University of Aarhus May 2003
Department of Computer Science

Ny Munkegade

8000 Arhus C

Denmark

Automatic Discovery of
Parallelism and Hierarchy in
Music

Master’s Thesis

Sgren Tjagvad Madsen
Martin Elmer Jgrgensen

Abstract

There are three main ideas in this thesis.

Graph representation for non-monophonic music

We have attempted to create a datastructure for the symbolic representation of
music. Based on the two most fundamental temporal relations found in music
scores, precedence and simultaneity, we have developed a graph representation
of music. A music graph may represent both monophonic and non-monophonic
music. The music graph is a powerful and flexible abstraction that can be
extended considerably to represent almost any symbol found in notated music
scores. It is our attempt to break out of the sequential/parallel dichotomy used
in so many representations in the literature, while still basing the representation
on precedence and simultaneity. We argue that a graph representation is a more
elegant representation, because it doesn’t necessitate repeated restructuring of
the data structure switching between the two fundamental modes (sequential or
parallel structures) during the analysis and segmentation of music.

Search for musical parallelism

To search for similarities in music graphs, we have implemented the SimFinder
system. The SimFinder uses a genetic algorithm to search for similarities in
a music graph according to different similarity measures. Whereas much of
the literature considers ’only’ monophonic music, the SimFinder may search a
music graph for either monophonic or non-monophonic similarities. We have
experimented with several similarity measures for both monophonic and non-
monophonic similarity. The SimFinder is a modular framework that allows new
similarity measures to be defined and easily substituted for the ones we have
defined. Similarity measures are built using a multiple viewpoint system that al-
lows us to analyse music from a multitude of perspectives at once. By designing
and mixing the right viewpoints we are able to specify what we are searching
for. The SimFinder is designed so that many different kinds of viewpoints may
be combined and tested experimentally.

Segmentation using a graph grammar

We describe a selection of past uses of formal grammars for the description of
music. Just how powerful a grammar must be to be able to adequately describe
music is a subject of debate, but it seems that something more than a context-
free grammar is needed. We argue the importance of hierarchy in music and
present a segmentation algorithm called the SimSegmenter for non-monophonic
music, which is based on the SimFinder. The SimSegmenter builds a graph
grammar to hierarchically describe a piece of music represented in a music graph.
We present some test runs on fugue and chorale subjects by J.S.Bach.

Keywords: automated music analysis, non-monophonic music, multiple view-
point systems, hierarchy and formal grammars, musical similarity and paral-
lelism, graph representation of music, symbolic representations of music, graph
grammar.

Contents

1 Introduction

2 Is music grammatical?

2.1
2.2

2.3

2.4

2.5

Musical structure Lo
Hierarchy L.
2.2.1 Hierarchy as an organising principle
2.2.2 Multiple hierarchies
Music and language L oo oL
2.3.1 Automaticmusic
2.3.2 Formal languages and grammars
Historical uses of grammars for music
24.1 Schenker. Lo o s
2.4.2 Barbaud (1960s),
2.4.3 Simon and Sumner (1968)
2.4.4 Buxton, Reeves, Baecker, and Mezei (1978)
2.4.5 Roads (1979), Moorer (1972), Winograd (1968)
2.4.6 Holtzman (1980)
2.4.7 Lerdahl and Jackendoff (1983)
248 Steedman (1984)
249 Conklin (1995)« . .
2.4.10 Cope (2001) oot
2.4.11 Graph grammars00
Summary e e e e e e e

3 Structure in music

3.1

3.2

3.3

4 The
4.1

4.2

4.3

Representing music 0 o000
3.1.1 Common Music Notation
3.1.2 Fileformats Lo
3.1.3 Temporal relations
3.1.4 Brinkman’s data structure
Musical parallelism 0 o000
3.2.1 Theme with variations
3.2.2 Parallelism types 0.
3.2.3 Parallelism as a basis for structure
3.2.4 Limitations to a parallelism-based analysis
Summary

SimFinder system

Overview e e e e e
4.1.1 Designo e
Graph representation Lo Lo
4.2.1 Construction of the MusicGraph
4.2.2 Using the musicgraph
Sequential similarities 000
4.3.1 Viewpoints oo
4.3.2 View comparators 0.
4.3.3 Similarity measures00
4.3.4 Genetic algorithmo

33
34
34
38
39
44
45
46
48
92
53
95

435 Results e e 89

4.4 Non-sequential similarities, 90
4.4.1 Introducing non-sequentiality in the SimFinder 91
4.4.2 Comparison of vertices 94
4.4.3 Comparisonofedges 102
4.4.4 Comparison of bags of subgraphs 105

4.5 Summary e e e e e 109

Graph grammars 113

5.1 Extensions of the MusicGraph 113

5.2 Extensions of the SimFinder 118

5.3 Sequential compound subgraphs 119
5.3.1 Non-sequential compound subgraphs 121

5.4 Segmentation oL Lo 124
5.4.1 Recursive segmentation algorithm 125
5.4.2 The SimSegmenter’s use of the SimFinder 127
5.4.3 Discussion and relatives of the SimSegment algorithm . . 128
5.4.4 Building a graph grammar. 129

5.5 Running the SimSegmenter on two pieces of J. S. Bach 134
5.5.1 Partwise sequential segmentation of Jesu meine Freude . 136
5.5.2 Partwise sequential segmentation of Fugue in C minor . . 137
5.5.3 Non-partwise non-sequential segmentation of Jesu meine

Freude 141

5.6 Summary L e e e 143

Conclusion 145

6.1 Improvements and extensions of the SimFinder system 146
6.1.1 The GA and the definition of musical similarity 146
6.1.2 Themusicgraph 147
6.1.3 The SimSegmenter 0. 148
6.1.4 Multiple hierarchies 148
6.1.5 Elaboration, simplification, reduction. 148
6.1.6 Structure in structures 149
6.1.7 Ambiguity Lo 150
6.1.8 Co-evolution of similarity measures and similarity state-

ments Lo e 150
6.1.9 Applying SimFinder to audio arrangements 151
6.1.10 Applying SimFinder to non-western music 152
6.1.11 Applying SimFinder to other areas than music 152

SimFinder design and implementation 153

A1l UML diagram oot 153

A2 TImplementation 154

SimFinder performance and tuning 155

B.1 Varying the flattening constant ¢ (seqMD) 155

B.2 Varying the bonusValue parameter (seqMD) 156

B.3 Varying the crossover parameter 157

B.4 Varying the mutation parameter 158

B.5 Varying the ’fresh blood chance’ parameter 159

ii

B.6 Varying the number of mutate operations per mutation 159

B.7 Size and fitness of the best individual over 300 generations 160
B.8 The fitness landscape L L. 162
B.9 An evolving non-sequential similarity statement 164
SimSegmenter examples 168
C.1 SimSegmenter run with nonSeqVertex PLIOS 168
C.2 SimSegmenter run with nonSeqEdge DAPAL, -DIAL, and -DFTAL169
Results from Simsegmenting 171
D.1 Segmenting a chorale partwise sequentially 171
D.1.1 The segmented score 171
D.1.2 Thefinalgraph 172
D.2 Simsegmenting a fugue partwise sequentially 173
D.2.1 The segmented score 173
D.2.2 Thefinalgraph 175
D.3 Simsegmenting a chorale non-partwise non-sequentially 176
D.3.1 The score when segmented 176
D.3.2 Thefinalgraph 177

D.3.3 The graph grammar 178

iii

iv

1 Introduction

Most music-loving people know the feeling that “I’ve heard this passage be-
fore, but where?” The situation illustrates our ability to recognise similarities
between music passages or pieces, that may be structurally very different — an
ability that seems so natural and easy that it is all the more frustrating to realise
how hard it is to simulate human analysis of music using a computer program.
But computer scientists love tough problems, and we in particular are also very
fond of music.

An automated analysis of music faces several non-trivial problems. Mu-
sic is multi-faceted and multi-layered. A thorough analysis of a piece must take
into account metrical hierarchies, grouping and reductional hierarchies, tension-
relaxation relations, phrasing and harmonic hierarchies, and musical parallelism.
These interact in complex ways, and it is a challenge to isolate a single suffi-
ciently independent area to concentrate a study on. The interconnectedness also
has a price in computational complexity that must be coped with in an analysis
program.

Most music is non-monophonic. Many studies in computational musicol-
ogy have concentrated on monophonic music because it is easier to describe
sequentially in formal structures. Once we attempt to extend an analysis to
non-monophonic music, the computer representation of the music is prone to
the “sequential-parallel dichotomy”, which constricts subunits in hierarchical
structures to be sequences or simultaneities. This is not ideal. There is a chal-
lenge to find a representation that is flexible and strong enough to be suitable
for the analysis of non-monophonic music.

Musical knowledge is often tacit knowledge. If humans can be said to process
musical input, many of us learn to do so simply by repeated exposure to music,
either played live or recorded. Many constraints and conventions in Western
tonal music can be learnt in this way without having been taught or formulated.
There is thus a formalisation challenge, when we strive to achieve computability.

These are three major challenges to an automated analysis.

In the 1970s and 1980s, computational musicology took what we call a ’lin-
guistic turn’. The inspiration came from generative grammars, a tool developed
in linguistics. The most famous book on music and generative grammars is
Lerdahl and Jackendoft’s A Generative Theory of Tonal Music (GTTM). In-
novative at the time, this work remains impressive for its sharpness and tight
integration of musical knowledge into formal descriptions of music. However,
there are three points where the GTTM could be improved. First, it relies on
but does not define musical parallelism. Secondly, it does not give an explicit
account of non-monophonic music, and thirdly, the GTTM is not as formalised
as to be a computational theory of music analysis. Computability was not the
goal of the GTTM, but it is to us.

We have no ambitions of extending the GTTM. Rather, we would like to pick
out these three points as interesting problems that need a solution and see how
far we can get. Our subject is automated musical analysis on the symbolic level.
We thus do not touch upon audio processing. Like Lerdahl and Jackendoff, we
have chosen to remain inside the idiom of Western tonal music.

The ideas are the following: a graph representation for the analysis of non-
monophonic music, a multiple viewpoint system to search for musical parallelism

in the music graph, and a segmentation algorithm to analyse music in the graph.
The segmentation algorithm uses the multiple viewpoint system to locate mu-
sically parallel subgraphs in the graph; it then substitutes the subgraphs with
simpler elements and proceeds to do this in several layers, giving a hierarchical
structure of nested abstractions that are essentially production rules in a graph
grammar. The thesis is thus an exploration of how we could build a structural
analysis of music using a method that not just incorporates but is based on par-
allelism. These are our attempts to cope with the problems of parallelism and
non-monophonic music. As for computability, we have implemented the ideas
in Java and tested our ideas on music of J. S. Bach.

Chapter 2 presents the idea of hierarchy in music and a number of uses of
grammars for the description of music. Chapter 3 presents some considerations
of the computer representation of music and of the concept of musical paral-
lelism. Chapter 4 presents our SimFinder system that we use to search for simi-
larities, and chapter 5 presents our segmentation algorithm, the SimSegmenter,
as well as the evaluation of some test runs on a fugue and a chorale subject by
J.S.Bach. We think there are a number of interesting possible extensions to the
SimFinder system, which we present in the last chapter, chapter 6.

2 Is music grammatical?

We would like to give an impression of some of the ways in which it makes sense
to describe music grammatically.

2.1 Musical structure

As listeners we tend to hear music not as one note at a time, but instead we
recognise the melodies or sounds that they form. In fact the most prominent
task of a conductor or musician is to phrase the music into natural and logically
bounded entities, exposing natural sections in the music and thus making the
music more understandable to the listener. Of course this process is influenced
by human judgement, and therefore there is not one sole way to hear or play a
piece of music. But guided by the performers, listeners seem to have a consider-
able amount of consensus about what belongs together in deciding the extension
of the units. In general, it seems that the low level structural units are most
easy to agree on (notes, chords, motifs), and the same is true about the high
level units (movements and stanzas). The intermediate units are a more prone
to differences in subjective judgement.

In The New Grove Dictionary of Music and Musicians, Whittall states as a
fact that “an organizing impulse is at the heart of any compositional enterprise,
from the most modest to the most ambitious.” [Whi01] By structured is meant
that music is decomposable into smaller units and subunits (structures) — it
has a well defined form. The organisation is then the division into sections and
the relation of those sections to each other. The discussion of musical form is
of great interest in music pedagogy: one can learn how musical structures can
be put together and thereby gain a deeper understanding of some piece. That
structure is inherent in music is witnessed by common musical terminology;
there is an entire vocabulary describing musical subunits like notes, chords,
motives, themes, phrases, measures, parts, stanzas, and movements etc.

Seen from a historical view, the structured form of music has always been
a matter of importance. Some types of organising principles have been more
used than others. In popular music, for example, a principle of alternating
between verses and chorus has been used for hundreds of years (as for example
in Danish folksongs and in contemporary pop music). Composers of art music
have developed more elaborate formtypes like sonata and minuet. The formtypes
are generalisations of the form of a number of actual pieces. The pieces can
be logically segmented in their own right, and thereby revealing a common
organising principle — the formtype. As time has passed and the tonal language
in the 20th century has become more and more complicated, form has been
given greater importance. On a lower structural level, one can speak of pieces
structured by the composition principles used when composing the piece. The
serial music of A. Webern and A. Schonberg is an example of this. Also in
baroque music we find structurally important consistent ideas constructing the
music. For example, some music, like a fugue, is based on the principle of
imitation; most of the musical material can be generated from alterations of
a handful of phrases in it. In contemporary music there are also examples of
music generated from a limited set of ideas, as for example in the tintinnabuli
style of Arvo Part or minimalistic music from Steve Reich. Of course many
sorts of formshaping ideas have been tested as a basis for shaping music. Even

the golden section principle has been pointed out as an organising principle on
many levels of the music, for example in Erné Lendvais studies of the music of
Béla Bartok.

But what does it take for a structure to be noticeable by a listener? There are
of course more than one feature involved. One important aspect is parallelism.
Parallelism covers repetition of phrases in different variants: transposition, elab-
oration and simplification. What parallel passages have in common is that they
sound more or less similar in spite of the differences in the note material. We
have been concentrating a lot on parallelisms, and will return to the topic in
section 3.2.3. Another structuring circumstance is the fact that passages can
sound initiating or ending, in a tension-relaxation relation, and never in the
opposite direction (i.e., ending with tension). Again listeners seem to agree
to a considerable extent on what sounds opening and what sounds closing, or
on what sounds tensing and what sounds relaxing. To give an example, most
people will agree that the first measure in figure 1 sounds as an opening, and
that the following measure sounds closing. The phrase cannot end after the first
measure, and the second measure would act as a very surprising beginning.

(o) Py

)" 4 1 I]
ber——+|o——wsr= |
[J) I | Eﬁ I

Figure 1: The phrase consists of an opening and an ending.

Another example is that almost every melody in any songbook will end on the
root note of the tonic. It seems that anything else does not meet our expectations
of a definitive closing. Furthermore passages that are good continuations — which
holds the tension between the tension points — do occur. Lerdahl and Jackendoff
[LJ83] give further four main structuring features: grouping of phrases, the
metrics of the piece, location of more import events and a formalisation of
the tension-relaxation based idea. We shall describe Lerdahl and Jackendoff’s
theory in a little more detail in section 2.4.7.

But one thing is form, and another content. To have an understanding of
the organising structure of music does not mean that we are able to simply go
ahead, fill out an empty form and write a great piece of music. A well tested
structure helps the process along the way, but a whole is that which has a
beginning, a middle and an end, and the connection between the elements must
not be arbitrary or too obscure. So it is difficult to separate form and content,
since they are two supporting sides of the musical piece.

2.2 Hierarchy

Grammars are hierarchical structures. In general, hierarchy is a very important
ways of structuring knowledge, and there are hierarchical structures in music.
2.2.1 Hierarchy as an organising principle

In 1962, Herbert A. Simon proposed the idea of a general systems theory, ab-
stracting properties common to complex systems known from physical, biologi-

cal or social systems [Sim62]. The central theme was that “complexity frequently
takes the form of hierarchy, and that hierarchic systems have some common
properties that are independent of their specific properties.” [Sim62, p.468] If
this is true, some of Simon’s remarks on systems described in physics, biology
or in the social and behavioural sciences might be applicable to hierarchies in
music too.

A hierarchic system, in Simon’s words, is “a system that is composed of inter-
related subsystems, each of the latter being, in turn, hierarchic in structure until
we reach some lowest level of elementary subsystem.” [Sim62, p.468] Such rela-
tions between subsystems are known from physics: atoms, taken as elementary
particles, may be combined to form more complex systems like molecules, but
the atom in itself may also be viewed as a complex system of even smaller parts.
In biology, the subsystems taken to be elementary may be organs, tissue, cells,
proteins or amino acids, depending on the purpose at hand. Descriptions of so-
cial interaction employ terms as ’person’, 'colleague’, ’boss’, ’family’, ’friends’,
which suggest a limited number of relations connected to the individual; not
all people communicate with all people, and this grouping of individuals often
goes hand in hand with hierarchic descriptions, e.g. of formal organisations.
The employees are subordinate to their immediate boss or leader, who in turn
may be subordinated a higher scale leader. Symbolic systems exhibit hierarchic
structure too, such as the division of this thesis into chapters, sections, para-
graphs, sentences etc., and music as a symbolic system also exhibits hierarchy
in terms of movements, parts, themes, and phrases.

The use of hierarchy as an organising principle could perhaps be advanta-
geous, giving the upper hand in an evolutionary perspective. Simon illustrates
the idea with the parable of the two watchmakers, each assembling watches
from one thousand small elementary pieces. Every time a telephone call forces
them to put aside the watch being assembled, it falls apart, and the work must
start over. But one watchmaker devises a scheme in which bigger stable sub-
parts may be assembled from ten pieces, and even bigger parts of the final
watch can be built from ten of these stable subparts. A telephone call then
will wreck only the assembly of a ten-piece subpart, not of the entire thousand-
piece watch, making him more productive and prosperous in the long run. The
central concept is that of “stable intermediate forms”, which is what allows us
to see a complex subsystem as a unit among other units, or a component of
a greater complex system. The power of hierarchy as a perceptual organising
principle is perhaps more convincingly illustrated when applied to information
processing: a completely unredundant complex structure is its own simplest de-
scription. But many structures have some amount of redundancy that may be
identified and abstracted away as component structures, thus giving a simpler
(hierarchic) description of the complex structure through an appropriate recod-
ing. It is simpler in the sense that we need less information (e.g. measured in
number of characters or bits) to describe the same structure. Thus hierarchy
can be argued to have strength as a general perceptual strategy, allowing us
to understand, describe and memorise more complex systems, and their parts,
than would otherwise have been possible. Whether the success of hierarchical
description arises because the world possesses so many inherently hierarchical
structures awaiting our description or because our perceptual apparatus is by
default hierarchically inclined is left to philosophical debate.

The fundamental whole-part decomposition ability is used e.g. in mathe-

matical problem-solving such as proving theorems. We have a desired goal (the
theorem) and start out constructing a proof from axioms and known theorems.
The search is like finding one’s way through a labyrinth, iterating through a
series of transformations of the axioms. Some transformations we recognise as
useful, leading us closer to the actual theorem we want to prove. This fact makes
such transformations, e.g. a lemma, instances of “stable intermediate forms”
that the further proof may build upon without starting all over, if the chosen
pathway in the proof should nonetheless turn out to be a dead end. We just
revert to some previous stable intermediate form and try again. The recognition
of useful, or stable, intermediate forms — what Simon calls ’selectivity’ — requires
some form of information feedback to guide the search. He identifies two such
kinds of feedback: first, the selective trial and error method employed in finding
the mathematical proof requires us to be able to select stable intermediate lem-
mas. This is analogous to organic evolution, in which “various complexes come
into being [...] and those that are stable provide new building blocks for further
construction,” [Sim62, p.473] thus being selected and tried through further evo-
lution. A second source of selectivity, previous experience allows us to quickly
identify some intermediate solutions as useful and discard others. A biological
analogy for experience could be reproduction, allowing earlier “solutions” to the
search for most fit individuals to be passed on and modified through inheritance
of genetic material.

Whether convinced or not about the pervasiveness and importance of hi-
erarchy as a general perceptual strategy, it seems likely that some amount of
hierarchical structure may be found in music. Remember that hierarchical struc-
ture need not be (and often is not) based on relations of power, subordinance,
or importance, as e.g. in the boss-employees structure, or military hierarchy
and ranking. Hierarchy as discussed above may just as well describe relations
of containment — of spatial or temporal arrangement, in which some whole is
built up of parts. It is this whole-part relation that interests us in connection
with music. Pick any pop song from any radio station; most people will not
have difficulties identifying some part as “a verse” and some other part as “the
chorus”, or “the refrain”. Already a partitioning has begun, and partitioning
the verse further into chords and melodic phrases does not make these less im-
portant than, say, the entire refrain. Chords and phrases are simply smaller
constituent parts, but without them, the song would not be what it is. We
return to the idea of evolving hierarchy in section 5.6.

2.2.2 Multiple hierarchies

Dannenberg comments in his Brief Survey [Dan93] that a single hierarchy system
is inadequate to represent music scores because score notated music most often
contains multiple interweaved hierarchies. “Notes can have several beams, and
beams are often broken to help subdivide rhythms, so a multilevel beam hier-
archy arises naturally. Phrase markings, ties, and slurs form another multilevel
hierarchy that is completely separate from beaming.” [Dan93, p.21] Dannenberg
lists several other possible hierarchies. Voices or instruments can be considered
in a hierarchy, where e.g. the solo violin is a member of the 1st violins, who are
part of the violins, who are part of the strings, who are part of the orchestra.
Segmentation can be done in hierarchically ordered units such as movements,
sections, and measures. Phrases may cut across sections and develop their own

hierarchy; and chords could e.g. be structured hierarchically after harmonic
importance, or distance to the tonic. Some of these different structural hierar-
chies may converge on some occasions but most likely will also diverge on many
others. Thus describing an entire piece through a single hierarchy is inadequate.

