erns reuse in the PASSI
methodology

Massimo Cossentino!, Luca Sabatucci’, Silvio Sorace’, and
Antonio Chella'?

ICAR/CNR - Istituto di Calcolo e Reti ad Alte Prestazioni/ Consiglio Nazionale delle
Ricerche
2Dipartimento di Ingegneria Informatica, University of Palermo

[The Goal of This Work]

We aim to drastically affect the cost of developing
a multi-agent application.

But... it is not easy to achieve this goal without simplifying the
problem.

We decided of using FIPA-compliant platforms and this reduces
effectively the dimension of the problem (almost all of these
platforms are JAVA-based and have a similar structure).

By now we refer to two different platforms: FIPA-OS and JADE

Difference in implementing a simple agent behavior in

FIPA-OS and JADE

FIPA-OS

ComponentTaski

startTask

FIPA-OS

ComponentAgent

FIPAOSAgent
——

<<Task>>

<<Task>>
ComponentTask2

<<Agent>>
ComponentAgent ComponentTask1
» ®WComponentAgent(), #WComponentTask1() #ComponentTask2()|
p setup() WstartTask() WstartTask()
Wshutdown() Wdone()

ComponentTask2

startTask

ComponentAgent

f ComponentAgent

v

JADE

Constructor and setup method
in both the platforms

JADE

ComponentTask1

=
<<Agent>> <<Task>> <<Task>>
gent ComponentTask1 ComponentTask2
MI%ComponentAgent()| | ®#ComponentTask1() ¥ComponentTask2()
> ®sety ®action() ®action()
p()
®done() ®done()

ComponentTask2

action

n

Difference in implementing a simple agent behavior i

FIPA-OS and JADE
?

ComponentAgent

setup >\

FIPA-OS

FIPA-OS

FIPAOSAgent
 —

/N

-(‘ Taski
startTask

D

ComponentTask2

startTask

<<Agent>> <<Task>> <<Task>>
ComponentAgent ComponentTask1 ComponentTask2
MComponentAgent() WComponentTask1() #ComponentTask2()
setup() — p- BstartTask() WstartTask ()
%shutdown() jone()
Same structure of Gomponanirgent
behaviors but different JADE 3 JADE
name of methods
— — setup ComponentTask1
A J N
<<Agent>> <<Task>> <<Task>>
gent ComponentTask1 ComponentTask2
®ComponentAgent()y | #ComponentTask1() ®ComponentTask2()|
®setup() Saction() action()
®done() ®done()

ComponentTask2

FIPA-OS and JADE
FIPA-OS

FIPAOSAgent
——

b\

Difference in implementing a simple agent behavior in

ComponentAgent

<<Task>>

<<Task>>

ComponentTask2

Shutdown method in
FIPA-OS only

<<Agent>>
ComponentAgent ComponentTask1
#ComponentAgent()| #WComponentTask1() #ComponentTask2()|
setup() WstartTask () WstartTask()
_> Sshutdown () Sdone()

JADE

)

ComponentAgent

ComponentAgent

v

FIPA-OS

ComponentTaski

ComponentTask2

startTask

JADE

ComponentTask1

<<Agent>> <<Task>> <<Task>>
gent ComponentTask1 ComponentTask2
$ComponentAgent()| | #ComponentTask1() ¥ComponentTask2()
®sety ®action() ®action()
p()
®done() ®done()

@

ComponentTask2

=)

done

FIPA-OS and JADE

FIPAOSAgent
 —

FIPA-OS

Difference in implementing a simple agent behavior in

?

ComponentAgent

| o |

setup >\

FIPA-OS

AN

<<Agent>> <<Task>> <<Task>>
ComponentAgent ComponentTask1 ComponentTask2
WComponentTask2()|

WComponentAgent ()

setup()
Wshutdown()

WstartTask()

SComponentTask1()

WstartTask()

:Ofeo
Different use of the done
method in the two platforms

®

Componentagent

?

