
1

Patterns reuse in the PASSI
methodology

Massimo CossentinoMassimo Cossentino11, , Luca Sabatucci11, Silvio Sorace11, and
Antonio Chella1,21,2

1ICAR/CNR – Istituto di Calcolo e Reti ad Alte Prestazioni/ Consiglio Nazionale delle
Ricerche

2Dipartimento di Ingegneria Informatica, University of Palermo

The Goal of This Work

We aim to drastically affect the cost of developing
a multi-agent application.

But… it is not easy to achieve this goal without simplifying the
problem.

We decided of using FIPA-compliant platforms and this reduces
effectively the dimension of the problem (almost all of these
platforms are JAVA-based and have a similar structure).

By now we refer to two different platforms: FIPA-OS and JADE

2

Difference in implementing a simple agent behavior in
FIPA-OS and JADE

FIPAOSAgent

ComponentAgent

ComponentAgent()
setup()
shutdown()

<<Agent>>

Task

ComponentTask1

ComponentTask1()
startTask()
done()

<<Task>>
ComponentTask2

ComponentTask2()
startTask()

<<Task>>

ComponentAgent

setup

shutdown

ComponentTask1

startTask

done

ComponentTask2

 startTask

ComponentTask2ComponentTask1ComponentAgent

Agent

ComponentAgent

ComponentAgent()
setup()

<<Agent>>

Behaviour

ComponentTask1

ComponentTask1()
action()
done()

<<Task>>
ComponentTask2

ComponentTask2()
action()
done()

<<Task>>

setup

ComponentAgent

ComponentTask1

action

 done

ComponentTask2

 action

done

ComponentTask2ComponentTask1ComponentAgent

FIPA-OS

JADE

FIPA-OS

JADE
Constructor and setup method
in both the platforms

Difference in implementing a simple agent behavior in
FIPA-OS and JADE

FIPAOSAgent

ComponentAgent

ComponentAgent()
setup()
shutdown()

<<Agent>>

Task

ComponentTask1

ComponentTask1()
startTask()
done()

<<Task>>
ComponentTask2

ComponentTask2()
startTask()

<<Task>>

ComponentAgent

setup

shutdown

ComponentTask1

startTask

done

ComponentTask2

 startTask

ComponentTask2ComponentTask1ComponentAgent

Agent

ComponentAgent

ComponentAgent()
setup()

<<Agent>>

Behaviour

ComponentTask1

ComponentTask1()
action()
done()

<<Task>>
ComponentTask2

ComponentTask2()
action()
done()

<<Task>>

setup

ComponentAgent

ComponentTask1

action

 done

ComponentTask2

 action

done

ComponentTask2ComponentTask1ComponentAgent

FIPA-OS

JADE

FIPA-OS

JADE
Same structure of
behaviors but different
name of methods

3

Difference in implementing a simple agent behavior in
FIPA-OS and JADE

FIPAOSAgent

ComponentAgent

ComponentAgent()
setup()
shutdown()

<<Agent>>

Task

ComponentTask1

ComponentTask1()
startTask()
done()

<<Task>>
ComponentTask2

ComponentTask2()
startTask()

<<Task>>

ComponentAgent

setup

shutdown

ComponentTask1

startTask

done

ComponentTask2

 startTask

ComponentTask2ComponentTask1ComponentAgent

Agent

ComponentAgent

ComponentAgent()
setup()

<<Agent>>

Behaviour

ComponentTask1

ComponentTask1()
action()
done()

<<Task>>
ComponentTask2

ComponentTask2()
action()
done()

<<Task>>

setup

ComponentAgent

ComponentTask1

action

 done

ComponentTask2

 action

done

ComponentTask2ComponentTask1ComponentAgent

FIPA-OS

JADE

FIPA-OS

JADE
Shutdown method in
FIPA-OS only

Difference in implementing a simple agent behavior in
FIPA-OS and JADE

FIPAOSAgent

ComponentAgent

ComponentAgent()
setup()
shutdown()

<<Agent>>

Task

ComponentTask1

ComponentTask1()
startTask()
done()

<<Task>>
ComponentTask2

ComponentTask2()
startTask()

<<Task>>

ComponentAgent

setup

shutdown

ComponentTask1

startTask

done

ComponentTask2

 startTask

ComponentTask2ComponentTask1ComponentAgent

Agent

ComponentAgent

ComponentAgent()
setup()