2.3 Music and language

The comparison of music and language has generated a considerable amount of
interdisciplinary debate involving fields like music theory, philosophy, linguis-
tics, semiotics, cognitive psychology, artificial intelligence and computer science.
There are heated exchanges of opinion on the status of music as a conveyor of
information and the possibility of semantically loaded music. According to Ler-
dahl and Jackendoff[LJ83], a literal coherence between music and linguistics is
doubtful. Language has a semantic content; a sentence carries a meaning, which
we are most often able to agree upon, but there is no such agreement in the un-
derstanding of a musical phrase. Linguistic methods can be adapted, however,
to describe music. A generative grammar can be used to describe the structure
of infinitely many instances of musical pieces. We will not go much further into
the existing debate on musical meaning, only to hint at a possible interpretation
of 'meaning in music’ in relation to grammatical descriptions. This little idea fits
into our use of the multiple viewpoint system to build hierarchical structures.

The linguistic turn What we have studied most in this project is what we
call the linguistic turn in computer music research. There seems to have been a
collective euphoria over the strength of much of the pioneering work in linguis-
tics done in the 1950s and 1960s by researchers such as Chomsky. Generative
grammars are a very powerful abstraction, and by the mid 1970s, the enthusi-
asm washed over the community of researchers in cognitive and computational
musicology. We imagine that at the time every computational musicologist had
a generative grammar in his back pocket. The most renowned publication re-
mains Lerdahl and Jackendoff’s A Generative Theory of Tonal Music (GTTM)
from 1983. It seems that by the mid 1980s, there was general realisation that
music as a problem domain is different from language. In any case, simply
throwing a set of linguistic tools at the musical domain is not enough, as is
also underlined by the many attempts to incorporate musical knowledge into
grammars and to find grammar variants well suited to the description of music.
To judge by the number of publications, by 1985 the linguistic turn had ebbed
away. To our knowledge, only very recently has there been renewed interest and
major publications on the topic of formal grammars and the computer analysis
of music. E.g. David Temperley’s 2001 book The Cognition of Basic Musi-
cal Structures [Tem01] extends and refines many concepts from Lerdahl and
Jackendoff’s GTTM. In section 2.4, we present some of the exponents of the
linguistic turn.

2.3.1 Automatic music

In Grammaires, automates et musique [Che02], Marc Chemillier remarks that
the technological development in recent years has provoked a two-fold change
in our relation to music: in the creative process, and in our consumption of

music. With the advent of the sampling technique that is the founding prin-
ciple of loop-based music, e.g. in the genres of hip-hop and electronic music,
the activity of composing new music is gradually displaced from the traditional
compositional activities (such as composing motives and themes and combin-
ing them with harmonies, bass figures, percussion rhythms, etc.) towards the
activity of sequencing and mixing pre-existing loops or “samples”. This recy-
cling and repeated sequencing of pre-recorded material can be effected manually
but in fact lends itself well to a macro-like automatisation. Using grammars to
describe and structure music is a natural prolongation of this automatisation.
Particularly, composition using a combination of different representational enti-
ties (audio fragments, midi sequences, sounds generated by software synthesizers
that are controlled by midi signals or otherwise, etc.) could perhaps be inte-
grated in an elegant way using grammars.

Although the record industry for twenty years has slept through what seems
like the most promising development to their business, Internet distribution of
music recordings is now (and has been for a number of years) technologically
feasible and potentially very lucrative. Albeit in softer words, this is the second
change pointed out by Chemillier [Che02], also entailed by technological devel-
opment. Distributing music over the Internet cancels the material necessity of
a single, unique master record that is mass-reproducible at low cost in vinyl or
compact disc. In fact, on the net, there might be as many versions of the musical
work as there are downloads of it, if the consumer is allowed to specify certain
parameters for the desired piece of music. Systems for interactive television are
being built at this moment, so the idea of interactive music systems is not at all
revolutionary. What might upset some, though, is that such a change affects the
very idea of a musical work of art; the cuvre becomes not a unique piece of mu-
sic, but a programme able to generate pieces of music within a certain frame. A
pioneer of algorithmic composition, Pierre Barbaud introduced this notion of a
musical work as a programme in the 1960s and also worked with formalisms like
finite automata to generate music (see section 2.4.2). We know from the theory
of computation that certain classes of automata are equivalent to certain classes
of grammars, and thus the “ceuvre as a generative programme or automaton”
available on the net for user customised music download suddenly sparks new
relevance into the investigation of grammatical descriptions of music.

Another very promising application of automatic music descriptions is the
generation of context-dependent music for computer games. The interactive
nature of gaming puts new requirements on the generative mechanism, as does
the overall setting of the game: music is supposed to be a mood-supporting or
mood-inducing effect that works in conjunction with the rest of the audible,
visual and motor-sensitive input supplied to the user by the game to create the
desired illusion.

The section title Automatic music has a double edge: it can refer to music
created through automated composition, where little or no human intervention
is needed once the generating programme or automaton has been built. Or, it
can refer to sets of musical structures as described by automata, or equivalently,
generative grammars. Inspired by Chemillier’s idea, we imagine a scenario in
the not too distant future where e.g. electronic music is sold not in mp3 files
but in extended grammar files specifying legal structures and some probabilistic
control mechanisms that combine basic drumloops, instrument sounds, effects,
etc. needed to generate and synthesise a piece, or in fact, many pieces. In this

scenario, we download not the newest song by our favourite band but the newest
song space. The song space is a file played not by WinAmp but by WinGener-
ator, an interpreter for the downloaded grammar files. The sound produced
by the interpreter has some particular feeling to it, all the while it actually
produces a different composition each time it is invoked. For copyright reasons
and the secrecy of private work methods, such a scheme will probably be more
successful if the finished grammar files are compiled or encrypted to disallow
reverse engineering that would discover the grammar and associated building
blocks of a particular song space. On the practical side, there is an implemen-
tation challenge in ensuring that the generative mechanism that interprets the
grammar doesn’t require excessive amounts of computing power.

Perhaps such creation and distribution would be more prone to commercial
success with electronic music than with e.g. classical music. As mentioned in
the introduction, this thesis is more specifically concerned with the abstract,
structural properties of classical Western tonal music, as found in a traditional
musical score, than with electronic music or any audio representations of music.
We do consider in thought, however, a way to adapt the SimFinder system’s
search for parallelism and hierarchical structure to sequencer/sampler-based
compositions (section 6.1.9).

2.3.2 Formal languages and grammars

The central question of interest to us concerns formal languages and musical
structure: can musical structure be described by formal languages, and if yes,
what kind of language is necessary? This is not easily answerable, if an answer
exists at all. Let’s start with a brief recapitulation on formal languages, their
descriptive power, and then proceed to an account of some of the historical
approaches to the use of formal grammars to describe music.

The theory of computation has taught us that both automata and grammars
may be used to describe formal languages. A formal language is a set of strings of
symbols, and an automaton is able to recognise strings that are in the language
it describes, and reject strings that are not. Similarly, grammars can be said
to generate their language, in the sense that all strings, and only strings, in the
language of a given grammar may be derived, or generated, by applying the
production rules of the grammar.

The Chomsky hierarchy divides the formal grammars into classes; Type 3
is the most simple class, namely the regular grammars, whose languages alter-
natively may be described by finite automata. Type 2 denotes the context-free
grammars (CFGs), which are equivalent to push-down automata, Type 1 de-
notes context-sensitive grammars, the equivalent of linear bound automata, and
Type 0 denotes the so-called free grammars, equivalent to Turing machines.
Type 3 and 2 grammars are computationally tractable, but type 1 and 0 gram-
mars are more difficult to work with. There are many modifications to CFGs
that attempt to augment their expressiveness while still keeping the context-
freeness; we shall see some examples in the next section (2.4). John Martin’s
Introduction to languages and the theory of computation [Mar97] is a good text-
book on languages, grammars, and automata.

2.4 Historical uses of grammars for music

Perhaps we have not yet spelled out completely what it means to describe music
using a formal grammar. Recall that a formal grammar through its production
rules generates a set of strings of symbols. This set is referred to as the language
described by the grammar. Music can be given a very detailed symbolic rep-
resentation, most often in the Common Music Notation!. A sequence of notes
and other musical symbols, then, is a string of symbols that lies in some set, or
language, of symbol strings. This language can be described, or generated, by
a generative grammar, but we don’t know what rank in the Chomsky hierarchy
the grammar must have. This depends on the complexity of the string.

If we should succeed in finding a suitable grammar for, say, a Mozart piano
sonata, the generative grammar will also be able to generate many other pieces.
One of the most enchanting ideas from the literature of musical grammars is
that of finding a grammar to describe a set of pieces (e.g. all Mozart’s piano
sonatas), or the entire ceuvre of a composer, or a musical style as such. The idea
is that there are some common stylistical traits to such a set of musical pieces
that may perhaps be modelled in a generative grammar. Finding a grammar
that generates an entire musical style could be done in two ways: the top-
down, or knowledge engineering approach, in which a set of production rules
are manually determined; the other, bottom-up, or empirical induction approach
would require an analysis of at least a representative subset of the style and a
grammar induction method to combine the analytical results into a coherent
set of production rules generating all the pieces in the style. Some attempts
have been carried through with success, e.g. Steedman’s grammar for jazz chord
sequences (see section 2.4.8) below. Steedman makes extensive use of knowledge
engineering, embedding musical knowledge in the productions of his grammar.

However, clearly not all music is well described as strings of symbols. Non-
monophonic? music poses problems, because if we stick to grammars that gen-
erate strings, we would have to describe a non-monophonic piece in terms of
strings. If each part in a four-part piece is monophonic in itself, then each part
can be described as a string of symbols, but there must be some interaction
or correlation among the four parts that makes a representation consisting of
four separate grammars inappropriate®. Otherwise any parts could be combined
with any parts to produce good music, which is clearly not the case. Also, we
cannot expect the piece to be well described as a sequence of sets of simulta-
neous notes, like a chord sequence. The problem arises e.g. with polyphonic
music, where parts operate in a melodically and rhythmically independent way.

Not surprisingly, most approaches have focused on monophonic music. Once
non-monophonic music is taken up, the sequential/parallel dichotomy inherent
also in the two approaches loosely described above, rears its head. Our graph
representation is an attempt to break out of this representational dualism. What
we need then, is a graph grammar to describe a (set of) music graph(s). The
sequential /parallel dichotomy is described in section 3.1.3. The music graph is
described in section 4.2.

1See section 3.1.1.

2For an explanation of the terms monophonic, non-monophonic and polyphonic music, see
the beginning of section 3.

3And there are no exceptions for string quartets!

10

2.4.1 Schenker

Heinrich Schenker, a much referred-to German music analyst and thinker, is
regarded by many as the founding father of a more formalised movement in
music theory, aiming to describe musical structure through hierarchical struc-
tures. Schenker’s analysis methods, however, are not as formal as to be readily
implemented as an automatic analysis program.

Schenker has proposed a semantics of the music described from a tonal point
of view. A musical piece is a journey in the tonal space from one key and through
others back to its origin. His analytic methods are based on describing hierar-
chies of stable tonal centres. On each level some most stable events are taking
control or dominating what else is going on. We would like to cite David Cope:
“Schenker (1968-1935) demonstrated that music could be understood on three
principal levels: foreground, middleground, and background. His analytical ap-
proach involved the revealing of each level as one approached a work’s Ursatz
(kernel or fundamental structure). This included a stripping away of elabo-
rations, modifications, or transformations of the foreground through a unique
notation that could demonstrate that non-consecutive elements can resolve or
extend foreground elements.” [Cop91, p. 37]

The notion of Ursatz is furthermore supposed to be equal for all pieces or
movements. The Ursatz consist of two things. The Urlinie (fundamental line)
which consists of a diatonic stepwise descent to the root from the 3rd, 5th or the
octave. The other fundamental thing is the the bass line, which encapsulates
the harmonic motion of the piece as a tonic followed by the dominant and then
returning to the tonic.

2.4.2 Barbaud (1960s)

Barbaud has built several music composition programs based on finite automata.
The programs comprise a Markov chain whose output is transformed by a ra-
tional transducer into a piece of music. A Markov chain is similar to a finite
automaton, but additionally has a probability associated with each transition
between the states of the automaton. Barbaud’s Markov chain produces the
harmonic framework for the piece (like a figured bass notation). The proba-
bilities in the Markov chain are set by Barbaud himself, who points out that
his automata are only examples and encourages his readers to construct their
own automata. A rational transducer is a finite automaton that accepts strings
in a regular language and outputs strings in another regular language; each
transition ’'reads’ a symbol from the input string and ’writes’ another symbol
as its output, thus transforming the input. The role of Barbaud’s transducer is
to add melodic motives to the harmonic framework and thereby complete the
composition. Motives are chosen randomly from a table of known motives and
transposed diatonically (i.e. within the appropriate scale) to fit the harmonies
dictated by the Markov chain. The rhythm of the chosen motif may also be
altered to fit the underlying bass line. Chemillier [Che02] gives an example of a

two-voice counterpoint piece generated by one of Barbaud’s programs®.

4GSeveral audio and midi examples of computer generated music are available from Chemil-
lier’s web page at http://users.info.unicaen.fr/~marc/publi/grammaires/grammars.html

11

2.4.3 Simon and Sumner (1968)

In 1968, Herbert Simon and Richard Sumner propose a “language of musical
pattern” [SS68]. The hypothesis is that “musical patterns, even when quite com-
plex and sophisticated, involve only repeated use of the few simple components
[...]: ’alphabet’, ’same’, 'next’, and rules of combination.” [SS68, p.222]. The
article describes a formal representation of musical patterns and then outlines
a method to induce patterns from a score. Musical patterns have several traits:

1. they involve periodicity, or repetition, and often with variation),

2. patterns make use of alphabets, i.e. sets of symbols over which their de-
scription is constructed.

3. patterns may be compound, made up of subpatterns that in themselves
are arrangements of symbols,

4. patterns generally possess phrase structure marked in the score by various
punctuation marks (e.g. bar lines, fermata, etc. These are used in the
pattern induction program),

5. and patterns may be multidimensional, involving information in dimen-
sions such as pitch, rhythm, harmony, dynamics.

An alphabet could be e.g. the ’diatonic alphabet’ of all notes in the C major
scale. A pattern p could then specify that its ith symbol x,; was, say, the second
symbol in the diatonic alphabet (a D, if the diatonic alphabet is in C major). It
could also specify that its ith symbol was NEXT(DIAT,z i), meaning that x,; was
the next symbol in the diatonic alphabet (DIAT) counting from the kth symbol
in pattern 7. This could be used to describe a transposition. Another relation
on symbols is SAME which tells us that two symbols or patterns are exactly alike.

The pattern induction method consists in combining cues taken from rhyth-
mic and harmonic elements in a score. KE.g. the first eight measures of a
Beethoven Dance® (see figure 2) are segmented into groups based on patterns
of note lengths:

(14+144)2(14+14+14+14+141) (1414141414 1) (14+144)? (14141414 1+1) (2+4)

where each number 1, 2 or 4 represents the length of a given note in the sequence
(where 1 is an eighth) and '+’ signifies immediate precedence, or concatenation
in string terminology. This is rewritten as:

(1+1+4)2((1)%)2(1+1+4)2(1)5(2+4)

and used to show that the rhythmic pattern of the chosen eight bars follow an
ABAC form, where B=((1)%)? and C=(1)%(2+4). Simon and Sumner do not
mention it, but the expression arrived at is a regular expression, that could
alternatively be described by a regular grammar. One wonders if they thought
all rhythmic structure in music can be described in this way.

The outlined algorithm builds on the idea of sequence extrapolation, known
from psychological tests where humans are asked to give the next symbols in
a sequence of letters or numbers. But the authors concede: “Some aspects
of the performance of the pattern inducting program for music have been hand

5The article does not tell us where this dance is published.

12

/RN

Figure 2: The start of the Beethoven dance used as an example by Simon and
Sumner. (They do not specify which dance.)

simulated, but construction of the actual computer program has not yet begun”.
We find the further description too vague to tell how successful the approach
would be. On the other hand, if the program was implemented at all, and had
been a huge success, why aren’t everyone in the field referring to it by now? The
article seems a little marked by the optimistic pioneering spirit of the 1960’s early
thoughts on computational musicology and on formal representations of music
usable in computer programs, but it does give us some cues to and ideas of the
characteristic properties of patterns we can expect to find in music (see the list
above). The subject of how to locate patterns based on musical characteristics
is discussed further in sections 3.2.3 and 4.

2.4.4 Buxton, Reeves, Baecker, and Mezei (1978)

In the late 1970’s, hierarchical structure in music was considered in the Struc-
tured Sound Synthesis Project (SSSP) at the University of Toronto, Canada.
SSSP developed a composition tool to work with synthesized sounds and there-
fore focused on the needs of the human composer when interacting with the
machine. In [BRBMT78], four basic composition tasks are listed:

1. The definition of a palette of timbres using different sound synthesis tech-
niques,

2. Score definition, i.e. composing the entire pitch-time structure of the piece,

3. Orchestration, i.e. combining elements of the composed structure with
different sounds from the timbre palette, and

4. Performance of the material, from the smallest constituent part to the
entire piece.

The described sound synthesis techniques used to define timbres are different
ways of controlling a synthesizer; one would expect that newer versions (ie.
newer than 1978) of the SSSP also include the ability to load and manipulate
recorded sounds in a sampler-like way. An important point in the SSSP is not
to impose any a priori ordering on these four tasks, to allow the composer to
jump freely back and forth between them.

What interests us most about the SSSP is the data structure used in the
score definition task. There are different opinions of what a score is. At one end
of the spectrum is the view that a score is a set of notes occurring at different

13

times. In hierarchical terms, this gives a very flat tree structure. At the other
extreme, a score can be seen as a single entity®. But both views treat music
“chunk-by-chunk”, either at the note level or at the score level. What remains
to be defined is the intermediate structural levels of a composition.

A score is defined as “an ordered sequence of musical events”[BRBMT78,
p.11]. Here, we interpret the word ’sequence’ not to mean that musical events
are ordered in a strict temporal sequence”, which would prohibit simultaneous
notes and thus chords; rather, we take it to mean ’an ordered collection’ of
musical events, and further: “By 'musical event’ we mean simply an event which
occurs during the course of a composition which has a start-time and an end.
Thus, the entire composition constitutes a musical event (the highest level), as
does a single note (the lowest level). Similarly, chords, motives, movements,
etc., are all musical events. [...] any musical event (e.g., a motif) can be made
up of composite musical events (e.g., chords and notes)” [BRBM78, p.11].

Buxton et al. actually give a BNF grammar for the most basic elements of
the hierarchy ("Mevent’ is shorthand for 'musical event’):

Composition ::= M event;

Mevent ::= Mevent* | Score | note;

Score ::= Mevent,

note ::= terminal (i.e., some musical note);

Each composition then will be a derivation tree of the structural grammar, where
intermediate levels such as chords and motives are represented by sub-scores,
which will probably contain their own sub-collection of musical events, using a
Mevent — Score — Mevent — Mevent* derivation.

Here, one of the properties of hierarchical structure that we described in
section 2.2.1 is exploited by Buxton et al. A recurring motif need only be repre-
sented once in a master-copy, and all other occurrences of it can be represented
as instances, of the master-copy. Each instance is provided with a reference to
its master-copy and a list of transformations applied to it, so that variations are
allowed among instances. The instances of Buxton et al. are shallow copies of
the master-copy. This means that if the master-copy is changed, all instances
are automatically changed too. We shall discuss the difference between shallow
and deep copies further in section 5.4.3.

2.4.5 Roads (1979), Moorer (1972), Winograd (1968)

In 1979, Curtis Roads published an excellent article named Grammars as Rep-
resentations for Music [Roa79] which has since become a point of reference
for many publications on computer-based grammatical descriptions of music.
Roads first considers different types of grammars and then gives a survey of
grammars applied to music studies.

Roads distinguishes between iconic and symbolic representations. Iconic rep-
resentations bear some topological similarity with the represented object (the
denotata); e.g. a digital recording in an audio waveform. Symbolic represen-
tations are constituted of signs that have no contiguity with their object — the

6The authors credit Xenakis for this view, in his book Formalized Music, Bloomington:
Indiana University Press, 1971.
7Such as the sequential subgraphs which we describe in section 4.2.

14

link between signifier and denotata is purely conventional. Formal languages
and grammars are examples of symbolic representations.

Roads describes the classical transformation grammar advanced by Chomsky
to describe natural language. It comprises three levels:

1. A phrase-structure grammar, describing abstract kernel sentences in terms
of nouns, verbs, etc.

2. Transformation rules. When applied to the kernel sentences, these rules
produce sentences in English (or some other natural language).

3. Morphophonetic rules. These rules transform the English sentences pro-
duced by the transformation rules into streams of phonemes.

The transformation rules involve complex issues with e.g. active-passive verb
relations, and auxiliary verbs. Roads conjects that there is no clear musical
analogy to such relations, so a grammatical description of music should skip the
transformation rules and concentrate on building a phrase-structure grammar.
Also, a set of morphophonetic rules interpreting abstract tokens into a lexicon of
sounds could be useful as a sort of orchestration layer in grammatical description
of music.