JADE

ComponentAgent

ComponentTask2

startTask

)

JADE

ComponentTask

5
v

A J %
<<Agent>> <<Task>> <<Task>>
gent ComponentTask1 ComponentTask2
®ComponentAgent()| | #ComponentTask1() ®ComponentTask2()|
Fsety Saction() ®action()
P()
®done() ®done()

T

T

ComponentTask2

action

[Pattern definition]

We consider a pattern of agent as the solution to a common
problem and in our approach it is composed of:

o A structure

m Usually a base agent class and a set of task/behavior
classes.

m Described using UML class diagrams

o A behavior
m Expressed by the agent using its structural elements

m Detailed in UML dynamic diagrams (activity/state chart
diagrams)

o A portion of code

m Some lines of code implementing the structure and
behavior described in the previous diagram

[Classification of Patterns (structural)]

In order to simplify the organization of the pattern
repository we introduce a structural and functional
classification:

o Structural classification

= Action pattern. A functionality of the system; it may be a
method of either an agent class or a task class.

= Behavior pattern. A specific behavior of an agent; we can
look at it as a collection of actions (it represents a task in
FIPA-OS and a behavior in JADE).

= Component pattern. An agent pattern; it encompasses
the entire structure of an agent together with its tasks.

m Service pattern. A collaboration between two or more
agents; it is an aggregation of components.

[Classification of Patterns (functional)]

m Looking at the functionality of the patterns, we can
consider four categories:

o Mobility. These patterns describe the possibility for an agent to
move from a platform to another, maintaining its knowledge.

o Communication. They represent the solution to the problem of
making two agents communicate by a communication protocol.

o Elaboration. They are used to deal with the agent’s functionality
devoted to perform some kind of elaboration on relevant amounts
of data.

o Access to local resources. They deal with information retrieval
and manipulation of source data streams coming from hardware
devices, such as cameras, sensors, etc.

PASSI: Integrating the pattern reuse
in the design methodology

PASSI

(Process for Agent Societies Specification and Implementation)

Initial
Requirements New Requirements
]
System Requirements Model Agent Implementation Model
Domain : - Code Model
Description Multi-Agent Single-Agent
Code Reuse
‘ Structure Structure
Definition —p Definition
Agents y Y'Y *
Identification A 4
T \ 4 v Code
— .
y Behavior Behavior Completion
Roles L] Tasks Description Description
Identification Specification
Domain
Roles » Protocols Deployment
Doe:ct:iloégn Description Description Configuration
Agent Society Model Deployment Model

5 Models — 11 phases

PASSI

m PASSI is conceived to be supported by PTK, an
agent-oriented CASE tool
o The functionalities of PTK include:
m Automatic (total or partial) compilation of some diagrams
m Automatic support to the execution of recurrent operations
m Check of design consistency
= Automatic compilation of reports and design documents
m Access to a database of patterns

m Generation of code and Reverse Engineering

PASSI — Manual and Automatic activities

Requirements Next Iteration

'

System Requirements Model Agent Implementation Model Code Model

Multi-Agent Single-Agent
Code
Production

Domain Req.
Deseription

A 4

Be Behavior

Description

vior

Description

Roles

Identification

[

Domain

rologi I Pratacols
Ontology 1t i poaacos
Deseription pseripli escription {()

Deployment Model

lly Automated
Keys: Manual aetivi)
¥ Manual activity Acti Activity 0
d

Applying patterns in the PASSI design
process

A supply chain example

<<Agr>
Stock Guardian

-

CheckSupplylevel

Let us consider a supply
chain whose

purpose is to ensure the
availability of raw

<<Agente>
Supplierdgent

O <<include>>

Participatesuction InroduceBidParameters

X

. <<include> Suppl
materials for the é Rln e
production chain of - <<contpumicates> T

. 1] 2rUES
some manufacturing R |
Company <O CAl cchgents>
. i \) PurchaseAgert
WarehouseDB

On the right we can see
a part of the Agent
Identification diagram of
this

application

-

UpdateSupplyRecord

<<Agents>
SuppliersDB

<<m >

: i j <<include>> i :

AuctiorNotice

-

SuppliersEvaluation

94;{11.1{13>>

Managesudion

«“ff{”de» <<hicludess

-

CorrrpunicateNew Supplying

-

<<confrrinicate>>
Supp liersCache CarrpileGoodSuppliersList
The supplying scenario
E:Y: 5 = <<Agent>>
Stock Guardian SupplierAgent

ChedksSupplyLevel

<<mclude>5%L

BupplyingRequest

|
< anm\m

%

Supplier

F\\l' n
<<cor§§|unjcate>>

O <<includes>

Participatesuction IntroduceBidParameters

to buy at the best price the raw
materials requested by the
StockGuardian agent.

m The possible suppliers are selected

of the company with them

m Each selected supplier receives a
notice and then, can post his own
offer, interacting with an instance of
the SupplierAgent.

m The PurchaseAgent starts an auction

considering the previous experiences

<<pgent>>
Purchasedgert.