<<Agent>>

Behaviour

ComponentTask1

ComponentTask1()
action()
done()

<<Task>>
ComponentTask2

ComponentTask2()
action()
done()

<<Task>>

setup

ComponentAgent

ComponentTask1

action

 done

ComponentTask2

 action

done

ComponentTask2ComponentTask1ComponentAgent

FIPA-OS

JADE

FIPA-OS

JADE
Different use of the done
method in the two platforms

4

Pattern definition
We consider a pattern of agent as the solution to a common
problem and in our approach it is composed of:

A structure
Usually a base agent class and a set of task/behavior
classes.
Described using UML class diagrams

A behavior
Expressed by the agent using its structural elements
Detailed in UML dynamic diagrams (activity/state chart
diagrams)

A portion of code
Some lines of code implementing the structure and
behavior described in the previous diagram

Classification of Patterns (structural)

In order to simplify the organization of the pattern
repository we introduce a structural and functional
classification:

Structural classification
Action pattern. A functionality of the system; it may be a
method of either an agent class or a task class.

Behavior pattern. A specific behavior of an agent; we can
look at it as a collection of actions (it represents a task in
FIPA-OS and a behavior in JADE).

Component pattern. An agent pattern; it encompasses
the entire structure of an agent together with its tasks.

Service pattern. A collaboration between two or more
agents; it is an aggregation of components.

5

Classification of Patterns (functional)

Looking at the functionality of the patterns, we can
consider four categories:

Mobility. These patterns describe the possibility for an agent to
move from a platform to another, maintaining its knowledge.

Communication. They represent the solution to the problem of
making two agents communicate by a communication protocol.

Elaboration. They are used to deal with the agent’s functionality
devoted to perform some kind of elaboration on relevant amounts
of data.

Access to local resources. They deal with information retrieval
and manipulation of source data streams coming from hardware
devices, such as cameras, sensors, etc.

PASSI: Integrating the pattern reuse
in the design methodology

6

PASSI
(Process for Agent Societies Specification and Implementation)

Deployment Model

System Requirements Model

Tasks
Specification

Roles
Identification

Agent Implementation Model

Structure
Definition

Behavior
Description

Code Model

Code Reuse

Code
Completion

Domain
Ontology

Description
Roles

Description
Protocols

Description

Agent Society Model

Initial
Requirements New Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Multi-Agent
Structure
Definition

Behavior
Description

Single-Agent

5 Models – 11 phases

PASSI

PASSI is conceived to be supported by PTK, an
agent-oriented CASE tool

The functionalities of PTK include:
Automatic (total or partial) compilation of some diagrams

Automatic support to the execution of recurrent operations

Check of design consistency

Automatic compilation of reports and design documents

Access to a database of patterns

Generation of code and Reverse Engineering

7

PASSI – Manual and Automatic activities

Applying patterns in the PASSI design
process

8

A supply chain example

Let us consider a supply
chain whose
purpose is to ensure the
availability of raw
materials for the
production chain of
some manufacturing
company.

On the right we can see
a part of the Agent
Identification diagram of
this
application

The supplying scenario

The PurchaseAgent starts an auction
to buy at the best price the raw
materials requested by the
StockGuardian agent.
The possible suppliers are selected
considering the previous experiences
of the company with them
Each selected supplier receives a
notice and then, can post his own
offer, interacting with an instance of
the SupplierAgent.

9

Where to apply the pattern

We can decide to use an
Explorer service* pattern in
order to realize the basic part
of the SupplierAgent and
PurchaseAgent tasks.

(*) A service pattern is composed of two interacting agents

The Explorer Pattern
The Explorer pattern allows the
exploration of remote platforms
with the intent to perform some
kind of operation in them;
it is composed of two agents:
the base agent that will create
an explorer agent and will
send it to the other platform(s).
The explorer agent will perform
the required operation and then
will inform its base agent.