After a presentation of the Chomsky hierarchy, Roads gives a short de-
scription of regulated grammars, which are different techniques to augment the
expressive power of context-free grammars while not entirely turning them into
context-sensitive grammars. The article then describes a series of grammar-
related musicological endeavours, ranging from the early reflections of French
musicologists Ruwet and Nattiez to Roads’ own work on “composing gram-
mars”. There is no point in reproducing the entire survey here, but the ideas
of Moorer and Winograd have caught our attention.

Moorer (1972) Consider the following grammar example:

Piece ::= Sonata | Rondo | Fugue
Sonata ::= Exposition Development Recapitulation
Exposition ::= MelodyInCmajor MelodyInFmajor MelodyInCmajor

Now if we were to continue the context-free grammatical definition, how could
we specify that the recapitulation should make use of the same melodies as were
used in the exposition? In an article on computer composition [Moo72], James
Anderson Moorer uses the example to point out that there are problems with
using context-free grammars to describe music. In accordance with the general
sonata form, the recapitulation must also involve variations of the same melody
as in the exposition. This can be specified in a context-sensitive grammar, not
in a context-free grammar.

Moorer discusses the use of Markov probabilistic methods for the compo-
sition of melodies. When probabilistic automata are inferred from an existing
corpus, higher order methods produce exact repetitions of the input melodies,
while lower order methods produce note combinations that are almost meaning-
less. The intermediate order methods produce a few new and interesting results,
but mostly “degenerate” melodies consisting of ascending or descending scales.
He concludes: “What is needed here is an intermediate-order grammar with a

15

selection mechanism that filters out things that can be represented too simply.”
[Moo72, p.107]

Moorer’s own experiment features a composition algorithm whose many pa-
rameters should be tuned by the user until the algorithm outputs music that
he likes. Composition is done in a top-down manner. First the overall form of
the piece is structured in terms of minor groups and major groups. The ma-
jor groups structure sets of minor groups, while the minor groups each have
rhythmic and chordal structure. When this overall structure and the rhyth-
mic patterns of each minor group are assigned, the chords are chosen. First a
chord hypothesis is generated from first-order probabilities, then it is accepted
or rejected by heuristics introduced by Moorer. The heuristics are meant to
act as the above-mentioned selection mechanism to “filter out long sequences
of nontonic chords or otherwise dull sequences.” [Moo72, p.111] E.g. ABBA
forms, where A is not the tonic, are discarded. The third and hardest step is
to construct a melody over the chordal, rhythmic and grouping skeleton. Notes
are chosen on the basis of minor groups; at each point, either a new figure is
invented or a previous figure is copied or copied-and-altered. New figures are
invented using probabilistic models of note-to-note intervals and of when notes
should be constrained to the chord and when not. The chord constraint proba-
bilities vary for stressed and unstressed notes. The central balancing act of such
an algorithmic composition seems to be to “preserve repetition and periodicity
but to deny boredom.” [Moo72, p.111] Finding such a balance for Moorer’s
three composition levels (form and rhythm, chords, and melody) is by far the
hardest for the melodic line.

Moorer shows five monophonic melodies composed by his algorithm. They
clearly show some inner structure in the sense that parts of the melody are
repeated, or repeated in an altered form. But Moorer concedes that they are
“alien sounding, indicating that perhaps not all ’legal’ melodies are interesting
melodies.” [Moo72, p.112]

Winograd (1968) Terry Winograd has used a “systemic grammar” for seman-
tically-directed parsing of music pieces [Win68]. The idea is that the analysis
is primarily a syntactic parsing of the music, but it is augmented with seman-
tic routines that guide the parsing process. Winograd’s notion of semantics is
based on the harmonic functions found in music. It produces a 'meaningfulness’
rating of different parses to eliminate derivations that are syntactically valid but
musically meaningless. “Some progressions such as V—I or II+V, have a clear
function, while others such as VII—II or III—I may occur, but do so at the cost
of confusion of the tonal structure, and can thus be considered less likely, or less
‘meaningful’. ”[Win68, p.24] Winograd gives an example of a simple grammar
for harmonic phrases (see figure 3) and then proceeds to argue that such a gram-
mar is inappropriate on it’s own; we need additional rules or transformations to
produce a concrete harmonic sequence of chords and chord inversions from the
abstract roman numeral harmonic functions. Winograd’s semantically-directed
parsing using a systemic grammar is an attempt to remedy this.

Problems with context-freeness What Moorer and Winograd’s work have
in common is that they use context-free grammars that are augmented in some

16

harmonic phrase — opening cadence
cadence — plagal

cadence — authentic

authentic — dominant (linear) tonic
dominant — V

dominant — VII

V= Vtriad

V- Vseventh

Vseventh - V7

Vseventh — Vg

Figure 3: Winograd’s example grammar for harmonic phrases.

way to more appropriately describe music. Moorer’s problem of specifying that
the same melody should occur in different variations in the exposition and the
recapitulation of the sonata is equivalent to Winograd’s problem with producing
the right chords from the roman numerals. There is a relationship between these
non-terminals (be they melodic variations or harmonic functions) that is difficult
to capture in a context-free grammar. The two authors therefore introduce
additional mechanisms to make their formalism more powerful. This is some
of the ammunition that Roads uses when he concludes: “in nearly every study
discussed in this paper the production rule has been shown to be insufficient by
itself as a representation for music, particularly in a context-free form.” [Roa79,
p-53] On the other hand context-sensitive grammars are “unattractive as work
tools”[Roa’9, p.54], because they are both difficult to specify by hand, and there
are technical problems with context-sensitive parsing. An extension of ordinary
context-free production rules is needed to work with grammar representations
of music.

Another problem with context is that most music is non-monophonic: “In
formal grammar theory, ’context’ is a sequential notion, while in music, context
is both parallel and sequential. [...] A good model for ’context’ will most likely
involve a rather complicated data structure. All of these notions of extended
musical context lead, in a computer implementation, to an extended grammar
representation, e.g., production rules augmented by embedded procedures. In
any case, the notion of a grammar as simply a list of production rules is in-
adequate for music.” [Roa79, p.54] If the reader will pardon the long citation,
we think this is a very good reason to adopt a graph grammar approach to the
hierarchical description of music. Graph grammars are more powerful abstrac-
tions than string grammars, and using a graph, we are able to represent both
parallel and sequential context, as well as mixtures of them.

2.4.6 Holtzman (1980)

Holtzman describes a Generative Grammar Definition Language (GGDL) for
music [Hol80] and gives an example of its application on a Schoénberg piece.
The GGDL is implemented as a computer program and is intended to be used
either by musicologists as a tool to test their research method, or by composers

17

to investigate their compositional method or simply, to compose. The GGDL
lets you specify a generative grammar, which it then puts into action and gen-
erates music with. The question of grammar inference from a corpus of known
pieces is thus not touched upon. Holtzman describes it the following way: “A
traditional musical score is a collection of utterances in a musical language. The
language theoretically could be formally described by a set of rules. Typically,
the grammar by which a musical structure is derived, the process of composi-
tion, is not easily, and certainly not completely, detectable — it is oblique but
may be inferred.” [Hol80, p.5]. The GGDL is a tool for human, not automated
computer inference of musical grammars.

In GGDL, the user specifies a type 0 grammar, i.e. a free grammar, composed
of the “phrase-structure rules” and of “transformational rules”. Omne of the
examples is a small grammar for a sonata form:

Sonata — A B A

B — development

A — Theme; (key)Themes(key)

Theme; (key) — Theme; (tonic)

Theme, (key)_development — Themey(dominant)
development_Themes(key) — development_Themes (tonic)
development — modulation of themes

which could produce the result:
Theme; (tonic) Themes (dominant) modulation of themes Theme; (tonic) Themes (tonic)

The underscore character is Holtzman’s notation for “any string”. A right-
hand side underscore should refer to the same string as the corresponding left-
hand side underscore.

The phrase-structure rules are the usual grammatical production rules pos-
sibly coupled with a set of rewrite control rules. Instead of letting the machine
choose a random production when several are possible (such as choosing either
A or B in “X — A|B”), we can specify rules to control which production is
chosen. Blocked generation specifies that when one production has been used, it
may not be used again before all other productions with the same left-hand side
have been used. In finite-state generation, a probabilistic finite-state automaton
is supplied with a production rule to control how probable each production in
the rule is at any given moment. Multiple invocation specifies that a production
rule once invoked should give a number of productions as a result. This can
be used in conjunction with a blocked generation rule to give random combina-
tions of a set of notes, as used in serial music. Furthermore, metaproductions
can be given, that act not upon non-terminals in the derivation tree, but upon
the set of production rules before they are even applied. This is useful for de-
scribing structures with undefined objects, which are later filled in with some
given structures. The transformational rules act upon sequences of symbols.
One can either reverse, invert, transpose, or merge the sequence(s). Reversing a
sequence is an operation which produces the music ‘backwards’; inversion is an
inversion of the inter-symbol interval found in a given ordered alphabet, and a
transpose is a transpose of a number of symbols in the ordered alphabet. Merg-
ing two sequences consists in picking the next symbol alternatingly from one
and the other sequence. The examples given by Holtzman use abstract symbol

18

sequences, and the given generative mechanisms are sufficiently general as to be
used for both tonal and non-tonal music.

Holtzman uses two concepts from linguistics, namely those of syntagmatic
and paradigmatic relationships. ’Syntagm’ means ’combination of signs’, and
in this context, 'paradigm’ means ’an example of a conjugation or declension
showing a word in all its inflectional forms’®. Consider the derivation tree of
some string of symbols from a grammar. Syntagmatic relations occur in a
horizontal direction, they are “surface-relations of the tokens at any one level
in a structure — they are the result of the combinations of tokens on the same
level.” [Hol80, p.4] Paradigmatic relations occur, according to Holtzman, in a
vertical direction “when tokens may be substituted for one another and still
perform the same function in the system as a whole.”[Hol80, p.4] A linguistic
example of a syntagmatic relation between words is the difference between the
two sentences:

He whispered softly, and He shouted softly

It is quite plausible that ’'softly’ come after ’whispered’ in a sentence like this,
but ’shouted softly’ is an unexpected combination of words. Paradigmatic rela-
tions in linguistics are based on notions like similarity, inclusion or logical (not
temporal) entailment and examples include relations like synonymy (identical
meaning relations), antonymy (opposite meaning relations), hyponymy (specific-
general relations), and meronymy (parts-of relations). In a formal grammar,
think of the production rule shown in figure 4. This production specifies that A
may be followed by B followed by C — syntagmatic relations on this level in the
derivation, no matter whether A, B and C are terminals or non-terminals. It
also suggests the paradigmatic relation that, in some cases, ABC is synonymous
with CD, in that an X may be replaced by either one or the other. Also there
is a hyponymy relation between X and the results it may produce, in that X is
more general and the results are more specific.

paradigmatic relations

TN TN
X — ABC|CD |BA

syntagmatic relations

Figure 4: An illustration of syntagmatic and paradigmatic relations in a formal
grammar production rule.

Are there syntagmatic and paradigmatic relations in music, and how could
they be interpreted? Holtzman gives us a hint: “To the extent that paradigmatic
relations define the function of objects in a structure, they may be considered
the basis of the semantic interpretation of a structure. [...] A theme of melody
or other musical macro-unit is a grouping of lower level units, and is therefore a
vertical or semantic interpretation of the lower level unit’s function. Likewise, a
juxtapositioning of themes (or series, etc.) is a semantic interpretation of lower

8Merriam-Webster Dictionary, http://www.webster.com

19

level units.” [Hol80, p.4] In other words, we may construct a musical semantic
interpretation of paradigmatic (similarity or inclusion) and syntagmatic (juxta-
position) relations. Musically speaking, saying that X is a musical phrase also
tells us something about how X can be used in combination with other building
blocks on a higher level. We don’t combine phrases with each other in the same
way as we combine notes with each other. And saying that X can in turn pro-
duce either ABC, CD, or BA tells us that these are different ’inflections’ of the
same X, different variations of the same phrase. We shall return to this when
speaking of musical parallelism and variation (section 3.2.2).

With all its rewrite control rules, metaproductions, and transformational
rules, the GGDL is a very powerful and complex description language. So much
so, that perhaps one looses the elegance and original simplicity of the idea of
generative grammars. If the hierarchical description of a piece is longer than
the non-hierarchical description, is it still worth the effort? The complexity of a
GGDL grammar can probably be dealt with computationally because it is only
used for generation from a human-defined grammar. Automatically inducing
a meaningful GGDL grammar of some piece would seem to be a very tough
challenge.

2.4.7 Lerdahl and Jackendoff (1983)

Since 1983, Fred Lerdahl and Ray Jackendoff have become the most prominent
point of reference in the area of music and grammars, towering over everything
else in terms of the number of references made to it. “A Generative Theory of
Tonal Music”[LJ83] (GTTM) is the much discussed work that earned them this
fame. The authors have a background in recent music theory and contemporary
linguistics respectively. In the GTTM, they propose mechanisms for construct-
ing grammars suitable for Western tonal music which is roughly speaking the
major-minor based tonal music evolved in western Europe during the 18th and
19th centuries.

Lerdahl and Jackendoff make it clear that their theory is based on the mental
processes of the listener. The fundamental assumption is that the listener is
not just hearing one note at a time, but on the contrary perceives the music
as organised patterns. The GTTM claims that the listener, while listening,
generates a mental construct, and the goal of GTTM is to explain how this
entity is constructed. The listening experience may differ from person to person,
but some elemental constructs are controlling the experience. They introduce
the term “experienced listener” — a person who is experienced in the musical
idiom and able to grasp and analyse major pieces. The experienced listener is
an idealisation of how one understands music. The rules of the grammar are
meant to generalise the organisation that the experienced listener constructs
while he is listening. The ultimate goal of the GTTM is to understand musical
cognition, and thus describe a theory for formalising the listener’s intuition.

Lerdahl and Jackendoff are very explicit or algorithmic in their proposed
way of musical understanding. This has resulted in numerous rules. The overall
ideas of the procedure is as follows. The music is first analysed in four sepa-
rate ways according to: grouping structure, metrical structure, time-span reduc-
tion, and prolongational reduction. For each analysis, well-formedness rules and
preference-rules are given. The application of well-formedness rules suggests
different possible ways of dividing the music into smaller segments, which be-

20

long together according to the analyses. The boundaries of these segments may
conflict, so the preference-rules are applied to solve the conflicts. Preference
rules are criteria for evaluating and choosing between the possible analyses of
the piece. In the end one ends up with a preferred analysis of the piece. Each
of the 4 analyses suggests a hierarchical structure that partitions the piece in
nested groupings.

The grouping structure analysis segments a homophonic piece into nested
groups of varying sizes. The boundaries of the groups correspond to the phrasing
of the music on the different nesting levels. Generally speaking, the phrasing
boundaries correspond to points where it would be natural for a performing
musician to draw a breath. We will return to this topic in section 4.3.1 on page
69 since we have been experimenting with some of the proposed rules.

The metrical structure analysis identifies the positions of strong and weak
beats at the level of a quarter note, half note, a measure, and so on during a
homophonic piece. The tactus of a piece is the overall “feeling” of the music —
the most prominent metrical layer, that the conductor will point out, or that
you eventually will end up tapping when following the music. This layer sets
the tempo in which the listener will follow and experience the music.

The intuition behind time-span reduction is that we are able to hear
“through” ornamentations of a melody. We are able to remove the “noise”, and
only hear the simple melody or chord progression behind. In this process we
reduce the music into these most important structural events on different levels
as for example the most important note in a motif, or the most important motif
in a phrase. This is done according to a combination of melodic and harmonic
factors, which forms a pitch hierarchy. An entire piece of western tonal music can
eventually be reduced to a key note or a tonic triad. The time-span reduction is
performed based on the result of the grouping structure and metrical structure
analysis in a bottom-up manner, in the sense that parts come together to form
a whole.

The word reduction comes from the Schenkerian vocabulary, where it is also
used as an abstraction under which one can see the most important events on
each hierarchical level in the analysis. By combining notes in logical entities
it is possible to make a comparison of the entities. In this way we are able to
make a comparison on a higher hierarchical level.

Prolongational reduction is a notion about tension progress. Lerdahl
and Jackendoff describe tension and relaxation as transitions between stable
and less stable states of the music. The fundamental idea is that any note in
the music either is within a movement from relaxation to tension or within an
opposite movement from tension to relaxation. The tension-relaxation move-
ment occurs on many levels in a hierarchical structure. A relaxation could for
example be a movement from a less consonant chord to a more consonant. On
a higher level the harmonic movements in the music are of course important.
L&J consider the rising fifth (tonic-dominant or I-V) as a tension (away from
the key), and the opposite as a relaxation (back to the key). In a more elab-
orate cadence (IV-V-I), the subdominant (and all variants of it) is always in
a relaxing movement towards the dominant which then again gives rise to a
relaxation towards the tonic. Cadences are of special importance in this field.
L& J use the prolongational reduction rules to build tension-relaxation trees in a
top down manner. The prolongational reduction connects all parts of the music
in a meaning relation to each other.

21

Should we criticise this very innovative and hugely successful work, we would
pick out three points.

1. All in all the GTTM looks very much as a pseudo algorithm for making a
preferred analysis, and this is true to some extent. The “algorithm”, how-
ever, is not completely defined in every detail. To achieve computability,
the preference rules could be weighted and thresholded. But this, Lé&J
argue, is artificial since such a scheme produces only positive/negative
judgements, and not ambiguous or vague ones. It is also somewhat arbi-
trary, because threshold values can be set to, say, 68, or 72; which is best?
“A simple numerical solution of this sort provides an illusion of precision
that is simply absent from the data.” [LJ83, p.54] Also, the interaction of
local and global rules on the musical structure is not sufficiently specified
to allow a simple quantification mechanism to work.

As computer scientists, one of our main goals is computability, which we
have in the SimFinder system. Achieving it in the SimFinder is a lit-
tle easier than to begin weighting rules in the entire GTTM machinery,
because the SimFinder does not incorporate as many different and inter-
acting layers of hierarchy as the GTTM does.

2. Another issue is the loosely defined concept of parallelism. The Metrical
Preference Rule 1 states that if two passages can be construed as parallel,
they will preferably receive the same metrical structure [LJ83, p.75]. But
L&J omit a closer specification of what allows two passages to be construed
as parallel. In section 3.2 we discuss the importance of parallelism to the
structure of music. The SimFinder is a proposal for a search method that
identifies parallel structures in music.

3. One major drawback of the GTTM is that the rules only apply to music
with a single melody (including accompaniment). This melody determines
the grouping structure, which asserts that the music only has one impor-
tant melodic line. This is often not the case in baroque music, and the
GTTM is not capable of analysing such polyphonic music. The SimFinder
operates on a music graph that represents non-monophonic music and
thus carries through non-monophonic analyses, although we admit they
are more difficult to control than the monophonic analyses.

Several attempts have been made to explore the value of the rules in reality. Hi-
rata presents a music knowledge representation framework, which relies on user
input as time-span trees [KHO02]. Temperley has contributed an extension and
refinement of the overall theory [Tem01], and Miller et al. have experimented
with the grouping and metrical structuring rules.[MSJ92]

2.4.8 Steedman (1984)

Mark Steedman provides us with some substance to the ideas of syntagmatic and
paradigmatic relations, that Holtzman presented us to (section 2.4.6). In [Ste84],
he presents a generative grammar for jazz chord sequences. The grammar is
simple, just seven production rules, and it accounts for a multitude of variations
over the standard “12 bar blues”. The beginning production

Rule0: S12 - II7IVIVTI

22

describes the fundamental form of a 12 bar blues, each roman numeral rep-
resenting two bars (I is the tonic, V is the dominant and so forth). This is
what all 12 bar blues chord sequences can be reduced to. The idea now is
that these fundamental chords may be further subdivided and altered without
changing the 12 bar blues ’feel’, because “certain sets of chord sequences are
considered by musicians to be closely related and to be harmonically equivalent
in a sense which is close to the linguistic idea of ’paraphrase’.” [Ste84, p.53]
When paraphrasing, we obtain a synonymy relation between the original and
the paraphrase; but this is exactly what a paradigmatic relation is. Specifying
e.g. Steedman’s rule number 2:

Rule 2: x(7) — x(7) Sd,

tells us that without changing the blues feeling, any chord x can be replaced
with two chords of each half the duration of x 2, where the first is the same
chord x, and the second is the subdominant of x. Further, if x is a seventh
chord, then the produced half-length x must also be a seventh. We have the
paradigmatic relation that an “x” is synonymous with “x Sd,” in this paradigm.
The semantic paradigm is determined by the entities we are concerned with:
chords; “the domain that corresponds to semantics — that is, the 'meaning’ of
chord sequences — is the domain of harmony, in which, for example, a given
pair of chords played in succession may convey the meaning of a ’cadence’.”
Therefore substituting a cadence with something else should preserve the overall
feeling of closure or relaxation that is the content, or musical point, of a cadence.

To give another example, in Rule 2, it is the second part-element that is
changed to the subdominant, not the first. Consider a metric analysis of a 12
bar blues. It is subdivided in three times four bars. The first four bars can
be recursively divided in two, giving metric subdivisions in which the first of
two elements is always more metrically stressed than the second element. Thus
the harmony of the second element is subordinate to that of the first and can
be changed (e.g. changed to the subdominant in Rule 2) without affecting the
overall harmonic expression of the two elements as a whole.

