgent (BA): at the lowest level, it is responsible for finding partners and
booking rooms for a RepresentativeAgent. There are as many BAs as the num-
ber of courses a teacher has to give or a student group has to follow.

The identified agents have to be added to the preliminary class diagram as shown in fig. 3.

Study of Interactions between the Different Entities. The result of this step is a set of
sequence diagrams and activity diagrams, which explains the possible interactions be-
tween the different entities within the system and at each level. As the RUP is use-case
guided, for each use case, which has been defined between the system and the environ-
ment, a sequence diagram has to be defined to show the internal view and the interactions
within the system. The interaction between agents can be written with AUML.

4.3. Design Workflow

In this section, we detail the design workflow in four steps. Because the complete design
cannot be described in this paper, we only detail the steps which are not existing in other
methodologies such as the agent model and the modeling of Non Cooperative Situations.

Detailed Architecture and Agent Model. The first step of the design requires to identify
the software components and to describe them. The result provides the architecture of the
system in terms of needed blocks, classes, agents and interactions. The agent model,
which represents the relationships between agents, is included in this architecture. The
previously defined architecture can be refined by determining if some design patterns
and/or re-usable components can be used. For example, in object-oriented methodologies
designers try to re-use models such as customer-server model… In ADELFE, we propose
a specific design pattern named cooperative agent architecture. In our case study, four
packages appear:
• Agent package, to manage BAs and RAs;
• Grid package, to manage the different dimensions of a grid and its cells;
• Constraint package, which has to be accessible to rooms and agents;
• Interface package, to enable a user to interact with the system.

Figure 3. The revised preliminary class diagram for the timetabling problem gives
us an idea of the MAS model.

Cooperative Agent Architecture. This step helps the designer to fill in a generic archi-
tecture given for an agent used in the AMAS theory. This architecture can be considered
as a design pattern supplied by ADELFE in which an agent is composed of a skill model,
representations models, an interaction language, aptitudes and a social attitude named
cooperation. Following an object-oriented methodology, skills, representations or apti-
tudes possessed by an agent could be represented by methods. However, one of the main
characteristics of the agents used in AMAS is the fact that sometimes they must be able to
learn new skills, new representations or new aptitudes to adapt themselves to an evolu-
tionary environment. Methods cannot change as the time goes by, so, if these characteris-
tics are dynamic, they must adopt new representations: they must be AMAS themselves.
In such a case, ADELFE recommends the designer to apply again the methodology to
realize an adaptive multi-agent system to implement the skills, the representations or the
aptitudes of an agent. The interaction language can be implemented by a set of classes or
by a design pattern, which is closed to specific communication tools between agents like
ACL implementation. Finally, the social attitude of an agent is guided by cooperation, it
must be able to solve Non Cooperative Situations and a model is purposely defined in the
following step. An example for a BookingAgent is given in the table 1. A BA is able to
move in the grid, to meet other BAs and to negotiate partnerships. It can also send and
receive messages and interpret them. To achieve its task, it must know the constraints of
all the BAs working for its RepresentativeAgent. Constraints can be relaxed dur-
ing a negotiation.

BookingAgent
Representations

• constraints
• bookState
• partnershipState
• brotherConstraints

• partners
• recentlyMetAgents
• RAFather
• currentCell

Skills
• moveInTheGrid
• manageConstraints
• manageBooking

• managePartnership
• manageMessages

Aptitudes
• bookARoom
• cancelBooking
• negotiateBooking
• establishPartnership

• cancelPartnership
• negotiatePartnership
• SendMessage
• InterpretMessage

Interaction Language
• messageInteraction • contactInteraction

Table 1. BookingAgent specification: skills, aptitudes and interaction lan-
guages are methods; representations are attributes.

Non Cooperative Situation Model. This step represents the main contribution of
ADELFE to this workflow. During it, the designer must fill up a table describing each
NCS encountered by each previously identified agent. This table contains the name of the
NCS, the state in which the agent is when detecting it, the textual description of the NCS
and the conditions and actions linked to it. The conditions describe the different elements
that enable the agent to locally detect this NCS. The actions describe what the agent has to
do to remove it. For instance, the NCS for a BookingAgent are:
• Partnership incompetence: the BA meets another BA that may be an uninteresting

partner;
• Booking incompetence: the BA is in a cell that is uninteresting to book;
• Message unproductiveness: the BA receives a message that is not correctly addressed;
• Partnership conflict: the BA meets another BA that is interesting, but this other BA has

already a partner;
• Booking conflict: the BA is in a cell that is interesting to book but this cell is already

booked (shown in table 2);
• Booking uselessness: the BA meets its partner: they must separate to explore more

efficiently the grid.

Even if all the behaviors of the cooperative agents are given (agent model + NCS model),
the MAS as a whole can adapt itself because the interactions are not a priori coded.
Changing the interactions between agents (self-organization) changes the global function
of the system and, then, allows the “strong adaptation” of the MAS.