We can apply:
the base agent part of the
pattern to the PurchaseAgent
the explorer part to the
SupplierAgent

 : Base
 : Explorer

create

move to remote platform

interaction (some protocol)

Do your duty

10

Pattern effect on the Roles Identification phase

 : Base
 : Explorer

create

move to remote platform

interaction (some protocol)

Do your duty

Base :
PurchaseAgent

Explorer :
SupplierAgent

UserGUI :
SupplierAgent : Supplier

create

move to remote platform

Get offers

communicate offers

Provide Offers

Roles identified: Base (PurchaseAgent); Explorer and UserGUI (SupplierAgent)

Pattern effect on the Multi-Agent Structure Diagram

These elements (agent and
task classes) are the
structure of the code that will
be produced by PTK (PASSI
ToolKit)

ExplorerEngager
destination : String

ExplorerEngager()
action()

<<Task>>

AgentShell TaskShell

TeleportBehaviour
destination : String

TeleportBehaviour()
action()

<<Task>>

PurchaseAgent

setup()

<<Agent>>

SupplierAgent
parent : AID

setup()

<<Agent>>

Pu
rc

ha
se

A
ge

nt
Su

pp
lie

rA
ge

nt

11

Pattern effect on the Multi-Agent Behavior
Description Diagram

Agents behavior is described in the MABD according to the pattern
specification (*)

(*) With pattern engine AF 2.1 (alfa release only is available today)

PurchaseAgent.
PurchaseAgent

PurchaseAgent.
setup

ExplorerEngager.
ExplorerEngager

New Behavior

ExplorerEngager.
action

SupplierAgent.
SupplierAgent

SupplierAgent.
setup

TeleportBehavior.
TeleportBehavior

TeleportBehavior.
action

create

new Behavior

SupplierAgent.TeleportBehaviorSupplierAgentExplorerEngagerPurchaseAgent

Pattern effect on the Single-Agent Structure
Diagram

The SASD diagram
is automatically
composed.
Designer could add
some
implementation
details when
needed (e.g.
parameters in
operations)

PurchaseAgent

PurchaseAgent
AGENT_TYPE : String = Purchase
version : String = 1.0

Purchase()
shutdown()
setup()
register_WithAMS()
register_WithDF()

<<Agent>>

Agent Behaviour

SimpleBehaviour

ExplorerEngager
destination

ExplorerCreator()
action()

12

The phases of the pattern
production/reuse process

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

XSLT

Multi-Platform Representation Platform-Specific Representation

Design
Representation

UML XML JAVA

Code generation from models

We use the Agent Factory code generation engine
It adopts 4 different levels of abstraction in pattern
representation:

Meta-pattern (platform independent) (1)
Pattern (platform specific, e.g. for FIPA-OS or JADE) (2)
JAVA skeletons (complete structure of the agent) (3)
JAVA complete code (structure+ inner parts of methods) (4)

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

XSLT

Multi-Platform Representation Platform-Specific Representation

Design
Representation

UML XML JAVA

1 2 3 4

13

Code generation from models - 2

Passage from one representation to another is obtained
with 2 XML transformations (XSLT) (1,2) and the
introduction of method codes from a DB (3)
The overall architecture is similar to the OMG MDA
(Model Driven Architecture)

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

XSLT

Multi-Platform Representation Platform-Specific Representation

Design
Representation

UML XML JAVA

1 2 3

Code generation phases

From models to code

14

The design level representation of the pattern

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

Design
Representation

UML

XSLT

constructor

setup

startTask

constructor
new Task

handleInform

constructor

setup

constructor
new Task

startTask

handleQueryIf

message()

constructornew Task

startTask

new Agent new Agent

QueryReplyTaskListenerQueryParticipantAgentQueryTaskQueryInitiatorAgent

Listener

constructor()
start()
handleQueryIf()

AgentShell

QueryParticipant

constructor()
setup()
shutdown()

TaskShell

QueryReply
Task

constructor()
start()
sendInform()
sendRefuse()

QueryInitiator

constructor()
setup()
shutdown()

QueryTask

constructor()
start()
handleRefuse()
handleInform()

TaskShellAgentShell

Design level
representation of the
pattern using UML
class and activity

diagrams

…
QueryReceiveTask

The XML meta-pattern representation

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

Design
Representation

UML

XSLT

• Meta-patterns are
platform independent

• Meta-patterns contain
all the common
elements of patterns
for different MA
platforms

…

Multi-Platform
Representation

XML

+AgentConstructor()
+AgentSetup()
+Shutdow n()

«Agent»
QueryInitiator

+TaskConstructor(in Conversation)
+TaskSetup()
+handleRefuse(in Conversation)
+handleInform(in Conversation)

«Task/Behavior»
QueryReceiveTask

15

The XML meta-pattern representation

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

Design
Representation

UML

XSLT

• Meta-patterns are
platform independent

• Meta-patterns contain
all the common
elements of patterns
for different MA
platforms