Rules 1 and 2 are phrase-structure rules. The grammar also contains sub-
stitution rules, which specify in which context a symbol x may be substituted
by another, y. These are syntagmatic relations, describing which elements may
be combined, and in which order. Cadences are examples of combinations of
elements that we expect to hear in a 12 bar blues, as in fact in most other
Western tonal music. If we should tentatively describe some of the meaning of
a cadence, it has a tension-relaxation movement, which communicates a strong
sense of closure, or coming-to-an-end, to us. This coming-to-an-end also tends
to signal a return to the tonic, which can be used to good effect, e.g. when mod-
ulating to another key, to make the listener feel at home in the new key. The
sequential arrangement V-I that we call a cadence thus makes more sense than
e.g. a I-4IV transition, just as it makes more sense to say “he whispered softly”
than “he shouted softly”. Steedman explains in some detail the music-semantic
reasons behind different substitution rules, e.g. the use of leading notes to cre-
ate expectation. It is an important point that when familiar with the idiom of

9Steedman’s convention is that the length of the left-hand side should be equal to the
length of the right-hand side of every production, so when subdividing x as we do in Rule 2,
each subdivision receives half the length of x.

23

Western tonal music, we do actually hear these connections, which according
Steedman, justify the grammatical structure described. He encourages readers
to play the examples on an instrument to “hear” that the described structures
are as they are.

Steedman draws a distinction between valid and good chord sequences. The
grammar only defines which sequences are valid, and admittedly generates both
sequences that are good and sequences “of a rather fringe variety” [Ste84, p.66]
The point is that the grammar generates only sequences that are still meaningful
in terms of the syntagmatic and paradigmatic relations inherent in the “12 bar
blues” style. This does not prevent them from being far-fetched; the grammar
would need additional rules or alterations to sort that out.

2.4.9 Conklin (1995)

Darrell Conklin has among other things worked with musical viewpoints and
entropy-based music prediction for a number of years. In Multiple Viewpoint
Systems for Music Prediction [CW95], Conklin and Witten conject that “highly
predictive theories will also be good generative theories” [CW95, p.54]. In other
words, if, given some melodic context, we are able to predict how the sequence
of notes will continue, we will also be able to generate a good melody from any
other given context. The question whether the presented learning of melodic
continuation does generalise nicely to melodic invention in general, is not com-
pletely answered in the article, as the authors admit. Nevertheless, two major
ideas are presented: to use an entropy-based predictive model as a generative
mechanism for music, and to use a multiple viewpoint system to analyse the
musical material from a multitude of perspectives simultaneously.

Conklin and Witten distinguish two kinds of approach to the construction of
a generative theory for a musical language: the knowledge engineering approach,
and the empirical induction approach. By knowledge engineering is meant the
definition of rules and constraints, that are explicitly coded in some logic or
grammar. Empirical induction, on the other hand, attempts to develop a theory
through analysis of existing compositions. Conklin and Witten remark that
“The knowledge engineering approach was discarded after careful consideration.
There are too many exceptions to any logical system of musical description, and
it will be difficult to ensure the completeness of an intuited theory.” [CW95, p.52]
They then proceed to describe how a predictive theory of Bach chorale melodies
can be induced using context models — a subset of Markov models.

A context model keeps account of a set of sequences defined over some sym-
bolic event space. This event space could be e.g. an alfabet, the set of pitch
classes, the set of tuples of (pitch value, note length), you name it. Each symbol
sequence that the context model is presented with (and thus learns) is associ-
ated with an occurrence frequency. This allows us to predict continuations of
sequences: given a context sequence ¢ = [¢1,Ca,...¢y], for all events e in the
event space we may now compute the probability that e will occur immediately
after ¢. Conklin and Witten use a mixture of short and long term context mo-
dels to predict musical symbols. The long term model is trained on a corpus
of Bach chorales to model the melodic structure inherent in Bach chorales in
general. The short term context model is transitory and local to a particular
sequence that we are predicting when applying the overall model to some se-
quence. The short term model is being trained on the sequence we are predicting

24

while contributing to the prediction. It is discarded when we begin predicting
a new sequence. It thus makes the combination of long and short term models
adaptive, i.e. able to respond both to the influence of an entire Bach corpus
and to earlier developments in the particular sequence at hand.

The idea underlying viewpoints is that several points of view may be of im-
portance to an analysis of music. To be able to make good sequence predictions,
it may not be enough to look at the pitch of successive notes, but also the length
of notes; fermata; and relations between pitch and length of successive notes.
Also such relations between a note and the first note in its bar, or the first
note in the piece; and notes’ relation to the key signature. Conklin and Witten
also present some threaded viewpoints, which include information on a variable
number of events, depending on the concrete context. In section 4.3.1, we take
a more detailed look at viewpoints, both as defined by Conklin and Witten and
as these are in comparison with the viewpoints we have used in our SimFinder
project.

The type T of a viewpoint depends on what information the viewpoint lets
us see in a sequence. Type 7 could e.g. be the melodic interval between notes,
or the scale degree of notes, and [r] is “the set of all syntactically valid ele-
ments of type 77 [CW95, p.58]. A viewpoint is formally defined as comprising
two things. First, the partial function ¥, : £ — [r] that is used to transform
a sequence s € &* (a concatenation of symbols from the event space £) into
this viewpoint’s view on s. But a viewpoint also comprises a context model
on strings in [7]*, thus allowing a viewpoint to predict a symbol in [r] when
given a context symbol sequence in [r]*. But viewpoints may also be linked,
constituting together a new viewpoint. This can be described in terms of their
types: the combined 7 = 71 ® 75 is itself a type. Forming a new viewpoint in
this way makes elements of [7] tuples of elements in the respective [11] and [72].
Using a linked viewpoint of type pitch ® noteLength to predict a symbol thus
gives us a tuple prediction result o = (pitchq,length,) based on a sequence
[(pitchy,lengthy); (pitchs, lengths);. . . ; (pitchy, length,,)]. This sequence speci-
fies that the first note has both pitchy AND lengthy, the second note has both
pitchy AND lengthso, etc. The set of all primitive and linked types is partially
ordered and can be represented in a lattice showing the decreasing order of gen-
erality when linking more and more primitive types, see figure 5. () is the most
general type, specifying nothing at all. When more types are linked, they de-
scribe something more specific. The most specific type in figure 5 is 71 ® T2 ® 73.
If two sequences s; and s, are equal under a viewpoint v;2 whose type 7 ® 75
is more specific than the type 7 of another viewpoint vs, then s; and s will
also be equal under vy. We discuss the general to specific ordering of viewpoint
types in relation to our own viewpoints in section 4.3.1.

A multiple viewpoint system then consists in analysing the music using a set
of primitive or combined viewpoints, e.g. {71,72 ® 73}. Here, the symbol pre-
dicted by the conglomerate viewpoint system must be determined on the basis
of the individual predictions of each viewpoint. But each viewpoint prediction
has an associated entropy, which can be seen as a measure of how certain that
prediction is. Viewpoints whose prediction is more uncertain are then assigned
less weight than the more certain predictions in the computation of the overall
outcome.

When viewed from a grammar perspective, context models are probabilistic
finite-state automata and as such a mechanism comparable in expressiveness to

25

T,® 1,0 T,

,® T,

Figure 5: The type lattice for three primitive types 7, 72, and 73, and the
possible linked types arising from them (after [CW95, p.59]).

a regular grammar. However, the exact weighting schemes used in combining
the short and long term models, and in combining the different viewpoints into
an overall prediction, may improve the strength of this description method.

Knowledge engineering vs. empirical induction We would like to com-
ment on the Conklin and Witten remark cited above, that “the knowledge engi-
neering approach was discarded after careful consideration.” We think that the
knowledge engineering approach cannot be completely given up in the area of
music. An empirical theory induction that is blind to domain specific knowledge
is bound to be less successful than one that is aware of rules and constraints
inherent in the domain. The subject of analysing and composing music does
seem hardly penetrable by intuited logical systems, because music listeners and
composers have lots of tacit knowledge, i.e. knowledge inherent in our musical
ability, but which is to a large extent unformulated and informal; and rules
exist, in music as much as elsewhere in the dirty real world, to be broken. It is
hard to achieve completeness not only of an intuited theory of music, but also
of an empirically induced theory. There is a large amount of work left to be
done in the way of representing music formally, before machine learning tech-
niques may satisfactorily solve music analysis and composition problems. This
representation problem is an area where knowledge engineering drawing on the
work of music theorists seems to be the most promising path ahead.

This is exactly why multiple viewpoint systems is a good idea. As a mat-
ter of including domain specific knowledge — in this case knowledge of where
musical structure is most likely to be found — we don’t see any great difference
between specifying by hand a set of constraints and rules whereby music should

26

be analysed (as e.g. Lerdahl and Jackendoff do [LJ83]) and specifying a set of
viewpoints over which patterns or probability distributions are to be found.

The central problem in both is to find a suitable representation. So rep-
resenting music in all its multi-faceted and multi-layered richness in a formal,
flexible and expressive way is also a knowledge engineering problem, and one
to which multiple viewpoint systems seem a good attempt at a solution. They
allow us to analyse structure in a multitude of more or less musically relevant
dimensions simultaneously, and also, in Conklin and Witten’s experiment, to
examine possible cross-correlation between dimensions. We believe knowledge
engineering to be of the outmost importance in any automated analysis of music,
and Conklin and Witten’s use of multiple viewpoints is one of the most flexible
implemented examples hereof.

2.4.10 Cope (2001)

David Cope, an american composer, has made a major effort in algorithmic
composition and analysis of Western tonal music.

For many years, Cope has been developing a system called “Experiments
in Musical Intelligence” (EMI or ‘Emmy’). The goal is to make EMI copy the
style of any composer, and it has come quite a long way. The system is able
to generate musical pieces in the style of Bach, Mozart, Chopin etc. depending
on its input. The system is corpus driven, and is able to learn from the input
pieces. But it is not only the actual musical surface from which it learns. EMI
is equipped with a huge library of knowledge of Western tonal music. It uses
this knowledge to make an analysis of the input pieces. From this analysis,
it gains insight about the structure of the music, tonal function analysis, how
it is phrased, rhythm and meter correlations with tonal functions — all sorts
of information a musicologist would search for as well. In addition, it stores
information about the many prominent fragments (significant patterns) used in
the pieces. These are the building blocks for the new piece.

Plainly put, the system works like this: chop up and reassemble. This is of
course done in a very controlled way. There are a lot of mechanisms controlling
the coherence of the music. This is done according to two criteria. In a com-
ment in Cope’s book “Virtual Music” on the EMI system, Douglas Hofstadter
describes the criteria: “Make the local flow-pattern of each of the voices similar
to that in the source piece. Make the global positioning of fragments similar to
that in the source pieces.”[Cop01, p.44] The first task is related to the syntax
and the form of the composition and the last is related to the content of the
composition.

The local flow-pattern determines the way each voice should be put together
from the selected small fragments available (what he calls voice-hooking). Fur-
thermore it determines how the fragments should unfold in time as for example
arpeggiation or alberti bass. This process is called texture-matching.

The global positioning is the task of making the small fragments connect
logically to each other and to form still larger phrases also logically or seman-
tically connected. The idea is that to insert a fragment in a piece, it can only
be done if the insertion location is similar to the place where the fragment
occurred in the input piece. To keep track of this feasibility, Cope uses a hi-
erarchical system. When analysing the input piece, a hierarchy is made which
determines every fragment’s position in the local context (notes, measures) to

27

medium-range context (phrases) to large-scale (periods), and to global context
(sections). The fragments are categorised according to tension-relaxation abil-
ities. A fragment can, on each level, be considered as belonging to one of five
meaning-related categories (SPEAC labels): statement (S), preparation (P), ez-
tension (E), antecedent (A) or consequent (C). The labelling is done bottom-up
so the labels of larger sections depend on the lower. The connection between
the SPEAC abstractions is given like this in [Cop91, p. 37]:

c
Current Can be followed by
S P,E, A
P S, A, C
E S,P, A, C
A E, C
C S,P,E, A P A c

For example, a small hierarchy could be that a consequent C can consist of a
statement S followed by an antecedent A followed by a consequent C. (See the
tree above). Every part of the hierarchy knows the labels of its larger scale parts
in which it belongs. In order to compose, the system can swap pieces that fit in
the same place — have the same string of SPEAC labels determining the global
context. If this is not possible, he sacrifices the requirements of the topmost
level and instead tries to find a fragment with a matching string that is one
letter shorter. This favours local coherence. Cope thus uses the hierarchy of
existing pieces to copy as a structure for a composition. He uses GTTM-like
prolongational reduction preference rules to determine the labels. The ordering
in the tension-relaxation scheme seems to be quite a clever way of dividing all
parts of a composition into stable subunits.

Besides this overall structural form-copying, Cope extracts some significant
patterns which he calls signatures from the input pieces — the patterns that occur
most repeatedly, also counting elaborated matches. Furthermore, he stores the
conditions under which two similar passages are found. For instance if a melodic
phrase is repeated a fifth higher, the program records the distance between the
entries of the melody and the interval. The program can then use the idea
applied to a totally different phrase — the idea is called ‘template plagiarism’.

David Cope’s use of grammars is given in the SPEAC labelling of his hier-
archical analysis of the input pieces. His program is able to perform a kind of
Schenkerian reduction of the input pieces. This analysis is the grammar which
determines all tension relations.

2.4.11 Graph grammars

As described in section 2.4.5, context free grammars may not be powerful enough
to describe recurrent structures in music. It seems that some form of enhance-
ment of the basic context free production rules is needed. Roads proposes
regulated grammars, Moorer introduces additional heuristics to guide the top-
down composition algorithm, Winograd uses his systemic grammar, Holtzman
uses re-write control rules and metaproductions, and Steedman’s blues chord
grammar is context sensitive. Another example of a formalism that is stronger
than the context free grammar is: graph grammars.

28

A graph grammar is a generalisation of the ’text string’ grammar. If we
take a graph to be a sequence of vertices connected to each other in a string-like
fashion, a graph grammar is equivalent to the normal string grammars that we
use to describe formal languages. But graphs may have any topology, e.g. they
could possibly contain cycles, and they can be directed or non-directed. A graph
grammar contains a set of graph re-write rules that transform the graph. Each
re-write rule applies to some specified subgraph o; (the left-hand side of the
rule); if that subgraph exists in the graph at hand, it can be substituted by the
subgraph o9 in the right-hand side of the rule. Either such a rule specifies how
the newly inserted subgraph should be connected to the surrounding graph, or
some general scheme is used. E.g. if the inserted subgraph has three vertices,
we could substitute each removed edge to o; with a set of edges going from the
same vertex to all vertices in o9. Graph re-write rules take many forms, e.g.
vertex replacement rules or edge replacement rules.

A graphic is a graph whose vertices are attributed. What we speak of as
our 'music graph’ thus is a graphic: each vertex contains note related attributes
such as pitch, length, etc. A formal definition of graphics and graphics grammars
can be found in [HM87]. The article also gives examples of the use of graphics
grammars for the description of wallpaper patterns, biological organisms, and
semantic nets. Although we do use the note attributes of vertices in our graphic,
we shall keep speaking of it simply as a ’graph’, and the grammar produced by
the segmentation algorithm (see section 5) as a 'graph grammar’.

Fahmy and Blostein (1998) Fahmy and Blostein have applied graph rewrit-
ing rules to the problem of sheet-music recognition [FB98]. In relation to our
symbolic music analysis, image analysis is slightly off-topic, but we think the
article gives a relevant example of the use of graph rewriting in the musical field.

An important problem in optical symbol recognition is ambiguity. A given
object in an analysed score may be interpreted in several different ways; e.g. a
vertical line could be either a note stem or a bar line. The best interpretation
of the line depends on interpretations of the surroundings. If there is a note
head very close to the line, it is more likely to be a note stem than a bar line.
An optical symbol recognition method outputs a set of primitives — the objects
it has located — each labelled with a set of possible interpretations, e.g. {note
stem, bar line}. If each label is also associated with a likelihood, we can use
a stochastic relazation algorithm to modify the likelihood vectors according to
the surroundings, in order to approach a unified, disambiguated interpretation
of the entire score. Fahmy and Blostein’s approach, on the other hand, is an
example of discrete relazation, in which successive steps of the algorithm simply
rule out interpretation possibilities of the primitives, e.g. by deciding that the
vertical line cannot be a bar line, and deleting the 'bar line’ label from the set
of possible interpretations of the vertical line’s primitive.

The initial possible interpretations of primitives are represented as vertices
in a graph, where edges represent relations between primitives. E.g. a vertical
line cannot be both a note stem and a bar line at the same time, so the two ver-
tices 'note stem’ and ’'bar line’ would occur in the graph with an ’exclusive’ edge
between. This is a relation of mutual exclusion that exhibits the ambiguity of
interpretation of the vertical line while constraining the overall interpretation to
these two possibilities. The algorithm presented by Fahmy and Blostein employs

29

graph rewriting rules to successively transform the graph of primitive interpre-
tations to a less ambiguous graph. The domain knowledge used to rewrite the
graph is based purely on hard constraints derived from music notational con-
ventions, not on soft constraints resulting from the interpretation of e.g. the
relative spacing of primitives, or higher level musical knowledge of harmony,
melody etc. The graph rewrite rules state that in the presence of a given sub-
graph o1, we may replace it by another subgraph o2. What is embodied in this
set of rules, then, is a mechanism to reason about the semantic properties of
music primitives and find a best interpretation of them, given knowledge of the
common music notation.

The reasoning proceeds in successive stages where the rules applicable on
later stages depend on the resolved (or relaxed) ambiguities of earlier stages.
E.g. when we reason about the number and total length of notes in a measure,
which is constrained by the meter, we need to know the note lengths of the
different notes. The note lengths, then, must be decided in a stage prior to the
measure division of the score. According to the authors, this gives a hierarchical
model of the input score. The constraint relaxation method is a way to locate
’stable intermediate forms’ in the sense of Simon (see section 2.2.1), from the
combination of which more complex forms are built.

2.5 Summary

We have described a number of ways in which it makes sense to describe music
grammatically.

Music is structured. Parallelism and tension-relaxation structures are impor-
tant examples of ways to organise a piece of music, so that it is decomposable
into elements. The sheer whole-part decomposability of music calls for hier-
archical description. Hierarchy is found in many non-musical structures and
may even be advantageous as a general perceptual strategy, giving the upper
hand in an evolutionary perspective. In section 2.4.6, we asked if a hierarchical
description of a piece is still worth the effort if it is in fact longer than the
non-hierarchical description. We think that the answer is yes; it is still useful
for the purpose of understanding a small, very intricate structure in terms of a
longer description composed of simpler parts. Having simpler parts is essential;
hierarchy is dependent on the existence of stable intermediate forms from which
larger hierarchical units can be built. As an inherently hierarchical description
method, grammars are suitable to describe music, though it is a non-trivial task
to describe all aspects of music in a grammar. Multiple hierarchical structures
are present in a single piece.

The 1970s and 1980s saw a linguistic turn in computational musicology.
Formal grammars or their equivalent automata can generate/describe formal
languages. But there is much domain-specific knowledge in music which we need
to take into account when describing music grammatically. Grammars can be
used as composition tools, as e.g. in the SSSP of Buxton et al., or in Holtzman’s
GGDL. They may also be used as analysis tools, to discover structural relations
or to describe stylistic traits of a genre or a composer. Steedman’s jazz chord
grammar is an example, and the GTTM is also analytically inclined. As an
analytical system, the GTTM could be improved in three respects. Our project
is of course completely incomparable in scope with the major theory of the
GTTM; we include no analysis in the way of metrical structure, time-span

30

reduction, or prolongational reduction; only grouping structure is touched upon,
and rather superficially. But the SimFinder proposes ideas for the solution
of the three main objections we find to the GTTM: the SimFinder achieves
computability by weighting of rules and measures; through these measures and
a multiple viewpoint system, it gives a limited account of parallelism in music;
and it tackles the problem of treating non-monophonic music. In section 4 we
shall see how well these problems are solved.

We have seen regular languages used by Simon & Sumner, and probabilistic
finite automata used by Barbaud, and by Conklin & Witten; we have seen ex-
amples of context-free grammars (Buxton et al.) and arguments by Roads and
Moorer that context-freeness is not enough for the description of music. Wino-
grad, and Holtzman use augmentations of context-free grammars, and Steedman
uses a context-sensitive grammar. It seems likely that musical structure depends
a lot on context. A graph grammar is a stronger formalism than a context-free
string grammar, and using a graph representation allows us to analyse non-
monophonic music without necessarily succumbing to the sequential/parallel
dichotomy. This is explained in the next chapter.

As an automation and personalisation tool for music production in the In-
ternet age, grammars permit an extension of the concept of musical ceuvre.
There are also uses for automated music in interactive computer games. We
have no illusion however that using musical grammars generatively to automat-
ically produce music will produce artistic innovation. What interests us in art,
after all, is that works of art express and embody something human. Moorer
draws our attention to the fact that computer composition is a balance between
two opposites: to preserve repetition and periodicity while denying boredom.
The difference is particularly striking when you have seen the output of low,
intermediate, and high order Markov methods. In an article on composition
using genetic algorithms [TW99], Todd and Werner describe the same problem
as a structure-novelty tradeoff. A computer composition should follow a set of
music-semantic or structural rules that allow us to recognise the composed piece
as music, but only to a certain extent. If all rules are followed too slavishly, the
produced piece will be a boring pastiche of existing music. The composition al-
gorithm should therefore introduce novelty and unexpected turns in its creation
by violating rules, but again only to a certain extent. Too much novelty and
lack of structure becomes unintelligible, but it also matters in which way rules
are broken. In the next chapter, we will look closer at the notion of structure in
music, but only from an analytical point of view. We do not consider automated
composition further.