Class Diagrams. This step provides the different class diagrams for taking the GUI and
database designs into account. These class diagrams are also refinements of the previous
class diagrams. ADELFE does not need to provide additional functionalities to build them
because the designer follows the same method as the one used in an object-oriented
methodology. The figure 4 shows the final class diagram for the system.

Booking Conflict
State

Any
Description

The BA is in a cell that is interesting to book but this cell is already
booked

Conditions
The BA is in a cell AND this latter is already booked AND yet the cell
would be suitable if not booked

Actions
IF the cost of the new booking is less than the older one THEN the BA
books the cell ELSE the BA moves elsewhere

Table 2. The Booking Conflict NCS table of a BookingAgent.

4.4. Implementation and Tests Workflows

This workflow is similar to what is done in the RUP. However, to facilitate the work of
the developer, we plan to provide a rapid prototyping tool that will be integrated in the
OpenTool© software provided by our partner TNI (http://www.tni.fr). OpenTool is a
graphical tool like Rational Rose, which supports the UML notation.

Concerning the timetabling problem, we have implemented the proposed architecture.
Agents find adequate organizations and provide relevant results. At the moment, we only
have tested the system on simple examples that appear in the requirements, but we hope to
enlarge its application.

5. Contributions, Strengths and Limitations of ADELFE

TROPOS [̃6] expresses the dynamic and openness of the application in the requirements
phases with the model of the environment and with particular soft goals. However, it does
not give guidelines to design the right agents’ behavior allowing the adaptability of the
system. GAIA indicates that the domain covered by the methodology is static and that the
methodology is dedicated to closed domain where agents’ skills and beliefs are static at
run-time [̃16]. However some improvements to GAIA are suggested in [̃18] to support
applications in dynamic domains. Many other methodologies, like AAII [̃11], MaSE [̃15]
or MESSAGE [̃4], do not focus on the dynamic aspect of the software environment and
on the adaptation abilities of the software.

Figure 4. The final class diagram for the timetabling problem and the static in-
ter package links between agents and objects.

Constraint
Manager

The specificity of ADELFE is to provide a methodology to design adaptive multi-agent
systems coupled with a theory on those systems. The provided methodology covers the
whole “classical” life cycle of software and reuses UML notations. These notions are
already familiar to most of designers making this tool easily usable by developers not
specialized in designing AMAS.

In adaptive multi-agent systems, the environment (in which the system is operating) is
a key notion; but in a general way, the environment modeling is not a central point in
existing methodologies. In DESIRE [̃2], the environment is taken into account at the agent
level in the “world interaction management module”: an agent maintains and interacts
with its environment in the same way as with other agents. In MaSE, GAIA and AUML
there is no particular model of the environment. In TROPOS, the environment model is
described in terms of actors, their goals and interdependencies. In MESSAGE, the domain
model captures some entities of the system environment and the interactions with the
environment are described for each role in terms of sensory inputs and acquaintances,
resources ownership and accesses, and finally tasks and actions. In AAII, the relation
between the agent and the environment is taken into account in the interaction model.

For an industrial, it is very important to know very early if the system to develop justi-
fies some investment in a new methodology or technique. Therefore, ADELFE guides the
developer to make him decide if and where the adaptive multi-agent system technology is
required in the system that he is developing. This explains the importance of the adequacy
checking in the analysis stage.

ADELFE helps the designer to find what components of his system demand to be
treated like agents belonging to the AMAS theory (cooperative agents). The specific agent
architecture recommended by ADELFE can be viewed as one more design-pattern pro-
vided to the developer. Furthermore, ADELFE guides him to build agents; it provides a
functionality to endow an agent behavior with the NCS model. This is because it is well
known that the autonomous behavior of an agent which results from its perceptions, its
knowledge and its beliefs is very difficult to define in complex systems as well as in dy-
namic systems. Actually, it is very difficult to enumerate all possible actions for each state
of the environment. ADELFE is also a recursive or iterative methodology, when the de-
veloper has to implement an agent he must reuse the entire methodology to develop it.

ADELFE does not allow the design of every agent-based application. This drawback
can be taken away by coupling another methodology (such as MESSAGE or PASSI) with
ADELFE. If the adequacy phase tells that adaptive systems are not necessary, another
methodology could be proposed. There is no automated tool for consistency checking of
the workflows results but it is a future improvement.

6. Conclusion and Future

Few of the existing agent-oriented methodologies deal with concepts like dynamism or
evolving environment. The aim of this paper was then to present the ADELFE methodol-
ogy which is a multi-agent-oriented methodology suited to adaptive multi-agent systems
based on the AMAS theory. ADELFE provides a new methodology to design a society of
agents showing a coherent activity. It allows the society of agents to self-adapt to its envi-
ronment. Till now, ADELFE has been used in two case studies : an Intranet system design

[̃1] and a timetabling problem. In the former one, the requirements, the analysis and the
design have been realized. In the later, the system is now implemented and operational.
We plan to experiment more ADELFE in a European project (SYNAMEC) to develop a
mechanical self-design system.