\ 1
O <<include=> z :

Managefudion AuctiorlNotice

-

SuppliersEvaluation

%ude»

<<ingludes> <<lpclude>>
Fabafz>

o ica teNew Supplying

o ate> >

CornpileGood3uppliersList

Where to apply the pattern

<<Agent>>
SupplierAgent
. <<includes>
We can decide tousean D /%
Explorer Serv'ce pattern |n Participatefuction InroduceBidParameters Supplier
. . l.n
order to realize the basic part Sxm
. <L Co! cate>>
of the SupplierAgent and i ‘
PurchaseAgent tasks. [e ‘
\ .
O <<include>> @
w L ManageAudion — Auctiorotics

UpdateBupplyRecord
DSl A \m <<ingfudes> =<ipcludes>
< COMITILIIC] > ©

-
c<Agent>> SuppliersEvaluation
SuppliersDB
uppliers. Cormrunicate MNew Supp lying if(ngude»
O <<corrminicate>
SuppliersCache CornpileGoodSuppliersList

(*) A service pattern is composed of two interacting agents

[The Explorer Pattern

m The Explorer pattern allows the
exploration of remote platforms
with the intent to perform some

~Explorer kind of operation in them;
create m itis composed of two agents:
1 moveto remote platorm an explorer agent and will
P send it to the other platform(s).

P—
Doyuduy m The explorer agent will perform
< the required operation and then

will inform its base agent.

U the base agent that will create
‘ interaction (some protocol)

n We can apply:

X o the base agent part of the
pattern to the PurchaseAgent

o the explorer part to the
SupplierAgent

Pattern effect on the Roles Identification phase

X

: Supplier

UserGUI :
SupplierAgent

Explorer :

SupplierAgent

Base :
PurchaseAgent

create
: Explorer

create

move to remote [platiorm

Get offers

move t# remote platform ‘ ‘

P—

Do your duty
‘

"

interaction (some protocol)

| 4

[=—

‘ ‘ Provide Offers
‘ ‘

% communicate offers ‘
<~

—

Roles identified: Base (PurchaseAgent); Explorer and UserGUI (SupplierAgent)

Pattern effect on the Multi-Agent Structure Diagram

‘g’ These elements (agent and
<<Task>>
< S Teeporbonaviowr | tASK Classes) are the
§ PurchaseAgent destination : String structure of the code that will
T lsewnn TeleportBehaviou) be pro_duced by PTK (PASSI
5 ToolKit)
a % }
””””””””””””””””””””””””” "\
RN
AgentShel TaskShell e \
< '3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Do W
;|
c
g'i <<Task>>
< <<Agent>> ExplorerEngager
a SuppiierAgent destination : String
— parent: AID
o
g_ —— Eé(t;i)(l)c;rgrE ngager()
7]

10

Pattern effect on the Multi-Agent Behavior

Description Diagram

PurchaseAgent ExplorerEngager SupplierAgent

PurchaseAgent.
PurchaseAgent

PurchaseAgent.
setup

New Behavior

ExplorerEngager.
ExplorerEngager

create

ExplorerEngager.
action

SupplierAgent.

SupplierAgent

SupplierAgent. new Behavi
setup

SupplierAgent. TeleportBehavior

of TeleportBehavior.
TeleportBehavior

TeleportBehavior.
action

m Agents behavior is described in the MABD according to the pattern

specification (*)

(*) With pattern engine AF 2.1 (alfa release only is available today)

Pattern effect on the Single-Agent Structure

Diagram
PurchaseAgent .
Agent Behaviour
Zﬁ m
SimpleBehaviour
<<Agent>>
PurchaseAgent
AGENT _TYPE : String = Purchase
version : String = 1.0
Purchase() ExplorerEngager
shutdown() destination
setup()
register_ WithAMS() ExplorerCreator()
register WithDF() action()

The SASD diagram
is automatically
composed.