Concerning the question of top-down knowledge engineering approach vs.
the bottom-up empirical induction approach to the construction of generative
theories, we have argued that knowledge engineering is by no means superfluous.
Music has multi-faceted and multi-layered structures, and multiple viewpoint
systems are an example of a way to imbue a learning system with knowledge of
the musical domain. The widely acclaimed GTTM incorporates large amounts of
musical knowledge in the preference rules. The success of Steedman’s grammar
may be connected with the fact that there are clear music-semantical reasons
for the production rules.

As a means to creating structure, grammars are not unproblematic: there
is a difference between valid and good chord sequences generated by Steed-
man’s grammar. Winograd also distinguishes between syntactically valid and

31

meaningful structures. Restraining a grammar to generating valid, good and
meaningful music is tough, if at all possible. The linguistic notions of syntag-
matic and paradigmatic relationships may perhaps help us in this endeavour.
Steedman describes some of the syntagmatic relations built into his grammar;
e.g. cadences and leading notes are important means to convey musicalness or
to make the chord sequences musically meaningful. Paradigmatic relations of
similarity, inclusion, or entailment are inherent in the hierarchical structure of
a grammar and work together with syntagmatic relations to make a structure
musical. If there is something like 'musical meaning’, perhaps the inclusion of
well chosen domain-specific musical knowledge in the construction of the gram-
mar, by way of musically well founded syntagmatic and paradigmatic relations,
is a means to achieve such a 'musical meaning’. So that also in this respect, it
makes sense to describe music using a grammar.

32

3 Structure in music

The most used music representations vary in abstractness. Digital audio record-
ings we consider to be a very concrete representation, because it is very explicit
about what we are actually going to hear. In the other extreme, the com-
mon music notation (CMN) is a very abstract description of music, because
it leaves much room for interpretation of a written score. Interpreting a score
so much that an expressive performance of it can be computer generated is a
field of study in itself in computational musicology. But our subject lies further
down the abstractness scale; describing music hierarchically using a generative
grammar gives an even more abstract description than common music nota-
tion. Ideally, it describes not only musical structures but also the ways in which
these may vary and be recombined while still being valid, interpretable musical

structures.

(hello world)

Sonata::=ABA

performing musicians audio recording CMN score generative grammar
Figure 6: Varying degrees of abstractness in music representations.

Our project is concerned with structure in symbolic representations of music.
The purpose of this chapter is two-fold: first, we look at the CMN as a level of
musical description and discuss requirements for the computer representation
that we use in the project. Secondly, we consider different types of parallelism
in music as we may find it at the level of the CMN, and how these can serve as
a basis for building a hierarchical description of music.

Terminology Let’s first clear a path through some of the terminological bush.
We use the term monophonic music to refer to music composed of a single
melodic line. Monophonic music does not contain any simultaneous notes —
only one note can be sounding at a time. Music for only one part is often by
nature monophonic, since some instruments cannot play more than one note at
a time. This is true for a wind instrument, or a singing voice, but a keyboard
instrument part is often not monophonic. The term monophonic is also used on
music with more instruments playing in unison as for example a violin group
or a choir part. Gregorian chant is by nature monophonic. Music which does
contain simultaneous notes we denote non-monophonic music (see figure 7).

In the music literature, there is no distinction of importance between mono-
phonic music and one-part music, but we need to draw it here since it is relevant
to the computer representation.! A non-monophonic piece may consist of solely
monophonic parts as for example in a wind instrument quartet.

The term non-monophonic music may seem a little clumsy, but we have
chosen it so as not to interfere with the traditional meaning of polyphonic music,

10Hopefully, this will become more clear in section 4.3 on sequential (monophonic) similar-
ities and section 4.4 on non-sequential (non-monophonic) similarities in music.

33

|
|

Figure 7: A monophonic and a non-monophonic piece of music

which means counterpoint based music like a fugue. Polyphonic music has
parts which are melodically and rhythmically independent of each other and is
thus a subset of non-monophonic music. Neither will we need to interfere with
the meaning of homophonic music. This is another subset of non-monophonic
music, in which multiple parts move in the same rhythm (as opposed to the
rhythmically independent parts of polyphonic music).

Polyphonic and homophonic music are terms that say something about two
extremes in musical composition techniques, whereas monophonic and non-
monophonic are more technical terms which refer to the complexity of the score.

3.1 Representing music

As we have argued in the discussion of the importance of knowledge engineering
versus empirical induction, the computer representation of music is of great
importance. It determines how much information the music can contain, and
how we are able to work with it computationally — what is natural to do in
one representation can be extremely difficult in another representation, or even
impossible if it does not contain enough information. If we choose a serialised
form as e.g. in most file formats, this raises the question about which dimension
(pitch or time) is the most important, and therefore should be given easiest
access. Sometimes we want to regard the music vertically, as homophonic music
(look at the chords), and other times to examine the horizontal development,
i.e. the melodic lines. In a good representation it should be possible to do both.

3.1.1 Common Music Notation

The common music notation (CMN) is a result of many years of attempts to
write down music as precisely as possible. It is a graphical representation, well
suited to visual interpretation. CMN has proven itself very useful in notating
western tonal music, since it is based on the diatonic idiom, but also nontonal
music is easily readable in this format. In fact CMN is the most used format
for storing pieces of western tonal music.

Curtis Roads notes that most score notations are mixtures of iconic and sym-
bolic representations: “Graphic scores and tablature tend to be more iconic,
while traditional stave notation contains more formal elements such as note
heads and stems, dynamic terms |[...]” [Roa79, p.48]'!. This means that some
of the information (the formal, symbolic elements) contained in a CMN score
are easily translated into a purely symbolic representation, while other charac-
teristics of a score (the iconic features, e.g. 2D-placement) resist being used in
symbolic ways.

The visual aspect of a score is an example of iconic features that ease the hu-
man interpretation of it: as a graphical representation of music, the CMN is two-

11Gee also our presentation of Roads’ article in section 2.4.5

34

dimensional. The horizontal dimension represents a strict time line, and pitch
is represented vertically. The position of the noteheads in combination with
the key signature gives the exact pitch information. Higher sounding pitches
are notated above the lower sounding pitches. From the stems of the notes
and the filling of the note heads (and the dots of prolongation and ties between
the notes), one can read the duration of the notes. The horizontal placement
of the notes (and rests) determines the order in which they are to be played.
Simultaneous sounding notes are placed above each other (this is what makes
the second piece of figure 7 non-monophonic). Time is partitioned into bars of
a certain duration as for example 4 quarter notes. The bars are often important
to the metrics of the music.

The human interpreter thus uses a mixture of symbolic and iconic informa-
tion to basically read “which pitches should sound when”, but often also with
a lot of performance guidelines like phrasing (slurs), dynamics, articulation and
accents is specified. Some of these are added by the publisher and not the com-
poser, so we should not assign this too much importance. It is also possible
to specify textual messages (footnotes), as well as lyrics, so almost any kind of
information can be added. All this information may be of importance in creat-
ing a perceivable parallelism, so in an ideal analysis, we should take it all into
account.

The CMN is less suitable for specifying timbral characteristics, which is a
huge issue in modern popular music. Neither non-western music as Indian raga’s
or music with more or less than 12 partitions of the octave is expressed well in
CMN.

Diatonic information One thing that deserves a special explanation is the
diatonic information inherent in the CMN score. A diatonic scale is a division
of the 12 semitones of an octave into seven steps: five double-semitone steps
and two single-semitone steps. A piano is constructed in such a way that scales
played on the white keys are diatonic. Notes can be placed on the lines or
between the lines. There is then either a single or a double semitone step between
notes on two adjacent lines, just like between the white notes on the piano.
The diatonic scales comprise the major scale (C to C on the white keys) and
the minor scale (A to A on the white keys). The scales can be transposed to
other roots, in which case the scale qualities are obtained by changing the key
signature as well. The major and the minor scales are the two most prominent
scales in the Western tonal music and hence the term ‘major-minor’ tonal music,
but other scales are used.

One can also temporarily alter the steps with one or more sharps or flats,
but the scale step (degree) remains the same. Although there are more than one
way of notating a desired pitch, diatonic music is always written in relation to
the fundamental scale steps. This is important because it allows us to construe
two scales as equal even if one of them has alterations. This might not at first
sight seem as a good idea, but it is a fundamental thing to be able to do. For
example, a theme in major is not equal in pitch to the same theme in minor,
but they’re representations of the same theme nonetheless. We can discover
this by looking at the diatonic scale steps they origin from (see section 3.2 on
similarities).

In western tonal music we often encounter diatonic transpositions. For ex-

35

ample one musical idea can be played in the main key and then diatonically
transposed one step and the again diatonically transposed one more step as for
example: C-D-E-C, D-E-F-D, E-F-G-E. The listener hears this as a repetition of
the idea, even though the note-to-note ‘jumps’ in the theme have different sizes
counted in semitone steps. This is what musicologists traditionally denote a se-
quence. Since only notes of the fundamental diatonic scale are used, a sequence
stays in the same key. In a strict transposition such as C-D-E-C, D-E-F§-D,
E-F4-GY-E, where every note is transposed an equal number of semitones, we
also hear a repetition of the same theme, but the key changes along the way,
giving us the impression that a modulation has taken place.

0 |
r o) -S— ﬁ%ﬁ r o) P — —
o /. — La o — L
[J) - & T J LA
0
o P — —
o L

Figure 8: The C major scale, the scale transposed two semitones up to D major
(note the change in key signature), and the scale diatonically transposed one
scale step up (ending in D dorian scale).

Representation of diatonic information requires us to represent the overall key
signature (fixed accidentals) and for each note we must know which line it is
written on and any accidentals present (its spelling). A representation with just
one integer for each pitch (e.g. by numbering the keys of a piano, or giving the
midi pitch) is not enough, since we cannot determine if the original note was for
example a Cff or a Db. This is called the pitch spelling problem. We don’t know
of a 100% reliable solution of the pitch spelling problem, and we have chosen
not to try to solve it. Instead we have taken two approaches: read music from a
richer file format (MuseData) which does contain all the relevant information,
or alternatively, ignore the pitch spelling information when it is not available in
the source file (midi files). We present the file formats in section 3.1.2.

Let’s consider an example of the importance of diatonic information. Figure
9 shows four bars (bars 37-40) from the recapitulation in the Mozart piano
sonata K.V.545.

Figure 9: Diatonic sequence by descending fifths. The voice leading of each
descending fifth mimics the voice leading of a dominant-tonic progression. (From
Mozart Piano Sonata K. V. 545).

What we see is a sequence — one musical idea repeated over and over. The
similarity seems clear to the naked eye. The 8-note melodic line is presented 8

36

times (the last in a slightly changed form). The melodic figure is constituted by
a fifth jump upwards followed by stepwise descent. Every time the figure starts
on different scale steps — the scale step one fifth below the preceding. This
gives a harmonic relation between each occurrence. The harmonic background
is controlled by this idea of a descending fifth. The chord sequence is then: [Am-
Dm,G-C,F-Bm®® E-Am]|. '? So we return in the same key as we started. We see
that all triads that we can make with roots of an A minor scale (and consisting of
notes solely of that scale) are presented (except one): [Am,Bm’®,C,Dm,E,F,G].
The exception is that the chord on the fifth scale degree (the dominant) is using
an alteration of its third (the E would otherwise have been an Em). This is
a fundamental thing in western tonal music. The reason is that we keep the
cadence abilities intact in the E-Am relation. The altered third in the E major
chord (GY) is called the leading note, and leads one semitone up to the root in
Am.

From a diatonic view, the melodic sequence looks the same (one fifth up and
then descending stepwise), but when we examine the semitone intervals, there
are some differences. The rising fifth is a perfect fifth (7 semitones) except
when starting on B where it is a diminished fifth (6 semitones) and hence the
%5’ predicate on the B minor chord (Bm"). An augmented fourth also is a
jump of 6 semi tones. This is one of the pitfalls in the pitch spelling problem,
but in this case the interval of 6 semitones is a fifth.

The descending stepwise (seconds) take also different forms. We would like
to attract attention to the third one in each occurrence. It is the step from the
third scale degree to the second in each chord (in Am it is C-B, in Dm F-E,
G: B-A, C: E-D, F: A-G, Bm*®: D-C, E: Gf-F and then the Am again). In the
minor chords, that interval is a small second (one semitone) and in the major
chords a large second (two semitones). But in the E major, which is not a real
E major but an E minor based on a minor scale with a raised third, the interval
is an augmented second (three semitones). Three semitones is the same as a
minor third, but this is not what is going on here. The interval occurs as a cause
of the altered third in the dominant as explained above.

In order to be able to recognise the melodic pattern going through this
sequence of descending fifths (in scale step), we have to be aware of the diatonic
augmentations. In spite of the different versions of the same intervals we do
hear them as versions of the same idea.

Drawing on CMN There is a lot of terminology coupled with the CMN.
We believe that an ideal computer representation of music has features simi-
lar to the common music notation. It is desirable to work with music as if it
was notated in CMN, so that we are able to use the same expressions and talk
about music as notated in CMN. We consider CMN to be the most detailed
representation for our purpose, since we concentrate on the symbolic represen-
tation of music and not audio recordings. After all, the format was, and still
is, the composers’ way of presenting music to us. One advantage we would like
to keep from CMN is the readability of the two-dimensional score; it gives us
equal visual access to both pitch and time information. This may play a role

12PJease notice that the terms scale and chord or harmony are two sides of the same thing:
defining the local tonality. A chord (for example Am) states that the underlying notes are
within the A minor scale.

37

in the way we humans analyse and think about music. We will argue later that
our graph representation provides equal access to both horizontal and vertical
views, without restraining the access to horizontal and vertical views. Also, the
representation of our music graph in the graphical user interface (GUI) can to
some extent be “read” in a way graphically similar to a common music notation
score.

3.1.2 File formats

Let’s take a look at the data we are going to represent. “Beyond MIDI” [SF97]
is an excellent book describing the jungle of music file formats. We have been
working with two different file formats from which we are able to read a musical
piece. The formats are Midi and MuseData.

Midi is a protocol by which computers, sequencers, sound modules, keyboards
and other midi-enabled instruments of the computer age may communicate in
real-time on 16 virtual channels, each representing an instrument. The midi file
format reflects this in that all information is represented in events: midi events,
system exclusive events, and meta-events. Midi events control notes’ starting
and stopping on the 16 channels, just as they would be controlled if receiving
the events as real-time messages from another midi-enabled instrument. Only,
in a midi file, there is no real-time timing to determine the onset of an event,
so each event is stamped with a delta-time telling how many midi ’ticks’ have
passed since the last event. A midi tick corresponds to ten milliseconds. System
exclusive events can be used to extend the midi protocol, a feature mostly used
by hardware manufacturers. Meta events are used for track-names, lyrics, cue-
points and other optional information that is not a part of the midi protocol
but still handy in a file format. Key and time signature, as well as slurs, accents
and other additional information can be encoded in meta-events, but there is
no guarantee that a given midi file contains such information. When loading a
midi file, we assume that no other information is present than the note onsets,
durations and which part they belong to. Midi files are good for their extensive
availability, but guarantee nothing but an encoding of the most basic pitch and
length information of notes. The time resolution is the midi tick, which allows
far too much expressive timing for our purposes, where a representation as close
as possible to CMN is wished for. It is thus necessary to quantise midi files
when they are loaded. We use the jMusic java package to transform midi files
into a score-like notation (see appendix A.2 on implementation).

MuseData on the other hand takes as starting point the printed score. The
compelling thing about MuseData is that it provides almost all thinkable infor-
mation from the score. This includes diatonic, or pitch spelling, information.
Notes are represented as spelling, octave, accidentals and duration. All expres-
sive information (accents and relative loudness) is also encoded, and graphical
information as clefs'®, bar lines (in different types) and even stem directions can
be read from a MuseData file. The database contains about 900 works — mainly
baroque music (Bach, Hindel and Telemann) but also some Mozart, Haydn and
Beethoven. There are two encoding formats, where only stage 2 fullfills the high
requirements of the encoding standard. We use stage 2 files, and this reduces
the number of files offered. The files are free for download from the homepage

13The clefs have no impact on the pitch since the pitch is specified as described.

38

(www.musedata.org).

3.1.3 Temporal relations

Like theatre and cinema, music is a form of art that unfolds in time. It seems
impossible to imagine a piece of music with no temporal extension; interleaved
and intercausal structures in pitch, harmony, timbre and dynamics evolve over
time and make music such a potentially complex overall structure.

In his book Representing Musical Time [Mar00], Alan Marsden discusses the
representation of time in logic, and specifically time in music representations.
A distinguishing trait of time, as opposed to other domains such as space, is
that “time (almost always) is taken to be one-dimensional. There is only ’be-
fore and after’ or 'past and future’. Thus, when using a logic in which times
or objects-in-time are individuals, there is a fundamental binary relationship
of precedence between these objects usually expressed with the symbol <, thus
’a < b’ means that a comes before b.” ([Mar00], p.16) There are different kinds
of temporal logic that may be divided into in-time temporal logic — a modal
logic, where truth and falsity of a statement S is relative to the point in time
when S is stated, and out-of-time temporal logic — a first or second order logic
that describes precedence relations as seen from a non-involved, absolute point
of view. But whether an in-time or out-of-time logic is used, the central relation
used between events in time is precedence or its negation, lack of precedence,
i.e. simultaneity. If we consider time periods instead of simply events in time,
there are 7 interesting basic relations, see the table in figure 10. In addition
to simultaneity and precedence (cases 1 and 2 in the table), we can distinguish
‘meeting’ (or 'immediate precedence’), overlapping, and the three containment
relations ’starts’, ’during’ and ’finishes’. This necessitates additional bookkeep-
ing, compared to an event representation with the two basic relations among
events, precedence and simultaneity; luckily, the event representation is suitable
for score notated music, in which time is also discretised.

XXX _
1y X=y

2 | XXX yyy X<y

3 | XYY X meetsy

XXX

4 vy | X overlapsy
XX Start
5 Yy X startsy
XX duri
6 Yy x duringy
XX .
7 YWYy x finishesy

Figure 10: The basic relations in a period representation of time. The table is
an adaptation of [Mar(00, Table 1, p.59].

39

Structurally, this gives rise to some natural building blocks for representa-
tions of music (and other time-based phenomena). Stringing together a number
of precedence relations a < b, b < ¢,...between events or structures a, b, c,. . . gives
rise to sequence structures such as [a, b, c,. . . |; and simultaneity relations A = B,
B = (C,...between events or structures A, B, C'...give rise to parallel structures
such as (A|B|C...). This is illustrated in figure 11, where the entire structure
given could be described as [[a, b, ¢|, (4| B|C|D)], square brackets ’[|’ denoting
sequences and angled brackets '{)’ denoting parallel structures.

y
X
' v

. &l [b)
—
e o
time=
Figure 11: A sequence structure z of events or structures a, b, c,. . ., connected by

precedence relations, and a parallel structure y of events or structures A, B, C, D
connected by simultaneity relations; and y are also in a precedence relation
x < y, so the entire figure could be described as [[a, b, ¢|,(A|B|C|D)].

This fundamental distinction between ’sequence and parallel’, or ’concate-
nation and combination’, occurs in several different places in the literature.

Mira Balaban and music structures In [Bal92], Balaban sets out to define
the concept “Music-piece” in terms of a hierarchical structuring of music objects
and an explicit representation of time. The building blocks of the hierarchical
structure are “Music Structures” that may contain elementary music structures
or composite music structures. An elementary music structure is a pair (p,d)
where p is a sound object that characterises the sound (you could think of it as
the pitch of a note), and d is the duration of p, e.g. [A#, 4]. A composite music
structure is built by a number of horizontal or vertical concatenations of ele-
mentary or composite music structures. Balaban’s “horizontal concatenation”
is what we referred to above as a sequence structure, whose elements addition-
ally follow tmmediately upon each other; and the “vertical concatenation” is a
parallel structure whose elements start simultaneously. The composite music
structure may be placed at any starting point in time and thus relativise the
times given for its component music structures.

Balaban counts the context-freeness of the music structures as a strength:
“Due to the context independent nature of music structures, they can be used
to describe pieces that can be repeated at different time points in a larger piece.
The essence of the musical concatenation constructor is the repeated relativiza-
tion of different time lines; the ability to describe structured pieces |...] derives
from this essence.” ([Bal92], p.121). But, as we have seen in section 2.4.5, it

40

seems that structural descriptions that are stronger than context-free descrip-
tions are more appropriate for music.

The ’sound object’ abstraction in the definition of elementary music struc-
tures is a powerful one. It allows Balaban’s music structures to be applied to
analyses of structures in tonal music, where the sound object p describes the
pitch and perhaps dynamics or other properties of the sound event, such as tim-
bre. From this point of view, the sound object might as well be a digitised audio
recording (“a sample”), as often used nowadays in loop-based electronic music.
In this way, the abstract concept of music structures can be directly applicable
to the analysis and composition of sequencer/sampler-based music, although
the comparison of different sounds (e.g. recorded drum sounds) is bound to be
more difficult than the comparison of pitch classes. In section 6.1.9, we discuss
how such an audio extension could be made to the SimFinder system.