…

Multi-Platform
Representation

XML

+AgentConstructor()
+AgentSetup()
+Shutdow n()

«Agent»
QueryInitiator

+TaskConstructor(in Conversation)
+TaskSetup()
+handleRefuse(in Conversation)
+handleInform(in Conversation)

«Task/Behavior»
QueryReceiveTask

<Agent name="QueryInitiator">
<Visibility>public</Visibility>
<ExtendsAgentShell/>
<AgentConstructor>
<Code>constructor@generic_agent</Code>
</AgentConstructor>
<AgentSetup>
<Code>setup@generic_agent</Code>

</AgentSetup>
<Shutdown>
<Code>shutdown@generic_agent</Code>

</Shutdown>
<Task name="QueryReceiveTask ">
<Visibility>public</Visibility>
<ExtendsTaskShell/>
<TaskConstructor>

<Argoment type="Conversation" name="conv"/>
<Code>constructor@query_initiator_task</Code>

</TaskConstructor>
<TaskSetup>
<Code>setup@query_initiator_task</Code>

</TaskSetup>
<Method name="handleRefuse" type="void">
<Visibility>public</Visibility>
<Argoment type="Conversation" name="conv"/>
<Code>handle_refuse@query_initiator_task</Code>

</Method>

From meta-patterns to patterns – XSL rules

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

Design
Representation

UML

XSLT

• Each pattern is specific for
one of the selected platforms.

• In order to obtain a FIPA-OS
pattern we apply to the meta-
pattern the XSLT
transformation shown on the
right

…

<!—FIPA-OS SPECIFIC TRANSFORMATION->
<xsl:template match="ExtendsAgentShell">

<Extends>FIPAOSAgent</Extends>
</xsl:template>
<xsl:template match="AgentConstructor">
<Constructor name="{parent::*/@name}">
<Visibility>public</Visibility>
<Argoment type="String" name="platform">
</Argoment>
<Argoment type="String" name="name">
</Argoment>
<Argoment type="String" name=“ownership">
</Argoment>
<xsl:copy-of select="Code" />
</Constructor>

</xsl:template>
<xsl:template match="AgentSetup">

<Method name="setup" type="void">
<Visibility>private</Visibility>
<xsl:copy-of select="Code" /> …

Multi-Platform Representation

XML

16

From meta-patterns to patterns

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

Design
Representation

UML

XSLT

• The resulting pattern is
localized to a specific
platform

• The pattern is still general
and can be customized for
the specific application

…

Multi-Platform Representation

XML

+constructor(in platform : String, in name : String, in ow nership : String)
+setup()
+shutdow n()

«FIPAOSAgent»
QueryInitiator

+AgentConstructor()
+AgentSetup()
+Shutdow n()

«Agent»
QueryInitiator

Meta-pattern

Pattern

XSL
Transformation

From meta-patterns to patterns

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

Design
Representation

UML

XSLT

• The resulting pattern is
localized to a specific
platform

• The pattern is still general
and can be customized for
the specific application

…

Multi-Platform Representation

XML

+constructor(in platform : String, in name : String, in ow nership : String)
+setup()
+shutdow n()

«FIPAOSAgent»
QueryInitiator

+AgentConstructor()
+AgentSetup()
+Shutdow n()

«Agent»
QueryInitiator

Meta-pattern

Pattern

XSL
Transformation

<Agent_description agent_system="FIPAOS">
<Agent name="QueryInitiator">
<Visibility>public</Visibility>
<Extends>FIPAOSAgent</Extends>
<Constructor>

<Visibility>public</Visibility>
<Argoment type="String" name="platform"/>
<Argoment type="String" name="name"/>
<Argoment type="String" name="ownership"/>
<Code>constructor@generic_agent</Code>

</Constructor>
<Method name="setup" type="void">

<Visibility>public</Visibility>
<Code>setup@generic_agent</Code>

</Method>
…

17

Patterns introduction in the project generates
constraints

When a pattern is applied to a project, it modifies the context in which it is
placed (introducing new functionality into the system)

The relationship between the pattern and existing elements could be
expressed with a constraint.

A constraint is a rule composed of two elements:

A target that specifies what agent/task will be influenced by the rule.

A content that expresses the changes to be applied when the pattern is
inserted into the project (it could be an aggregation of attributes, constructors
or methods).