Designer could add
some
implementation
details when
needed (e.g.
parameters in
operations)

11

The phasé
productio

s of the pattern
/reuse process

Class
Diagram(s)
Meta pattern _+< XSLT p.latttorr% pattern co)rfsstlru'l—{ntg Java _’(+ }_’ Java agent
specialization resolve skeleton complete code;
Activity \I—/
Diagram
XSL rules Constraints Action pattern
Design
Representation Multi-Platform Representation Platform-Specific Representation
UML XML -~ JAVA -
»< »< »

Code generation from models

m We use the Agent Factory code generation engine

m |t adopts 4 different levels of abstraction in pattern
representation:
o Meta-pattern (platform independent) (1)
o Pattern (platform specific, e.g. for FIPA-OS or JADE) (2)
o JAVA skeletons (complete structure of the agent) (3)
o JAVA complete code (structure+ inner parts of methods) (4)

Class
Diagram(s)

Java agent
complete code

Meta pattern _+(XSLT platform attern XSLT Java _.() >
> specialization P c‘r):;’]rg‘ems skeleton +
Activity @ \I—/ @ @ [/

®

Diagram
XSL rules Constraints Action pattern
Design
Representation Multi-Platform Representation Platform-Specific Representation
UML XML — JAVA g
»< »< »

12

[Code generation from models - 2

m Passage from one representation to another is obtained
with 2 XML transformations (XSLT) (1,2) and the
introduction of method codes from a DB (3)

m The overall architecture is similar to the OMG MDA
(Model Driven Architecture)

Class
Diagram(s) @ @ @

]

Meta pattern —+ XSLT :J.latform + pattern co)ésstlljaji-nts Java —.(+ H Java agent
specialization resolve skeleton complete code
Activity (
Diagram
XSL rules Constraints Action pattern
Desigi
Representation Multi-Platform Representation Platform-Specific Representation
UML XML -~ JAVA -
»< »< »

Code generation phases

From models to code

13

The design level representation of the pattern

Class
Diagram(s)

Meta pattern §....... >

Activity
Diagram

Design

AgentShell |
1

1
TaskShell

Querynitiator | [RueryReceiveTask QueryParticipant Listener QueryReply
Task
™

Sconstructor Sconstructor() b 0
$setup() g Sstart() $setup() $start() Sconstructor()
Sshutdown() ®handleRefuse() L) ®handleQueryf() Sstart()

‘hand\e\nform() ¥sendinform()

%sendRefuse()

Queryinitatoragent QueryTask Querypartcipantagent Litonar QuenRepyTask

Representatign

< UML >

Design level
representation of the
pattern using UML
class and activity
diagrams

najy Agent
constructor

setup

new Agent

constructor

new Task

startTask

constructor

startTask
handleQueryIf

message()

startTask)

The XML meta-pattern representation

Task/Behavior»
«Agent» «)
Querylnitiator QueryReceiveTask
+AgentConstructor() :Eztge)?usgz;mtor(ln Conversation)
+AgentSet
+Sﬁutdow :(p)() +handleRefuse(in Conversation)
+handleinform(in Conversation)

Class
Diagram(s)
Metapattern QY....p ===
Activity
Diagram
Design Multi-Platf] orm

¢ Representatign Represenation
<« ML ¢ XML,

* Meta-patterns are
platform independent

» Meta-patterns contain
all the common
elements of patterns
for different MA
platforms

14

The XML meta-pattern representation

Class

Diagram(s)
Meta pattern U Y....p ===
Activity
Diagram
Design Multi-Platform

Representation

Representatign ¢)

XML

< UML » <€ >

» Meta-patterns are
platform independent

* Meta-patterns contain
all the common
elements of patterns
for different MA
platforms

<Agent name="QueryInitiator">
<Visibility>public</Visibility>
<ExtendsAgentShell/>
<AgentConstructor>
<Code>constructor@generic_agent</Code>
</AgentConstructor>
<AgentSetup>
<Code>setup@generic_agent</Code>
</AgentSetup>
<Shutdown>
<Code>shutdown@generic_agent</Code>
</Shutdown>
<Task name="QueryReceiveTask ">
<Visibility>public</Visibility>
<ExtendsTaskShell/>
<TaskConstructor>
<Argoment type="Conversation" name="conv"/>
<Code>constructor@query initiator_ task</Code>
</TaskConstructor>
<TaskSetup>
<Code>setup@query initiator_task</Code>
</TaskSetup>
<Method name="handleRefuse" type="void">
<Visibility>public</Visibility>
<Argoment type="Conversation" name="conv"/>