Bernard Bel and polymetric expressions The division into sequential and
parallel structures is also found in the work of Bernard Bel, who has worked
on formal representations of music and most notably, the Bol processor gram-
mars [BK92]. In Symbolic and Sonic Representations of Sound-Object Structures
[Bel92], Bel develops the notion of polymetric expressions, that structure events
in time. Events are located in an “event universe, a finite set of object structures
with three time relations [...]. These relations are precedence, simultaneity and
sequentiality. The latter relation also implies precedence; this implication is
part of consistency conditions binding the three relations.” [Bel92, p.73] Poly-
metric expressions therefore can be nested combinations of “sequences” and of
“superimpositions” of objects in time. This corresponds to the sequential and
parallel structures referred to above. Bel argues that it is a strength of polymet-
ric expressions that the complete rhythmic structure need not be represented,
e.g. in a superimposition of two sequences {[a, b, c,d|—][e, f, g]), the length of
individual events a, b, c,...are not represented explicitly. Thus we cannot im-
mediately tell what temporal relationships hold between b and f, d and g, etc.
and a method is needed to infer missing temporal relations in the structure.

Bel chooses to have three basic temporal relations among events, but he also
notes that sequentiality implies precedence, so in fact one could reduce the basic
relations to the fundamental simultaneity and sequentiality.

Darrell Conklin and horizontal/vertical viewpoints Conklin has ex-
tended his multiple viewpoint system to apply to non-monophonic music. His
data structure is yet another example of the sequential-parallel dichotomy of
musical objects. Music objects M are defined as

M ::= Note|Seq(M)|Sim(M)
Conklin mentions Hudak, Balaban, and the OpenMusic environment!4 as other
examples that use “a similar ontology with simple elements, sequences, and

14The cited articles are:

o P.Hudak, T.Makucevich, S.Gadde, and B.Whong: Haskore music notation — an algebra
of music, Journal of Functional Programming, 6(3): 465-483, May 1996.

e M.Balaban: The music structures approach in knowledge representation for music
processing. Computer Music Journal, 20(2): 96-111, 1996.

e C.Agon, G.Assayag, O Delerue, and C.Rueda: Objects, time and constraints in Open-
Music. In Proceedings of the International Computer Music Conference, Ann Arbor,

41

superpositions as objects. It appears that the various instances of this ontol-
ogy differ mainly in the temporal overlapping restrictions imposed on objects,
whether recursive embedding of objects is permitted, and whether rests are
primitive objects”. [Con02, p.33] The introduction of vertical viewpoints is
used mainly to find significant recurrent patterns of successive vertical struc-
tures. The representation stays locked, so to speak, in either viewing a music
piece as fundamentally a superposition of sequences, or a sequence of superim-
positions. This is perhaps not optimal when analysing music. Our music graph
is an attempt to break out of the sequential-parallel dichotomy.

The sequential/parallel dichotomy The sequential/parallel dichotomy re-
sults from splitting the representation into strictly vertical (parallel, or simulta-
neous) or horizontal (sequential, or related by precedence) groupings that may
in turn be structured in parallel or in sequence with other elements or composite
structures.

Amin Dmin’

Dmin’

@‘@®q

@ @ @ @ o
>
3.
>
. . «

Figure 12: Two different sequential/parallel representations of the same four
chords. Each circle represents a note with midi pitch value and note length.

Such parallel/sequential representations may represent non-monophonic mu-
sic, in virtue of the parallel structures. But the same piece may be represented
in many different ways. Figure 12 shows how the same four chords may be
partitioned in two different ways using sequential and parallel structures. Each
circle represents a note; the upper number is the midi pitch of the note (where
60=*“middle C”, 64=F, 65=F, etc.) and the lower number is the length of
the note (1.0 being a quarter note, 0.5 is an eighth note, 4.0 is a whole note,
etc.). Implicit in both examples is a nested, or hierarchical, structure, which is
somewhat more complicated in the right example.

For this project, we have tried to choose a representation that does not neces-
sarily have an implicit hierarchical structure that may bias the analysis. We also
want our representation to express the basic temporal relations of simultaneity
and precedence while allowing groupings of notes that are not constricted to

Michigan, 1998, International Computer Music Association.

42

Figure 13: A subset o of notes in the four-chord progression. o does not have
an inner nested, or hierarchical, structure to the notes it contains.

monophonic sequences or homophonic chords. E.g. we would like to be able
to consider the subset o of notes in the chord sequence in figure 13 without
necessarily imposing a nesting of sequence and parallel structures (as shown in
figure 14). The two examples of possible parallel/sequential representations of

C Amin Dmin’ G’ C Amin Dmin’ I

B ® ® ®&|® @@ ®
. ® @,

Figure 14: Examples of two possible representations of o using parallel and
sequential structures. These necessarily impose a hierarchical structure.

b4

Figure 15: This musical fragment is perceived as a melodically elaborated C
major harmony.

o shown in figure 14 are not unique; there could be others.

To give one more example showing how the nature of music is not captured
by this parallel/sequential dichotomy, but rather as a unification of the two, we
would like to comment on the tiny musical fragment shown in figure 15. The
fragment can be heard as an elaboration of a C' major chord where the third has
been suspended with the fourth and then resolved to the third on the weaker

43

beat following. In this fragment, the C' and the E constituted the C' major
chord, so when trying to guess the underlying chord of the notes, we do not
find the important notes starting at the same time, but we would have to guess
what should be considered sounding together (and thus be represented together).
Viewed from the melodic angle, we would miss the important harmonic features
in the correlation of the two melodies. Instead we propose to group all three
notes together in one structure, not preferring one or the other encoding.

To avoid biasing an analysis that uses nested parallel /sequential structures,
it is sufficient to develop comparison methods that decide the equivalence of two
representations, and transformations that convert one representation to another
more suitable representation. An example of such representation juggling is
given by Conklin in his article on vertical patterns and viewpoints: “as a prelude
to finding vertical patterns, it is necessary to restructure or partition the basic
encoding of a piece from a simultaneity of Seq objects to a sequence of Sim
objects.” [Con02, p.34]. He continues: “The music object data type is well-
suited to this task because it allows the musical surface to be structured in
many alternative ways.” [Con02, p.34] As far as we understand, it not only
allows, it also necessitates that the representation be restructured now and again
to fit the purpose at hand. We have chosen instead to not necessarily impose
inner vertical or horizontal structure upon subsets of notes. This can be done
by representing the temporal relations of simultaneity and precedence between
pairs of notes as arrows, or directed edges. The notes then become vertices in a
graph, and specifying a subgraph can be done by pointing to a subset of vertices
and edges. The simultaneity and precedence relations are still present as edges
in the subgraph, but there is not necessarily an inner hierarchy specifying which
notes are tied more closely together in a Seq or Sim structure than others. In
this sense, it is an open representation. In the last section (5), we introduce a
mechanism to allow but not necessarily impose grouping along any edges in the
graph.

It could be objected that representing music without any inner structure is
no big deal: a simple list of all notes with their onset time and other properties
could do that trick. This is true, but it means that the relations between notes
have to be computed every time we want to use the representation for analysis
purposes. E.g. if we would like to find repetitions of a sequence of consecutive
notes in a non-monophonic piece, for each note considered, we must perform a
search for following notes to locate possible successors. This is computationally
expensive. The graph representation has an explicit representation of temporal
relations between notes, so that e.g. successors of each note can be looked up
in constant time. The cost of such a data structure is additional maintenance
whenever the graph is changed.

3.1.4 Brinkman’s data structure

In his book Pascal Programming for Music Research, Alexander Brinkman de-
scribes a data structure that bears some resemblance to our own music graph
(see [Bri90, pp.759-809]). It is designed to represent scores and allow flexible
analysis of scores. The data structure is based on multiple doubly linked (and
inter-linked) lists, constituting in effect a graph. The basis is the spine list whose
elements are points in time at which some of the events in the score occur. The
spine is like a time line. For each part in the score, there is a doubly linked

44

list of the notes in it. These are the horisontal links connecting notes in a se-
quential fashion. The horisontal links correspond approximately to the FOLLOW
edges in our graph. Our FOLLOW edges are directed, but in the implementation
of the music graph, a vertex knows both its incoming and outgoing edges, so in
practice we have the same structure as Brinkman’s doubly linked lists. More
importantly, rests are not represented explicitly in Brinkman’s linked lists, so
the horisontal links are not relations of immediate precedence, as our FOLLOW
edges, and Brinkman has no precedence links between parts. The only inter-
part links are related to simultaneity. There are bi-directional start-time links
connecting all notes beginning at the same time to each other and to their cor-
responding time point element in the spine. These correspond exactly to the
SIMULTANEQOUS edges in our graph. Brinkman also inserts stop-time links that
connect notes ending at the same time. E.g. a whole note (whose length is 1.0
in Brinkman’s representation) beginning at time 2.0, and a quarter note (length
= 0.25) beginning at time 2.75 will have the same stop time at 3.0, so these
two elements are connected by a bi-directional stop-time link. In section 4.2, we
discuss the introduction of SIMULTANEQUS_END edges in our graph, which would
be the exact equivalent of Brinkman’s stop-time links.

This describes the temporal structure in Brinkman’s linked list representa-
tion. An interesting feature of the linked list is the inclusion of special links
that connect additional score information to the lists. E.g. the key and time
signature can be represented as separate elements linked to the first element in
the spine (the time line), or bar line elements can be periodically linked to the
appropriate elements in the spine, thus showing when measures start and end.

The strength of such a graph representation, in Brinkman’s words, is that
it allows analysis programs to “move about in the score in any manner desired,
looking back or ahead at will, combining horizontal and vertical motion in any
manner required. This makes it possible for us to evaluate context to a degree
that is difficult to achieve when dealing with one-dimensional representations
such as strings.” [Bri90, p.760] A graph representation therefore solves the
problem of representing both sequential and parallel context at once. Our graph
structure is described in detail in section 4.2.

3.2 Musical parallelism

Western tonal music is larded with repetitions and variations of small frag-
ments. This provides a natural way for the listener to structure music into mo-
tives, phrases, passages, sections, and themes and to ultimately “understand”
the piece in terms of these smaller components. Imagine a piece without any
repetitions (or parallelisms); the listener must perceive new information all the
time, and he may well get more and more confused, since there is no way to
relate different sections of the piece, or indeed divide the piece into sections.
We are concerned with the musical surface in a symbolic representation of
music. In that area, parallelism may be found at different layers in the music:
the note level, motivic level, thematic level, or looking at the grand form of a
piece. But far from all parallelisms in the musical surface are relevant. Parallel
patterns can occur coincidentally, and they may be imperceptible; we do not
wish to find those. An example of such a pattern could be one that consists of
notes in different contexts (different voices or different themes) and separated
far from each other in time. These are very unlikely to be perceivable and it

45

is doubtful that the composer is aware that they occur. An important, but
difficult task is to sort the perceptible patterns from the imperceptible ones.

We have chosen not to find all patterns and then determine their impor-
tance, but rather to begin by narrowing the search to a set of patterns that we
believe are more likely to be perceptible. This means that we concentrate solely
on parallelisms whose constituent musical objects (notes) follow immediately
upon each other. No musical objects in a pattern can be temporally discon-
nected from the rest of the pattern. This restriction increases the chances that
found patterns are perceptible. But on the other hand, it also restricts us from
finding certain much more advanced transformations of musical patterns, that
human listeners are able to perceive. This would require us to be able to do
some kind of reduction (like e.g. Lerdahl and Jackendoffs time-span reduction,
or prolongational reduction) of the musical material, which we have not been
experimenting with. Reduction is quite a hard problem as we will see in the
next section.

3.2.1 Theme with variations

An essential thing to be able to do is to recognise a variation of a theme. The
classical form type “Theme with variations” attracts our attention. This section
will present a little appetiser which shows some different kinds of parallelisms
that are relevant. Have a look at figure 16.
The figure shows the first 8 measures of a Mozart theme, and 2 out of 12
variations on this theme. The composition solely consists of these variations.
The theme presents the music in its least elaborated form. In each of the
variations new different musical ideas have been added to the main skeleton of
the music. For example in the first variation we find the right hand melody
ornamented with sixteenths (the melody can be found in the sixteenths). The
originating note is never played as the first note, but often the second or fourth,
and always attacked from the scale step below or above. The left hand is almost
playing the theme presentation, but with some rhythmic variation. In both
voices chromatic alterations have been made, giving “leading note” affinities.

The eights variation is a C' minor version of the theme (the theme is in C
major). Furthermore an imitation idea has been imposed: the first two bars
of right hand melody are reproduced in the next two bars in the left hand
(transposed a fifth). In the end, a chain of dissonances and resolutions appears.
Again the notes from the melody in the original version can be found in the
variation, but this time with the flat alterations which is the difference between
C major and C minor.

Common to all the three fragments shown is the underlying chord progression
which the notes insinuate:

Theme [C,C,F,C,G",C-Am,F-G,C]
Var I [C,C,F,C,G7,C-Am,F-G,C|
Var VIII [Cm,Cm,Fm,Cm,G”,Cm-Ab,Fm-G,Cm)]

The similarity with variation VIII becomes a little clearer when we look at
the triad roots, relative to the tonic, C. In roman numerals, the C-relative
triads of all three variations look like this: [[,LIV,[,V7 I-VI,IV,V.I]. In this latter
representation we cannot see the difference between major and minor.

46

P) P) » » P P - - "‘1‘
o — —] — — e
4 i i I T T T T I T I I i I ﬁ I 0
;e Z - £ . Z » . » . ‘l
m‘g i I I T T ! T I I I ! i r r d #
1 2.
Pebopoponiettelilee s ElPe0, S EP00,, & e
=E e | e T e e e B Ll el
~N
— e —
L s 2 e |f . B fole ole I
m‘g i T T T T ! T 7- ’V T 7- Y717 ‘If :I;‘ IF i l“ﬂ

Figure 16: Theme and variations I and VIII of the first 8 measures from Mozart
K. V. 265

The other ten variations of K. V. 265 (not shown here) exploit other ideas
such as more ornamentation of both voices, rhythmic variations (tripletting
of quarter notes), one variation in 3/4 meter instead of 2/4, and harmonic
development.

The main thing here computationally is to be able to find out what the
commonalities of two given pieces are, and what the differences are. In many
cases, a lot of new notes are added around the simplest version of the theme.
The task is then to remove the noise and find the musical abstraction under
which the remaining can be construed to be similar. When listening, we tend
to be able to hear these variation types clearly, and can easily categorise what
is going on, whereas the computation of them is more demanding. Our minds
tend to be drawn by the similarities instead of the noise. The opposite seems
to be the case when computing!

Chord recognition is an example of a problem that the automated discovery
of parallelism faces. Determining the underlying chord progression of the theme
in figure 16 is not trivial because Mozart did not state all notes of the triads we
would like to find. For example the notes of the first measure do not specify all

47

notes of a C major triad (but only C’s), but they create an illusion of C' major
which most people would agree on when they hear the continuation. The F'
major triad also lacks an A, and the G” chord is lacking the G (an incomplete
dominant). Chord recognition is a subproblem that can be isolated and studied.
We have not implemented chord recognition and will not go deeper into it.

Hopefully, this section has illustrated a few of the difficulties in algorithmi-
cally constructing sensible reductions of a musical surface. We will now look
more closely at different types of parallelism.

3.2.2 Parallelism types

The illusion of parallelism can be created through repetition, simple transforma-
tion, elaboration and simplification. The artistic effects can be varied infinitely.
For example, a repeated note can be varied according to many parameters, and
still be construed as a repetition of one note: duration, timbre, loudness, oc-
tave. A phrase (consisting of notes) can be transformed into other notes so
that it only resembles the original according to for example pitch contour, pitch
interval steps (diatonically or exact pitch interval) or rhythmic structure. We
would like to extract the defining features or transformations which create this
illusion.

The term ’transformation’ is used by [WHC91] when a musical object can
be inferred from another musical object in a perceptible way, and it is possible
to specify the transforming function. One musical fragment can be transformed
to another musical fragment, and the transformation function determines the
type of their relation, describing in what way they can be said to be different
inflections of the same musical idea. In other words, the transformation function
specifies the paradigmatic relationship between the two fragments'®: a relation
of similarity, inclusion or entailment.

We use the term transformation to denote repetition, simple transformation,
elaboration or simplification.

Repetition and simple transformation By repetition we mean strict rep-
etition of a phrase. All notes in the two versions of the phrase must be pairwise
equal in a particular order. This is what demands the least effort to find. By
simple transformation, we mean transformations which do not remove or add
notes. We will list some of the simple transformation functions. These functions
are quite common means of creating parallelisms. Let us call the two musical
objects oy and o3. Then o can be transformed into oy by the following means:

e Exact repetition. No transformation at all. The notes of oy and oy are
the same, so this is in fact an identity function.

e Transposition. All notes of o2 have been displaced by the same number
of semitones in the same direction.

e Octave transposition. This is a special case of transposition where each
note in o9 is displaced 12 semi tones (one or more times) in the same
direction. This is also perceptible as a special case of exact repetition, since
we tend to perceive octave transposition as almost an exact repetition.

15See section 2.4.6 on paradigmatic and syntagmatic relations.

48

e Diatonic transposition. All notes in o3 have been displaced by the same
diatonic interval, for example a fifth, or a second.

e Change in modality. This is in fact the same as a change of key. The note
spellings of o are the same, but the key signature is changed. For example
the change from C major (no accidentals) to C' minor (three flats).

e Change in durations of the notes. The notes of o5 have the pitches, but
different duration values. The duration values can be changed according
to a fixed scale (scaled durations), or a repeated pattern of duration values
(a new rhythm idea), or the changes can be arbitrary.

e Same scale, but octave displaced some times. The melodic qualities of o
remains intact in o9, even though some jumps are not the same.

e Harmonic imitation. o9 is a harmonic imitation of o;. This is a practical
problem which arises when making imitations. The intervals of o9 are
forced to be slightly changed to stay in key. The melodic contour remains
the same. The connection between duz and comes in a fugue is of this type
(see section 5.5.2 on our analysis of a fugue for a further explanation).

e Change in meter. For example: oy is in 4/4 and o2 in 3/4. Each measure
is then changed to fit the new meter (so the number of measures is the
same). This is a special case of change in durations.

e Inversion. Every interval of o, is transformed into the negated interval in
g9.

e Retrograde. o3 is o1 played backwards.

To locate repetitions and simple transformations in a piece, we must both
find the locations of the two variations and find the simple transformation func-
tion that relates them. The problem is: given two musical structures, can one
of them be transformed into the other? This is not made easier by the fact that
more than one simple transformation can be applied to a musical structure. For
example, a variation which is both transposed and rhythmically altered will be
equal to the original under a combined “diatonic transposition and change in
duration” transformation. In a multiple viewpoint system as ours, it is natural
to describe these different simple transformations using viewpoints and their
related view comparators. The task then is to find the viewpoint under which
two passages are equal.

The ways in which viewpoints are combined varies between multiple view-
point systems. In Conklin’s system, conjunctions of viewpoint like the “diatonic
transposition and change in duration” example above can be defined and thus
form a lattice, as described in section 2.4.9. We have resorted to numerical
combinations of viewpoint evaluations in similarity measures. We describe our
own implementation in section 4.3.1.

Elaboration and simplification Simple Transformation functions are rela-
tively easy to describe. Another thing is elaboration and simplification. Elab-
oration and simplification are complements of each other and can be described
as transformation functions that are allowed to add or remove notes during the
transformation.

49

The notion of elaboration is very important in music. For example in baroque
music, decoration of long notes is almost a necessity. This gives an awful lot
of possibilities. The New Grove Dictionary of Music and Musicians [Sis01]
proposes some characteristic ways to do these elaborations, but we are not
able to describe elaborations as precisely as the simple transformation functions
mentioned above. The dictionary proposes:

Ostinato variations. Variations built upon a short pattern of
notes, usually in the bass register, which functions as an ostinato.[. . .]
Constant-melody. A melody, usually widely known, appears in-
tact or with only slight embellishments in every variation, moving
from voice to voice in the texture.[...]

Constant-harmony variations. The harmonic progression takes
precedence in retentive power over the melody.[. . .]
Melodic-outline variations. The theme’s melody, or at least the
outline of its main notes, is recognizable despite figuration, simplifi-
cation (unfigured variation) or rhythmic recasting.]...]
Formal-outline variations. Aspects of the theme’s form and
phrase structure are the only features to remain constant in this
predominantly 19th-century type. Phrase lengths may expand or
contract within the general outline, with harmonies usually refer-
ring to the theme at the beginning and end of a variation.]...]
Characteristic variations. Individual numbers take on the char-
acter of different dance pieces, national styles or programmatic as-
sociations.][.. .]

Fantasy variations. In this 19th- and 20th-century type, occasion-
ally used as a title, the variations allude to or develop elements of
the theme, especially its melodic motifs, often departing from any
clear structural similarity with it.[...]

Serial variations. Modification of a serial theme (a 12-note row
or some slightly longer or shorter configuration) in which figuration
and accompaniment are derived from the row. The structure of the
theme usually remains constant.[Sis01]

The descriptions here are rather more vague than those for repetition and simple
transformation. Elaboration and simplification can concern basslines, melody
lines, harmony, stylistic knowledge, motivic development and serial ideals. As
an algorithmic problem this is somewhat harder than finding a simple transfor-
mation function. The problem is to find out if a subset of the notes of fragment
1 are equal to the notes or intervals of fragment 2 under any of the described
simple transformations. If it does, we have to find out if the resemblance is per-
ceptible. This is not guaranteed by the similarity of notes or intervals. Not just
any pattern is perceptible. Determining which patterns are perceptible is an-
other field of research; we leave this discussion to the study of psycho-acoustics.