ADELFE is aimed to be a development toolkit of software with emerging functional-
ities and not only a “mere” methodology. Therefore, we have some perspectives for it,
ADELFE will be able to:
• Provide some tools and libraries to ease the design and development of systems. For

example, we think that it is better for a designer to have the ability of rapid prototyping
to judge the validity of his architecture;

• Assist the designer if another methodology is more adequate to the system he wants to
build.

References

[1] C. Bernon, M-P. Gleizes, G. Picard & P. Glize – The ADELFE Methodology for an Intranet
System – Agent-Oriented Information Systems (AOIS’02) at CAiSE’02, Toronto, May 2002.

[2] F. M. T. Brazier, P.A.T. Van Eck & J. Treur - Modelling a society of simple agents: From
conceptual specification to experimentation - Journal of Applied Intelligence, 14:161–178,
2001.

[3] P. Burrafato & M. Cossentino – Designing a Multi-Agent Solution for a Bookstore with the
PASSI Methodology – AOIS’02 at CAiSE’02, Toronto, May 2002.

[4] G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, G. Pavon, P. Kearney, J. Stark &
P. Massonet - Agent Oriented Analysis using MESSAGE/UML - AOSE 2001.

[5] V. Camps, M-P. Gleizes, S. Trouilhet - Properties Analysis of a Learning Algorithm for
Adaptive Systems – In International Journal of Computing Anticipatory Systems, Editions
Chaos, Liège, Belgium, 1998. Available at http://www.irit.fr/SMAC.

[6] J. Castro, M. Kolp & J. Mylopoulos – A Requirements-driven Development Methodology –
In Proceedings of the 13th International Conference on Advanced Information Systems Engi-
neering (CAiSE’01), Stafford, UK – June, 2001.

[7] J. Ferber - Les Sytèmes Multi-Agents. Vers une Intelligence Collective - InterEditions 1995
[8] M-P. Gleizes, V. Camps, P. Glize - A Theory of Emergent Computation Based on Coopera-

tive Self-Organization for Adaptive Artificial Systems - 4th European Congress of Systems
Science, Valencia, 1999. Available at http://www.irit.fr/SMAC.

[9] C.M. Iglesias, M. Garijo & J. C. Gonzalez - A Survey of Agent-Oriented Methodologies - In
Intelligent Agents V, ATAL'98, LNAI 1555, Springer Verlag 1999.

[10] I. Jacobson, G. Booch & J. Rumbaugh – The Unified Software Development Process – Addi-
son-Wesley, 1999.

[11] D. Kinny, M. Georgeff, & A. Rao - A Methodology and Modeling Technique for Systems of
BDI Agents - In W. Van de Velde and J.W. Perram, editors, Agents Breaking Away: Proceed-
ings of the 7th European Workshop on Modeling Autonomous Agents in a Multi-Agent World
(LNAI 1038), pp 56-71. Springer Verlag, 1996.

[12] J. Odell, H.V. Parunak, & B. Bauer - Extending UML for Agents - In Proceedings of the
Agent Oriented Information Systems (AOIS) Workshop at the 17th National Conference on Ar-
tificial Intelligence (AAAI), 2000.

[13] P. Robertson, R. Laddaga & H. Shrobe - Introduction: the First International Workshop on
Self-Adaptive Software - In Proceedings of the 1st IWSAS edited by P. Robertson, R. Laddaga
& H. Shrobe in LNCS 1936, pp 1-10, 2000.

[14] S. Russel & P. Norvig - Artificial Intelligence: a Modern Approach - Prentice-Hall.
[15] C. H. Sparkman, S. A. Deloach, A. L. Self – Automated Derivation of Complex Agent Archi-

tectures from Analysis Specifications – AOSE-2001, Montreal, Canada, May 29th 2001.
[16] M. Wooldridge & P. Ciancarini - Agent-Oriented Software Engineering: the State of the Art -

In P. Ciancarini & M. Wooldridge, ed., Agent-Oriented Software Engineering, Springer Ver-
lag LNAI 1957, January 2001.

[17] M. Wooldridge, N. R. Jennings & D. Kinny - A Methodology for Agent-Oriented Analysis
and Design - In Proceedings of the 3rd International Conference on Autonomous Agents
(Agents 99), pp 69-76, Seattle, WA, May 1999.

[18] F. Zambonelli, N. R. Jennings, and M. Wooldridge - Organisational abstractions for the analy-
sis and design of multi-agent systems - In P. Ciancarini and M. Wooldridge, eds., AOSE’00,
LNCS, Springer-Verlag, 2000.