<Code>handle refuse@query initiator_task</Code>

</Method>

From meta-patterns to patterns — XSL rules

Class

| pattern fe..... »> "

<!-FIPA-0OS SPECIFIC TRANSFORMATION->

«
<

<xsl:template match="ExtendsAgentShell">

XSL rules <Extends>FIPAOSAgent</Extends>

Diagram(s)
Meta pattern XSLT platform
specialization
Activity
Diagram
Design

</xsl:template>

<xsl:template match="AgentConstructor™>

Representation . Multi-Platform Representatipn

<Constructor name="{parent::*/@name}">
<Visibility>public</Visibility>

UML » < XML > <Argoment type="String" name="platform">
</Argoment>
<Argoment type="String" name="name">
. . </Argoment>
* Each pattem IS SpECIfIC for <Argoment type="String" name=“ownership">
one of the selected platforms. </Argoment>
« In order to obtain a FIPA-OS <xsl:copy-of select="Code" />
</Constructor>
pattern we apply to the meta- </xs1:template>

pattern the XSLT

transformation shown on the

right

<xsl:template match="AgentSetup">
<Method name="setup" type="void">
<Visibility>private</Visibility>
<xsl:copy-of select="Code" />

15

From meta-patterns to patterns

Class
Diagram(s)
Meta pattern XSLT platform attern J..J..p *en
specialization P > Meta'pattern
Activity «Agent»
Diagram Querylnitiator
XSL rules
+AgentConstructor()
Design +AgentSetup()

< Represenlatign‘ Multi-Platform Representation »

UML

« »d
« L

XML

+Shutdow n()

» The resulting pattern is
localized to a specific

platform

* The pattern is still general
and can be customized for
the specific application

v

Trans ation

Pattern

«FIPAOSAgent»
Querylnitiator

+constructor(in platform : String, in name : String, in ow nership : String)

+setup()
+shutdow n()

From meta-patterns to patterns

Class
Diagram(s)

Meta pattern

Activity
Diagram

Design

pattern g..3..p """

XSLT platform
specialization

XSL rules

Representatign . Multi-Platform Representation

AAgent_description agent_system="FIPAOS">
<Agent name="QueryInitiator">
<Visibility>public</Visibility>
<Extends>FIPAOSAgent</Extends>
<Constructor>
<Visibility>public</Visibility>

A
\ 4
A

* The resulting pattern is
localized to a specific
platform

» The pattern is still general
and can be customized for
the specific application

<Code>constructor@generic_agent</Code>
</Constructor>
<Method name="setup" type="void">
<Visibility>public</Visibility>
<Code>setup@generic_agent</Code>
</Method>

<Argoment type="String" name="platform"/>

\< <Argoment type="String" name="name"/>
<Argoment type="String" name="ownership"/>

16

Patterns introduction in the project generates
constraints

When a pattern is applied to a project, it modifies the context in which it is
placed (introducing new functionality into the system)

The relationship between the pattern and existing elements could be
expressed with a constraint.

A constraint is a rule composed of two elements:

o A target that specifies what agent/task will be influenced by the rule.

o A content that expresses the changes to be applied when the pattern is
inserted into the project (it could be an aggregation of attributes, constructors
or methods).

An example in FIPA-OS:

o When we insert a communication task pattern into an existing agent, the
listener task (/dleTask) should have a handleX method to catch performative
acts of a particular type (i.e. Querylf, Request, Inform, ...)

Class
Diagram(s)
Meta patt XSLT platform] XSLT Java ... -
clpattem (specialization patiern cnr)élsst]rglenls (skeleton >
Activity
Diagram
XSL rules Constraints
Design T
Representation. Multi-Platform Representation ~ Platform-Specific Representation
UML XML JAVA
[Tasksnel |
I]
7 7
From the previous example:
QueryPatticipant dieTask QueryReply here we have the constraint
Bconstructor) Seonstructor) used to introduce the
Ssetup() %ﬂﬂlﬂﬂfﬂﬁ $constructor() i
Bortoun0 CSrandcQueTD | scomirascs handleQuerylf method in the
$sendinform() Idle Task class of a FIPA-OS
%¥sendRefuse() agent

17

[Constraints

Class
Diagram(s)