To compare one fragment, which is a chord, with another fragment, which
is a melody, could possibly be done in many imaginative ways. A musically
relevant way is to construe the melody as notes contributing to one chord. The
task is then to compare two chords. It might not make any sense to compare
a ten note melody seen as a ten-note chord with a three note triad. It is
sometimes necessary to reduce some notes away (for example the doublets or
‘less important notes’). Again the notion of reduction (to be able to rule out the
less important notes) before comparison proves to be useful, but it is a difficult

50

problem to solve algorithmically. A simple approximative method to reduce
more extended musical fragments into comparable structures is to pick out only
notes on metrically strong beats. They are often important in determining larger
scale parallelisms.

In general, to be able to compare two fragments, they must be seen from the
same point of view, using the same abstraction over the data. We have defined a
number of abstractions in the form of viewpoints, but only repetition and simple
transformations can be found using these. We have no viewpoints that make
decisions on the importance of individual parts of the compared fragments, i.e.
reduce them (remove notes) in order to find elaborations or simplifications. We
thus concentrate on repetition and simple transformation.

Cambouropoulos (2000) There are, however, examples of methods that find
elaborations. Cambouropoulos [Cam00] works on string encodings of music. A
melody is then a string pattern. He proposes a way of solving the elaboration
problem — the filling and thinning of patterns — in monophonic music. Given
two melodies to examine, he keeps track of the net effect of the jumps (adds the
differences in semitones) that appear from one note and to the rest. When each
melody eventually has made the same jump, he groups the notes together as
one jump and advances to find the next jump that they might have in common.
The starting point is to take one interval (two notes) in the first melody and
to compare it to as many notes in the other melody it might take to reach the
same net interval. The difficult part is for each interval to decide which melody
has the filling notes and which one that doesn’t. The algorithm might do well
on some cases, but is apt to find insignificant patterns.

Cambouropoulos uses a strategy in finding patterns in music which is based
on finding all exactly repeated patterns of all lengths. When one tries to do
the same with approximate matchings even more candidates can be found. The
patterns are candidates of being significant or perceptible.

He can then determine a prominence value to each of the found patterns
according to the following factors: prefer longer patterns, prefer most frequent
patterns and avoid overlap. The task is to find a suitable way to balance the
factors into a suitable significance criterion.

Smaill, Wiggins, and Harris (1993) We would like to mention the ap-
proach to similarity search presented by Smaill et al. [SWH93] because it re-
sembles our own so much. The article presents a segmentation algorithm that
uses an abstract data type. The abstract data type is intended to be inde-
pendent of musical style, or even of the tonal system used. It is also intended
to function as an abstract interface between the particular music representa-
tion that the source material is encoded in, and the analysis program working
on it, thus facilitating the exchange of one representation for another, or of
the programming language for the analysis program. The data type allows for
groupings of notes or of other groups in so-called constituents.

The segmentation algorithm, like ours, works on similarities. It is due to
Nattiez, who adapted it from Ruwet . The Smaill et al. version uses four

16The authors refer to two books by the french musicologists: J.-J. Nattiez: Fondements
d’une semiologie de la musique, Union Generale d’Editions, Paris 1975, and N.Ruwet: Lan-
gage, musique, poesie, Editions du Seuil, Paris 1972.

51

different similarity measures:

1. Identity - the two passages are completely identical

2. Longer identity - apart from the length of the first note, the two passages
are completely identical

3. Transpose - a constant number of semitones

4. Loose transpose - a transpose where note durations may differ.

First the piece is searched for completely identical phrases, i.e. using the
strongest similarity measure, Identity. If such a repeat is found, it is called a
motif, and all other occurrences of the motif are searched for again using the
Identity measure. These other occurrences are called derivations of the motif.
The motif and all its derivations are removed from the search space, which is now
searched again for derivations of the motif, but according to the other three,
weaker, similarity measures. Found derivations are labelled according to the
measure used and then removed from the search space. This procedure repeats
until no two similar phrases can be found any more. The program outputs a
list of the segments found in the piece.

The similarity measures Identity, Longer identity, Transpose, and Loose
transpose are all examples of repetition and simple transformation. As described
in the next sections, our segmentation method also uses exact repetition and sim-
ple transformation to search for a motif (the SimFinder, see section 4), and then
finds all occurrences of it (the SimSegmenter, see section 5). In section 5.4.3, we
shall point out the detailed differences between the above described algorithm
and the one we use.

3.2.3 Parallelism as a basis for structure

Hopefully, the last section has made it clear that it is not an easy task to identify
all musical parallelisms. We choose a subset of the described parallelisms to look
for stable intermediate forms'” to build a hierarchic representation out of. As we
have seen in chapter 2, musical structures seem to contain both syntagmatic and
paradigmatic relations. The latter are relations of similarity, inclusion or logical
entailment between tokens of a structural organisation!®. But this is exactly
what stable intermediate forms are, tokens, or building blocks, of a structural
organisation of some subject matter.

That such tokens exist should be no surprise. Similarity or parallelism is
quintessential to musical structure and occurs on many levels. Simple recurrence
of beats is the basis of rhythm, and repetition of longer patterns of notes or beats
in exact or modified copies lets the composer build a larger inner structure to
the music in which one segment of the piece may (and in fact is intended to) be
construed as a parallel to or a development of another segment present in the
piece. Without any inner similarities, music is bound to be unstructured and
therefore very difficult to digest.

As mentioned in section 2.4.7, Lerdahl and Jackendoff do not define paral-
lelism, although four of their preference rules (one from each category) rely on

17See section 2.2.1 about Herbert Simon’s article on complexity and hierarchy.
18See section 2.4.6.

52

its existence. This thesis is an exploration of how we could build a structural
analysis of music using a method that not just incorporates but is based on
parallelism. We construct measures of monophonic and non-monophonic sim-
ilarities using a multiple viewpoint system. The similarity measures are then
used to search a music piece for parallelisms that we may use as building blocks
in a hierarchical description of the piece.

Ockelford (1991) In his article on the role of repetition in perceived musical
structures, Ockelford describes how parallelism produces an illusion of musical
order.

“The degree of ordering we perceive is proportional to the fidelity with which
the second passage duplicates the first.[...] With successively freer imitation,
the impression of order weakens.” [Ock91, p.139] When we hear two passages, we
hear the second in relation to the first occurrence. According to some criteria,
we mentally connect the two passages, and the importance assigned to this
connection is relative to the strength of the criteria — do we have an ’exact
repetition’ or only ‘maybe some resemblance’.

Ockelford cites musicologists'® who claim that the importance of repetition
comes from the nature of the art form. [Ock91, p.139] If we omit all ‘extra-
musical’ information such as lyrics, the music is a ‘self-contained’ art form. We
cannot directly associate musical expression as such with the phenomenal world
— which is otherwise a central characteristic of the other art forms.?® Therefore
our mind’s relentless requirement of association or reference can only be satisfied
through self-repetition — iteration is the only outward sign of identity available.
Therefore it makes sense to organise music in terms of its resemblance to itself.
The musical means by which such inner repetition or similarity can perceptually
be created and heard are many, as we described in section 3.2.

3.2.4 Limitations to a parallelism-based analysis

Far from all parallelisms of the above mentioned kinds are perceptually relevant.
What is and what is not perceptually relevant is a central issue when finding
parallelisms in music, and if we had a simple answer to this problem, we would
state it here and go on to apply it. We cannot claim that every exact repetition
or transposition found by our SimFinder system is perceptually relevant. There
are always small fragments here and there that are in fact equal, even though
we do not perceive them because we naturally focus on other similarities.
Neither do we claim all perceptually relevant parallelisms to be encompassed
by the list given. One could imagine that two passages be construed by the
human ear as similar because they contain some very abstract tonal material
but have no other similarity whatsoever, e.g. two clusters of randomly chosen
notes. If each of the random clusters are tightly grouped and surrounded by
otherwise comprehensible music, one would probably find the two clusters to be
similar in the sense that they differ very much from their surroundings. This is
an example of a perceptually relevant parallelism that might be captured by an
extension of the SimFinder system. The SimFinder system is described in the

9K.g. Selincourt, Schenker, Sessions, etc., see the article [Ock91, p.139f] for further details.
20Gee [Slo85, p.57f] for a further discussion of reference and meaning in music.

53

next sections?'. But as we have chosen to focus on Western tonal music, the

abstractness referred to in this example is scarce in the music we shall use as
source material.

One kind of parallelism that we most certainly cannot aspire to locate is
similarities based on musical experiences which we interpret with reference to
the phenomenal world, such as “A and B are alike because A sounds like the
purl of a brook, while B is like the roar of a wild river”. The extra-musical
pictures, stories or ideas that the listener associates with the music, we cannot
hope to approach by any means. These associations are very subjective by
nature, and are also based on so many psychological parameters that it is yet
impossible to analyse automatically. For the brook/river example, our only hope
is that whatever in the musical structure made us associate both A and B with
flowing water, does actually resemble each other in other, more structurally
concrete ways too, so that we may capture it using combinations of simple
transformations.

There are also more practical difficulties in segmenting music according to
repetitions. We are not able to segment sections of the largest scale, because
they have no repetitions. For example, the Bach chorale ‘Jesu, meine Freude’
has nine phrases: ABCABCDEA'. Since ABC is repeated, we are likely to
locate the A’s (including the variant A’, which has the same melody voice as
A), B’s and C’s. But we have nothing to compare D and E with, so we cannot
abstract them into patterns of their own.

Sloboda (1985) Sloboda also accepts that patterning (by which he means
consecutive repetitions of one fragment) is integral to music. But he believes
that it cannot on its own, give a full account of the structure of a musical
composition. Music does use patterning to achieve structural goals, “but the
structural coherence of a piece of music is not to be found solely within the
principles of patterning.”[Slo85, p.56] The issue here is the difference between
form and content. Sloboda’s point is that a repeated pattern can carry any kind
of expression. The patterning principle does not have starting points and goals
built into them. Simple repetitions of any pattern does not guarantee any sort
of evolution in the sense of ’goal-directed motion’ in the music. Sloboda gives
the example of M.C.Escher’s famous drawings, showing patterns of e.g. ani-
mals, where the animal is transformed from one side of the drawing to another.
The patterning or 'repetition with small variation’ mechanism in itself could be
continued indefinitely, and rather mechanically, but what gives Escher’s work
another dimension is the fact that the animal is actually transformed from, say,
a swan to a tiger. There is an origin and a goal in the pattern, which is essential
to making it a worthwhile piece of art.

Sloboda points out that on a small scale (small pieces of music) it is fairly
easy to characterise the techniques which control the inner transformations, but
it is extremely difficult to characterise what gives a work an integrated form.
Sloboda’s point is that we should be very careful when trying to revert the
musical syntax into a generative context. The analysis based on similarities
should be used solely as a description or explanation of the listening process.

21Tt would amount to building a reasonable measure of ’abstractness’ in terms of new view-
points, view comparators, and similarity measures.

54

3.3 Summary

CMN, the common music notation, is the most detailed and flexible symbolic
representation of music. It has a good visual readability, and it is connected
with lots of terminology that is useful for music analysis purposes. As we believe
it is important to include musical knowledge in an automated analysis, a tight
coupling of the computer representation with specialised terminology as we find
it e.g. in the CMN is a good idea. As shown in the Mozart example (see
figure 9), it is necessary to be aware of diatonic augmentations to be able to
recognise certain patterns as variations of each other. Pitch spelling information
is available in MuseData files, but not in midi files.

There are two fundamental temporal relations that predominate in many
symbolic musical representations: precedence and simultaneity of musical events.
It is common to represent music using nested structures of elementary or com-
posite sequential and parallel structures. This gives rise to the sequential/parallel
dichotomy, necessitating a certain amount of representation juggling when analysing
music. We have tried to build a graph representation that reduces the amount of
on-the-fly restructuring necessary, while still representing the important prece-
dence and simultaneity relations between musical objects explicitly. It solves
the problem of representing both sequential and parallel structure at once.

Inner structure in a piece of music lets us understand it more easily. Rep-
etition and variation gives an impression of order and development. Music as
an art form can be self-contained without reference to the phenomenal world,
so iteration is the only outward sign of identity available. Therefore it makes
sense to organise music in terms of its resemblance to itself.

We want to segment music into a hierarchical structure that we are able
to describe grammatically. Our goal of segmenting music into a structure of
similarities is first of all of analytic character, so we do not discuss the generative
capabilities of grammars for composition purposes. To build a grammar, we
need to find stable intermediate forms — subunits of which to build larger units.
Musical parallelism provides us with a basis for finding such subunits. Under the
heading of parallelism, many different kinds of variation is possible. These are
the paradigmatic relations among grammatical units that we base our grammar
upon.

Variation is the whole point of the classical form type “theme with varia-
tions”. Variation can be melodic ornamentations, rhythmic variations, harmonic
ambiguities, etc. When comparing two musical fragments, we would like to find
out if there is a transformation that connects them. Given two musical struc-
tures, can they be derived from some common musical idea? If so, under which
transformation are the two structures equal? We divide transformations into
two categories: repetition and simple transformations, and elaboration and sim-
plification. The latter transformations may also add or remove notes, and they
are considerably more difficult to implement. We concentrate on repetition and
simple transformations, which we implement using a multiple viewpoint system.
The segmentation algorithm is very similar to the one presented by Smaill et
al. (see p.51).

We have outlined in this chapter how we attempt to solve two of the in-
teresting problems left from the GTTM: for the representation and analysis of
non-monophonic music we use a graph, and for parallelism we concentrate on
repetition and simple transformations, using a multiple viewpoint system. The

55

next section will describe our solutions to these two problems in more detail
and thereby show how we achieve computability in the SimFinder system — the
third point of improvement we have mentioned in relation to the GTTM.

56

4 The SimFinder system

This and the following sections (4.2, 4.3, 4.4, and 5) will present our ideas
about searching for structure in music. Unless otherwise specified, the entities
described (e.g. viewpoints, view comparators, similarity measures, the genetic
algorithm) have been implemented in a java program and run on a number of
pieces of music.

4.1 Overview

The java program is called SimilarityFinder, or SimFinder for short. In sum-
mary, SimFinder builds a graph representation of a piece of music and then uses
a genetic algorithm (GA)?2 to search for similarities in this mother graph. The
GA is populated by similarity statements each expressing that there is a sim-
ilarity between two specific subgraphs of the mother graph. Such a statement
can be more or less correct — either the subgraphs really are similar or they’re
not. Similarity statements are evaluated using similarity measures. A similar-
ity measure is an arithmetic combination of the results of a number of simple
comparison methods, called view comparators. A view comparator compares
the two subgraphs when seen from a specific viewpoint. The thought is to have
the GA optimise the correctness of similarity statements, or put another way,
search for the best matches according to a given similarity measure. Similar-
ity statements, similarity measures, view comparators, and viewpoints will be
described more thoroughly in sections 4.3 and 4.4.

4.1.1 Design

An important concern in the design of the SimFinder system was modularity.
The central subject of exploration in the SimFinder is the following question:
which viewpoints can be combined, and in what way, to produce similarity
measures that enable us to locate relevant similarities? At the outset, we had
intuitions but no answers to this question. Therefore it was a central design is-
sue to allow for quick and easy invention and substitution of view comparators
and similarity measures, so that we may also compare and weight the differ-
ent measures and viewpoints involved. The SimFinder system is prepared to
accept new similarity measures, view comparators, and viewpoints defined as
static instantiations of anonymous subclasses of the similarity measure and view
comparator classes.

As can be seen in the system overview UML diagram in figure 64, Ap-
pendix A.1, the pattern of a class A having two subclasses “Sequential A” and
“Non-sequential A” is a recurring one in the design. This dichotomy between se-
quential and non-sequential reflects the fact that we have explored two different
comparison methods. Searching for similarities between sequential subgraphs
inside the mother graph can pinpoint similarities inside a single part or between
different parts, or point the way to more complicated (non-monophonic, and
therefore non-sequential) similarities in the piece. But in order to really search
for non-monophonic similarities, we found the need to develop comparison meth-
ods proper to non-sequential subgraphs. Our approach to non-sequential sub-

22For an introductory book on genetic algorithms see [ZM02] or [Mit01]. Our genetic algo-
rithm is described in section 4.3.4

57

graphs is a development of the sequential approach, using the non-sequential
versions of similarity statements, similarity measures, view comparators, and
viewpoints. But there are different constraints on sequential and non-sequential
subgraphs, and the comparison algorithms are much more complicated for the
non-sequential subgraphs. The following two sections (4.3 and 4.4) deal with
sequential similarities and non-sequential similarities respectively.

A few notes and details about the implementation may be found in Ap-
pendix A.2.

4.2 Graph representation

As our main focus is on tonal music, such as it is represented in a score, we
can conveniently use a discrete event representation of time. There is no per-
formance related information included in the way of exact timing or dynamics
information for each note, so the additional bookkeeping involved in measuring
and comparing periods of time?3 is unnecessary.

Representing all precedence relations between all notes in a piece can be
overwhelming and is bound to include much redundant information. Given the
transitivity of the precedence relation, we may infer that A precedes C from
the facts that A precedes B and B precedes C, so it is unnecessary to represent
A precedes C explicitly in our representation. Notes and rests following each
other in a score are related by immediate precedence, so it is natural to choose a
relation of immediate precedence to connect notes and rests with in the graph.
We call this the FOLLOW relation. Most other precedence relations can then be
inferred from this information.

4.2.1 Construction of the MusicGraph

As is habitual when speaking of graphs, a MusicGraph G = (V, E) contains a
set V' of MusicVertices and a set E of MusicEdges. In our graph representation,
each note or rest is represented by a MusicVertex. A MusicVertex has attributes
such as the pitch of the note it represents and its length (is it a whole note, half
note, quarter note, eighth note etc.). There are other important attributes such
as key and pitch spelling which are included when available from the source
material. Each note has an absolute start time (or onset time). Like in usual
scores in common music notation, there is nothing like temporal “gaps” between
elements of the graph. Rests between notes are represented explicitly in ver-
tices, just as they are explicitly represented by symbols in a staff notation, and
thus a monophonic piece (a melody) can be represented by a string of vertices
representing notes, or rests, that follow immediately upon each other.

Vertices can be connected by directed MusicEdges of different types rep-
resenting different relationships between vertices. FOLLOW edges represent the
immediate precedence relation and are the most important type of edges. When
constructing a graph from a piece of music, FOLLOW edges are added to the graph
between notes, or rests, that follow immediately upon each other, i.e. notes
between which there occurs no other notes (or rests) and that do not sound
simultaneously. In other words,

23Gee section 3.1.3 on temporal relations.

58

pitch

(l — Il

e - Hm

length

Figure 17: Representing a score in a graph. The upper numbers in the circles
are midi pitch numbers (’+’ indicates a rest), the lower numbers show the length
of each note, where 1.0 is a quarter note, 0.5 is an eighth, 4.0 is a whole note,
etc. Arrows indicate FOLLOW relations between notes.

Definition 4.1 Let endTime(v) = startTime(v) + length(v). Then
w FOLLOWs v <= endTime(v) = startTime(w)

Figure 18: First 2 bars of the Bach chorale Jesu Meine Freude BWV358.

Figure 18 shows part of a graph representing the Bach chorale Jesu Meine
Freude (BWV358). Notes from all parts have been added to the same graph
and interconnected as if they belonged to the same part. The graph is thus
made up of paths that could be melodic lines inside the tonal network of the
piece. It is difficult to know if and when it makes sense to consider melodic
lines that weave in and out of several different parts. Although the construction
of the graph guarantees that the notes of vertices following each other in the
graph do actually connect temporally in the score and therefore, to the attentive
listener, it should be possible to hear such a melody, often the combination of
notes from different parts will give a number of strange jumps in the melody.
Particularly when different parts are to be played by different instruments, it
will be harder to hear such connections because our natural ability for auditory
stream segregation allows (and sometimes forces) us to separate parts because of
their timbral differences. In other words, most non-monophonic music is meant
to be heard as being separated into parts, although working together. Therefore
it is also important to study graphs where the different parts are not connected,
i.e. there are no edges between two vertices that belong to different parts. Such
a graph we call a partwise graph, see figure 19. The graph with connections
between parts (as shown in figure 18) is called a non-partwise graph.

Most often, each part is monophonic (e.g. the chorale seen in figure 19),
but there is nothing in the graph representation that prohibits non-monophonic
parts, as may be found e.g. in piano sonatas, where each hand (notated as a
part) may play several notes at once.

59

Figure 19: First 2 bars of the Bach chorale Jesu Meine Freude BWV358 repre-
sented as a partwise graph.

Definition 4.2 Let G = (V,E) be a MusicGraph. The group of v € V s
the largest possible set W C V' of vertices where Yw € W : startTime(w) =
startTime(v)

A group is a set of notes beginning on the same beat. In our graphic rep-
resentations of the graphs, notes in a group are arranged in a vertical line,
reflecting their simultaneity. If all notes in all groups had the same length (i.e.
a homophonic piece), constructing the graph would amount to finding these
simultaneous groups and making a full connection of FOLLOW edges between
consecutive groups. This is not the case, however, since e.g. the bass could be
moving in twice the speed of the other parts, and would have separate one-note
groups that only the preceding bass note and the following notes from all voices
were connected to (see Figure 20).

0.0 0.5 1.0 15 2.0 25

Figure 20: Bass part moving in twice the speed of the other parts. Of the group
beginning at time 0.0, only the bass note is connected to the note beginning at
time 0.5, since the other notes are still sounding at time 0.5 — they have length
1.0

The simultaneity of vertices in a group is represented by connecting them
with SIMULTANEQUS edges. These are shown in the graphic representation as
small grey vertical arrows. They allow us to locate chords in the graph more
easily. In the screen shots, often it is impossible to see the full connection of
SIMULTANEOUS edges between all vertices in a group because the arrows are

60

drawn on top of each other, but the SIMULTANEQUS relation is naturally transi-
tive, and it should be possible to imagine the full connection from the vertical
arrangement and the visible SIMULTANEOUS edges.