An example in FIPA-OS:

When we insert a communication task pattern into an existing agent, the
listener task (IdleTask) should have a handleX method to catch performative
acts of a particular type (i.e. QueryIf, Request, Inform, …)

IdleTask

constructor()
startTask()
handleQueryIf()

AgentShell

QueryPart icipant

construc tor()
setup()
shutdown()

TaskShell

QueryReply
Task

constructor()
startTask()
sendInform()
sendRefuse()

Constraints

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

XSLT …

Multi-Platform Representation Platform-Specific Representation

Design
Representation

UML XML JAVA

From the previous example:
here we have the constraint
used to introduce the
handleQueryIf method in the
IdleTask class of a FIPA-OS
agent

18

IdleTask

constructor()
startTask()
handleQueryIf()

AgentShell

QueryPart icipant

construc tor()
setup()
shutdown()

TaskShell

QueryReply
Task

constructor()
startTask()
sendInform()
sendRefuse()

Constraints

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

XSLT …

Multi-Platform Representation Platform-Specific Representation

Design
Representation

UML XML JAVA

From the previous example:
here we have the constraint
used to introduce the
handleQueryIf method in the
IdleTask class of a FIPA-OS
agent

<Constraint>
<Idle_task target="FIPAOS">
<Method name="handleQueryIf" type="void">
<Visibility>public</Visibility>
<Argument type="Conversation" name="conv"/>

<Code>a_function</Code>
</Method>

</Parent_task>
</Constraint>
…

From skeleton of classes to complete code

With the previous steps we obtained a skeleton of the agent with its
tasks/behaviors that is complete down to the method interfaces of
each class

In order to (partially) fill the skeleton with the remaining code,
action patterns are applied.

An action pattern is a portion of JAVA code realizing some kind of
behavior. It is specific for each platform.

For example the registration to the DF service (Directory Facilitator, the
yellow pages of the platform) it is part of the setup@generic_agent
action pattern and it is introduced in the setup method of the agent

Action patterns are stored in a database of pieces of code and the
correct one for each method is selected referring to the value of the
Code tag for the specific module (see the XML pattern
representation)

19

Constraints

Meta- pattern XSLT platform
specialization

XSL rules

pattern constraints
resolver

Constraints

+Java
skeleton

Action pattern

Java agent
complete code

Class
Diagram(s)

Activity
Diagram

XSLT

try {
registerWithDF(AGENT_TYPE);
DIAGNOSTICS.println("Registered with DF", this,DIAGNOSTICS.LEVEL_MAX);

}
catch (DFRegistrationException dfre) {

DIAGNOSTICS.println(dfre, this, DIAGNOSTICS.LEVEL_MAX);
String reason = dfre.getExceptionReason();
if (reason == null || !reason.equals(FIPAMANCONSTANTS.

AGENT_ALREADY_REGISTERED))
{

shutdown();
return;

}
} …

The action pattern for the
setup method of a generic

FIPA-OS agent

Multi-Platform Representation Platform-Specific Representation

Design
Representation

UML XML JAVA

Experimental results

20

Agents in a manufacturing company

The original application consists of more than 10 KLOCs
It has been originally developed without pattern reuse

Only a part of that application has been rebuilt in this
experiment.

The aim of our work was to evaluate the amount of code
reused and estimate the amount of time saved in the
design phase

Types of Agents involved: 9
Lines of code

> 2 thousands

Experimental Results – lines of code

21

Experimental Results – Design phase

We tried to evaluate the time difference in designing
without and with pattern reuse

No precise timetables were available for the original
development phase therefore only an approximate
estimation of the difference can be done

We estimate that about 25-30% of the overall design time
has been saved using patterns(*)

(*) We also considered a ‘confidence’ factor in evaluating it (the same
project is designed quicker the second time you do it)

Experimental Results – Overall product quality

During the development phase with patterns we did some
different choices (guided by available patterns) and the
resulting architecture was considerably improved

Software maintainability is increased because of the
easier understandability of the agents structure
(elementary bricks introduced by reused patterns are
easy to identify)

Maintainability will be further improved by documenting patterns with PCL
(attern Comment Language) in the next release of Agent Factory

22

Conclusions and future works

Conclusions and future works

Experimental results are encouraging but the amount of
code automatically produced (and saving in design/coding
time) depends on the dimension of the pattern repository

It is difficult to synchronize the DB of patterns for many
different implementation platforms

In the Agent Factory project we created a web-based
application that is available at: http://mozart.csai.unipa.it/af/