/{Cons traint>
<Idle_task target="FIPAOS">
<Method name="handleQueryIf" type='"void">
<Visibility>public</Visibility>
<Argument type="Conversation" name="conv"/>
<Code>a_function</Code>
</Method>
</Parent_task>

</Constraint>

Meta pattern XSLT platform pattern {- XSLT s Java ... FOREE
specialization C?&%‘l—gé" skeleton
Activity \I—_/
Diagram
XSL rules Constraints
Design ad T
Representation Multi-Platform Representation - Platform-Specific chrcscnlaucn)
«
UML XML JAVA

From the previous example:
here we have the constraint
used to introduce the
handleQuerylf method in the
Idle Task class of a FIPA-OS
agent

From skeleton of classes to complete code

With the previous steps we obtained a skeleton of the agent with its
tasks/behaviors that is complete down to the method interfaces of
each class

In order to (partially) fill the skeleton with the remaining code,
action patterns are applied.

An action pattern is a portion of JAVA code realizing some kind of
behavior. It is specific for each platform.

o For example the registration to the DF service (Directory Facilitator, the
yellow pages of the platform) it is part of the sefup@generic_agent
action pattern and it is introduced in the setup method of the agent

Action patterns are stored in a database of pieces of code and the
correct one for each method is selected referring to the value of the
Code tag for the specific module (see the XML pattern
representation)

18

[Constraints

registerWithDF(AGENT_ TYPE) ;
DIAGNOSTICS.println("Registered with DF", this,DIAGNOSTICS.LEVEL MAX);
}
catch (DFRegistrationException dfre) {
DIAGNOSTICS.println(dfre, this, DIAGNOSTICS.LEVEL MAX);
String reason = dfre.getExceptionReason();

The action pattern for the

Class
Diagram(s)
Meta pattern XSLT platform pattern XSLT Java + Java agent
specialization C?&%‘l’g::ms skeleto] { } complete code,
Activity \I—_/ [/
Diagram
XSL rules Constraints Y Action pattern
Design
Representation Multi-Platform Representation P / Platform-Specific Representation N
« »
P UMI ML — JAVA N
<€) »< »
try {

if (reason == null || !reason.equals (FIPAMANCONSTANTS.
AGENT_ALREADY_ REGISTERED)) setup method of a generic
{ FIPA-OS agent
shutdown () ;
return;
}

tal results

19

Agents in a manufacturing company

The original application consists of more than 10 KLOCs

It has been originally developed without pattern reuse

m Only a part of that application has been rebuilt in this

experiment.

m The aim of our work was to evaluate the amount of code
reused and estimate the amount of time saved in the
design phase

Types of Agents involved: 9

Lines of code
o > 2 thousands

Experimental Results — lines of code

Agents Total Automatically % of Methods % of Autom.
LOC Generated LOC Total | Body LOC Generated
SuppliersDB 284 162 57 85 52
Wrapper 790 66 8 35 53
RawMaterialsDB 290 144 49 78 54
SuppliersAgent 124 43 34 26 60
PurchaseAgent 304 133 43 79 59
WarehouseDB 219 162 73 87 53
StockGuardian 109 98 89 49 50
RawMaterialsGUI 71 36 50 19 52
SuppliersGUI 69 36 52 19 52
Totale 2260 880 39 477 54

20

[Experimental Results — Design phase]

m We tried to evaluate the time difference in designing
without and with pattern reuse

m No precise timetables were available for the original
development phase therefore only an approximate
estimation of the difference can be done

m We estimate that about 25-30% of the overall design time
has been saved using patterns(*)

(*) We also considered a ‘confidence’ factor in evaluating it (the same
project is designed quicker the second time you do it)

[Experimental Results — Overall product qual]y

m During the development phase with patterns we did some
different choices (guided by available patterns) and the
resulting architecture was considerably improved

m Software maintainability is increased because of the
easier understandability of the agents structure
(elementary bricks introduced by reused patterns are
easy to identify)

Maintainability will be further improved by documenting patterns with PCL
(attern Comment Language) in the next release of Agent Factory

21

s and future works

[Conclusions and future works]

m Experimental results are encouraging but the amount of
code automatically produced (and saving in design/coding
time) depends on the dimension of the pattern repository

m Itis difficult to synchronize the DB of patterns for many
different implementation platforms

= In the Agent Factory project we created a web-based
application that is available at: http://mozart.csai.unipa.it/af/

22