Definition 4.3 w is SIMULTANEQUS withv <= startTime(v) = startTime(w)

Notice that the SIMULTANEQUS relation is indifferent to the end time of notes.
We could have called it the SIMULTANEQOUS_BEGINNING relation and introduced
a SIMULTANEOUS_END relation connecting notes that share the same end time,
defined by:

Definition 4.4 w is SIMULTANEOUS_END withv <= startTime(v)+length(v) =
startTime(w) + length(w)

But the information added by introducing SIMULTANEOUS_END edges in the
graph is already implicit in a graph with only FOLLOW and SIMULTANEQUS_BEGINNING
edges; SIMULTANEQUS_END groups of notes may be found by taking the notes
connected to all incoming edges in a SIMULTANEOUS_BEGINNING group. E.g. in
figure 20, vertices in the group beginning at time = 1.0 have incoming edges
from the notes (69;1.0), (65;1.0), (62;1.0), and (52;0.5), which would constitute
a SIMULTANEQUS_END group. Thus the information is present, though implic-
itly, and we stick to the SIMULTANEOUS_BEGINNING edges and call them simply
SIMULTANEQUS edges.

When we begin comparing different parts of a graph with each other, we’ll
need some special kinds of subgraphs.

Definition 4.5 A sequential subgraph sy = (Vi, E1) of the mothergraph G =
(V,E) is a set of vertices Vi C V that are connected by FOLLOW edges E; C E,
where Yv € V1 : in-degree(v) < 1 A out-degree(v) < 1.

Put informally, a sequential subgraph is a string, or sequence, of vertices
connected by FOLLOW edges. (See Figure 21 for an example of a sequential
subgraph).

29.5 30.0 2.0 325 330 335 4.0 34.5

W

fﬁ =¥
~ N\

Figure 21: A sample sequential subgraph

Let in(v) and out(v) be the respective sets of in-edges and out-edges of the
vertex v.

61

Definition 4.6 A non-sequential subgraph o1 = (V1,E1) of the mothergraph

G = (V, E) is a connected set of vertices Vi C V whose connecting edges E; C E

are of type FOLLOW or SIMULTANEOUS and where
Vu,ve€Vi:(3ecE:ecout(vy)Ae €in(ve)) =e€ Ey

Informally, vertices in the subgraph that are connected by an edge in the
mothergraph will also have that edge present in the subgraph. This amounts
to including all available relationships between those vertices included in the
non-sequential subgraph. This is required to avoid ambiguities in the subgraph.
(See Figure 22 for an example of a non-sequential subgraph).

325 330 335 4.0 345 35.0 355

Figure 22: A sample non-sequential subgraph

The size of a subgraph, sequential or non-sequential, we define to be its
number of vertices. The overlap of two subgraphs is the total number of vertices
and edges of the mother graph that the subgraphs have in common. We will
speak much about subgraphs; the mother graph is the original graph constructed
from a music file in the first place.

4.2.2 Using the music graph

At present, the SimFinder system is able to build MusicGraphs from midi files
and from MuseData files. A mother graph built from a midi file contains only the
most basic information shown above (pitch and length of individual vertices),
whereas mother graphs originating from MuseData files are richer. But even
more information could be included.

Some types of information are directly connected with each note. We store
this information as attributes in the MusicVertex objects. At present in a Mu-
sicVertex we always represent the basic information available from most midi
files: pitch, starttime, the part to which the note belongs, and the FOLLOW and
SIMULTANEQUS edges inferred from the start times of notes in general. From a
MuseData file we additionally read: the pitch spelling name (C=0, D=1, F=2,
F=3, G=4, A=5, B=6, rest=-1), the octave (0...8), the key (a number telling
the number of fixed accidentals — if the number is negative, the accidentals are
flats, else sharps) and time signature (denominator and numerator). This is

62

used for the diatonic viewpoints described in Section 4.3.1. Of expression signs,
we read only fermatas. Other accents could be stored here as well.

We could have implemented other types of information that relate to a col-
lection of notes, or are common to all notes in the collection. These we would
represent in a special object. For example we could have a measure object, or
measure vertex, in the graph which all notes (vertices) in the measure would
have knowledge of. The measure object should hold the time signature of the
measure, and could also hold metric information. Other relevant information
representable in the graph is: cue notes and grace notes, beam codes, ties, slurs,
tuplets, ornaments, performance related indications, articulations and accents,
and text underlay.

4.3 Sequential similarities

Our goal now is to find musically similar subgraphs in the mother graph. We
could do this by picking a subgraph and searching for occurrences of it in the
mother graph. There are a few difficulties and a major problem with this: we
want the located similarities to be as large as possible, we want them to be
situated at well-chosen spots in the graph, we don’t want the located similar
subgraphs to overlap, and we want to first locate the most important similarities
(which to some extent can be argued to be the most occurring patterns). This
complicates the first choice of a subgraph to search for. Now the major prob-
lem: searching for the occurrence of a subgraph in a graph is to solve subgraph
isomorphism, a problem known to be NP-complete?*. Our solution is to use a
GA to choose subgraphs to compare. The GA is a stochastic search method and
will not give us an exhaustive search, but it allows us to approximate an opti-
mal satisfaction of the above mentioned requirements. The size of the located
subgraphs and constraints on the location (with respect to grouping boundaries
in the music) can be incorporated into the fitness evaluation of the GA. So can
the overlap prohibition, and the GA is more likely to locate very frequent sub-
graphs than infrequent ones, because picking a random subgraph is more likely
to stumble upon the frequently occurring subgraph.

But we still need to compare the musical attributes such as pitch and length
of the notes. In order for the GA to be able to compare subgraph matchings, we
have constructed numerical ratings of the similarity of subgraphs. Sequential
subgraphs are easier to deal with than non-sequential subgraphs, so we begin
with the sequential case. Inspired by the ’viewpoints’ of Conklin in [CW95] and
[Con02] (see section 2.4.9) we first set out to find similar strings, or sequences,
of vertices inside the constructed MusicGraphs.

4.3.1 Viewpoints

A viewpoint is, well, a distinct way to see things. It is something applicable to
the treated subject that allows us to focus on some particular aspect of it, like
wearing a pair of coloured glasses that filters the information we receive, and
gives us a special view on things.

Roger Dannenberg has proposed to use views in graphical score layout sys-
tems, where editing different parts separately poses problems of consistency be-
tween the score and the individual parts: “A view of a data structure contains

24[CLR90, p. 960]

63

a subset of the information in the data structure and sometimes provides alter-
nate or additional data to that in the data structure. The idea is to keep shared
data in one place so that a change in the score will automatically be propagated
to the parts, and part-specific layout information can be maintained for each
part (view)” [Dan93, p.25] He goes on to suggest that views could be used to
represent repeated sections of music, possibly with variations from occurrence
to occurrence; or views could be the general mechanism to structure music:
“Imagine a representation where motives are represented only once, and each
occurrence is some kind of view, perhaps with local alterations and transfor-
mations, of the motive.” [Dan93, p.26] This in fact is not far from our goal,
although it is not what we speak of as views and viewpoints; we shall look closer
at the general 'motive’ vs. 'motive occurrence’ idea in section 5, but for the time
being, let’s stick to views and viewpoints.

We take a more narrow view on viewpoints than Dannenberg. Darrell Con-
klin defines a viewpoint as “a mathematical function that computes features
of music objects in a sequence, including features that denote relationships be-
tween objects within the sequence” [Con02, p.35]. This allows us to compare
two sequences of music objects from various viewpoints, such as the pitches of
the notes of the two sequences, the intervals between the pitches of consecutive
notes, the lengths of notes, etc. Note that this definition does not include con-
text models, as did Conklin and Witten’s definition from 1995, see section 2.4.9.
The viewpoint is now solely the function that transforms a sequence of music
objects into a particular view on it, separated from the learning mechanism used
to find patterns in views.

Instead of defining music objects in a framework of compound Sequence and
Simultaneous objects as Conklin does in [Con02], we let music objects be the
vertices of our MusicGraph. A sequence then is a sequential subgraph, i.e. a
string of vertices connected by FOLLOW edges. Each vertex has properties such
as pitch, length etc. so comparing two passages, represented as sequential sub-
graphs, amounts to comparing these properties vertex by vertex. A sequential
subgraph does not contain any notes that sound simultaneously. This is implied
directly by the nature of the FOLLOW relation which connects consecutive ver-
tices in a sequential subgraph. Thus seeing a passage from a given viewpoint
transforms the sequential subgraph representing the passage into a sequence
of numbers expressing some aspect or internal relation of the entire sequence.
The resulting sequence of numbers is called a view on the passage. Although
we often speak of ’evaluation’ or 'matching’ in this section on viewpoints (be-
cause that is our purpose with viewpoints and views), it is actually the job of a
view comparator to evaluate how well two views match. This is the subject of
section 4.3.2.

Using sequential viewpoints To search for similarities in music, we must
specify what kind of similarity we are looking for. We have defined several
viewpoints, each capable of locating a different kind of musical similarity when
comparing two passages. Some viewpoints are more general, catching more
similarities when compared, but are less explicit about which similarities. E.g.
the pitch contour viewpoint; as a mathematical function, pitch contour is not
injective, since many different sequences of notes may have the same pitch con-
tour. Therefore it is more general (it will capture more matches) than, say,

64

the absolute pitch viewpoint, under which only exactly identical pitches will be
evaluated as equal?®.

Viewpoints can also be designed to catch similarities that are specific to the
type of music they are used upon — e.g. the diatonic viewpoints described below.
These viewpoints are specifically designed to capture similarities in Western
tonal music.

Viewpoints based on pitch and length We shall use the abbreviations in
the parentheses to refer to each of the viewpoints.

e Absolute Pitch (AP): This viewpoint looks at the midi pitches of the notes.
Each note has a pitch (a numbered semitone), and the resulting view has
as many members as the sequential subgraph has vertices. Two sequences
of notes must have the exact same pitches to be evaluated as equal under
the absolute pitch viewpoint.

e Pitch Interval (PI): the interval in number of semitones between one abso-
lute pitch and the next. Two sequences of notes with equal pitch intervals
are a direct transpose (of an integer number of semitones) of one another.

e Pitch Contour (PC): whether the absolute pitch changes upwards, down-
wards or stays the same between consecutive notes.

e Pitch Class (PS): the pitch class of a note is its absolute pitch modulo 12.
Seen from the pitch class viewpoint, notes that are an integer number of
octaves apart are equivalent.

e Absolute Length (AL): the lengths of the notes (whole, half, quarter,
eighth, sixteenth, etc.).

e Length Interval (LI): since most note lengths are separated by factors that
are powers of 2, we define the length interval from length I; to length [,
to be logs(l2) — loga(l1). This is the number of times I; can be doubled
before reaching /5.

e Length Contour (LC): whether the length of notes increases, decreases or
remains the same from note to note.

See also figure 23 on page 66 for an example of the viewpoints.

Viewpoints based on diatonic scales These viewpoints are used to search
for diatonically related passages. Remember that the diatonic information tells
“which note line the note was written on” in the score.

e Diatonic Absolute Pitch (DAP): The note as it is written in the score: the
name (C,D,E,...), the accidentals (#’s and b’s) and the octave. It is often
the same as Absolute Pitch, but will not accept an Eb for a Df (which are
indeed very different things). This is useful for finding exact repetitions.

25We discuss the general to specific ordering of viewpoints further below under the heading
’The connection between viewpoints’.

65

e Diatonic Interval (DI): the change in interval diatonically (second, third,
fourth etc. up/down). A major and a minor third looks the same from
this viewpoint. A theme in major will hence look the same as a theme
in minor (even though the major and the minor scales differ in 3 notes).
This is useful for finding diatonic transpositions.

e Diatonic Forward Interval (DFI): the upwards change in note lines (note
names), that is: how many steps there is to the next note name going
only forward. The note names are (C,D,E,F,G,A,B,C,D, etc.), so from
C to Eis 2 (a third) and from E to Cis 5 (a sixth). This viewpoint is
the most robust we have so far — it is robust to both transposition and
octave displacements of the melody. Imagine a theme A, and another
theme B, which is diatonic transposition of A (e.g. transposed down a
third), where some parts of B have been octave displaced because the
instrument’s ambitus?® doesn’t allow it to play it otherwise. Themes A
and B would be similar when seen from this viewpoint. See figure 33 on
page 89.

e Diatonic Inversion Interval (DII): The inverted (negated) diatonic interval.
For example if DI between two notes is ¢ then DII is —i.

I 1| e | (@] 1

Viewpoint View
Absolute Pitch [48,52,50,53,52,53,55,47,43]

Pitch Interval [4,-2,3,-1,1,2,-8,1]
Pitch Contour [1,-1,1,-1,1,1,-1,1]

Pitch Class [0,4,2,5,4,5,7,11,0]
Absolute Length [0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,4.0]
Length Interval [0,0,0,0,0,0,0,4]

Length Contour [0,0,0,0,0,0,0,1]
Diatonic Absolute Pitch [C3,E3,D3,F3,E3,F3,G3,B2,C3]
Diatonic Interval [2,-1,2,-1,1,1,-5,1]
Diatonic Forward Interval [2,6,2,6,1,1,2,1]
Diatonic Inversion Interval [-2,1,-2,1,-1,-1,5,-1]

Figure 23: Example of the viewpoints.

To make things more concrete, figure 23 shows an example of how a melody looks
from different viewpoints. Notice that the viewpoints denoted with absolute are
reading their information from each note independently, whereas the others, the
relative, relate to changes between the notes. The latter kind therefore have one
entry less in their view vector. Notice that under the diatonic forward interval,
a sixth down (G-B) gives the value 2, as does a third up (C-E). So if the melody
had ended with the two last notes one octave higher, the DFI would give the
same view — octave transpositions are ignored.

26The range of playable notes of the instrument.

66

Each viewpoint is able to recognise a simple transformation function as de-
scribed in section 3.2.2 on parallelisms types. By designing the right viewpoints
we can search for exactly what we want. We are able to find the most basic sim-
ilarities with our viewpoints regarding pitch: exact repetition (with AP, DAP),
transposition (PI), diatonic transposition (DI), inversion (DII), and diatonic
transposition with octave displacements (DFI). With respect to durations of
the notes, we are able to recognise the exact same durations (AL), but also the
relations between lengths (LI) - two otherwise equal passages where all durations
of the second passage are doubled will be recognised by this viewpoint.

To be able to find elaborations and simplifications of a piece of music, we
have to define some more advanced viewpoints. The problem is that there are
to a less extent standard ways of making elaborations and simplification. A
viewpoint is designed to recognise a single special idea.

The connection between viewpoints Some viewpoints are more fine grained
than others. By inspecting the lists of viewpoints, we see that for perfect
matches, some viewpoints are actually covered by others. Let perf(z) be the set
of pairs (s1, s2) of sequential subgraphs that will have a perfect match according
to viewpoint x 27. Then

per f(AbsolutePitch) C per f(PitchInterval)

This means that an exact match in AbsolutePitch will also be seen as an exact
match from the PitchInterval viewpoint. Similarly,

per f(PitchInterval) C per f(DiatonicInterval) C perf(DiatonicForwardInterval)

and

per f(PitchInterval) C per f(PitchContour)
per f(AbsolutePitch) C per f(PitchClass)
per f(AbsolutePitch) C per f(DiatonicAbsolute Pitch)
per f(AbsoluteLength) C per f(LengthInterval) C per f(LengthContour)

An exact match in PitchInterval (PI) will also give an exact match when
we look at it from the DiatonicInterval (DI) viewpoint, and also, by further
inclusion, under the DiatonicForwardInterval (DFI) viewpoint. By looking at
different views of two subgraphs, we can determine what kind of parallelism
we are dealing with. For example, if the seqDC_DFI view comparator is 0 (a
perfect match) and the seqDC_DI is too, but the segDC_PI is nonzero, then the
parallelism is bound to be a diatonic transposition (by virtue of the DFI), with
the exact same melodic contour (by virtue of the DI). A similar hierarchy can
be given for viewpoints concerning length. This logical hierarchy of perfect
matches enables us to reason about which viewpoints to use, and when, and to
distinguish and label the similarities we discover in the segmentation algorithm
presented in section 5.4.1.

27For some given view comparator, but that is unimportant right now.

67

Other viewpoints We could continue deriving viewpoints from the basic
information in music vertices. E.g., we could have implemented a Diatonic
Pitch Contour viewpoint: this is the contour of the melody as written in the
score, disregarding any accidentals. The viewpoint gives the same view as Pitch
Contour, when there are no accidentals in the music. This viewpoint is therefore
more general than the normal pitch contour.

Conklin and Witten (C&W) describe a great number of basic and derived
viewpoint types [CW95, p.63]. In the table below, we compare these with the
corresponding sequential viewpoints we have defined above. The first seven
C&W viewpoint types are basic types, the next eleven are types derived from
the basic types, and the last four are threaded types that compare the pitch
interval of notes that begin a quarter, a bar, or a phrase with the previous such
note. The threaded types are therefore not defined on all notes, only at these
regular temporal intervals. nav(a) means “not a viewpoint”, i.e. it has not been
implemented in our system, but that the information needed to construct such
a viewpoint is present in graphs constructed from music files in format a.

C&W type Our sequential viewpoint type

Start time nav(Midi,MuseData)
Pitch Absolute Pitch

Duration Absolute Length

Key signature
Time signature
Fermata
Delta-time from preceding note’s end time

nav(MuseData)
nav(MuseData)
nav(MuseData)

nav(Midi,MuseData)

Delta-start time

nav(Midi,MuseData)

Position in bar nav(MuseData)

Is first in bar nav(MuseData)
Sequential melodic interval (SeqInt) Pitch Interval
Contour Pitch Contour

Referent?® nav(MuseData)

Interval from referent nav(MuseData)

Is in referent major mode scale nav(MuseData)

Interval from first event in bar nav(MuseData*)

Interval from first event in piece nav(Midi,MuseData*)

Interval from phrase beginning nav(MuseData)
SeqInt at bars nav(MuseData)

Length of phrase nav(MuseData)

SeqInt at phrases nav(MuseData)

Seqlnt at quarters nav(MuseData)

*: the information needed to find the first event in the bar, or in the piece,
is present, but in a non-monophonic piece, there might be several first notes, so
the interval to the first note is undefined. This could probably be remedied by
choosing e.g. the highest or the longest first note.

As seen in the right column of the table, if the piece is provided as a Muse-
Data file, we are be able to construct all viewpoints listed by Conklin and
Witten. There remains five of our viewpoints that have no match in C&W'’s

68

list. Length contour and Length interval are irrelevant, Conklin and Witten
say, to the Bach chorale melodies they use as source material, although they
may have some significance to e.g. augmentation of fugue subjects. The re-
maining three diatonic viewpoints we have implemented (DAP, DI, and DFI)
are new viewpoints that are not mentioned in [CW95]. We think this is an
important improvement. In section 3.1.1, we showed the importance of diatonic
information (pitch spelling) in a search for variations. In particular, the Mozart
example (see p.36) shows a variation that cannot be found if we do not know
the pitch spelling but only the pitch of the notes. Figure 39, p.104, is an exam-
ple of the use of the non-sequential edge comparison method, where we show
two subgraphs that would not have been found to be similar without diatonic
information.

Viewpoints on a music graph need not be constricted to pitch and length
of the notes corresponding to vertices in the graph. E.g. one could imagine
viewpoints telling how many FOLLOW in-edges or FOLLOW out-edges, or how many
SIMULTANEQUS edges each vertex has. These numbers would not make much
sense in the comparison of sequential subgraphs, since the vertices at a given
index ¢ in two sequential subgraphs of the same length would always have the
same number of in-, out-, and SIMULTANEQUS edges. But, as we shall see in
section 4.4, these are very useful viewpoints when comparing non-sequential
subgraphs.

The problem with rests So far we have avoided rests. Some of the view-
points are not really defined when a rest occurs. There is no well defined value
for Pitch Interval (the difference in pitch) when one of the two musical objects
involved is a rest.

A similarity between three quarternote rests and another set of three quar-
ternote rests is not important, since there really is nothing to compare. In our
implementation of the viewpoints, we have used some special values for note-to-
rest and rest-to-note transitions. A note-to-rest transition can then be matched
to another note-to-rest transition.

A special problem occurs when every second note is a rest (note, rest, note,
rest...). Then, using a pitch interval viewpoint, such a passage can be matched
with another passage of that kind, no matter what notes there actually are
in the passage. We could solve this by determining if the rests are used as
“commas”, i.e. small breaks, where the melodic line is not broken, or “punc-
tuations” that end a phrase. Then the “comma-rests” could be removed, and
the phrase regarded as one, continuous melody. This way, the rests would not
give undefined values from the small breaks. We have not implemented the
comma/punctuation distinguisher, because it is a non-trivial project in itself.
Instead, through the grouping viewpoint we have tried to punish a similarity
statement whose subgraphs contain many rests.

Grouping Structure Searching for similarities through the viewpoints de-
scribed above will not guarantee any logical or natural segmentation of the
musical material, except that the compared fragments are somehow similar.
We have experimented with a few grouping preference rules (GPR’s) inspired
by the GTTM (see section 2.4.7). The GPRs are supposed to show where to
draw grouping boundaries. Grouping boundaries are supposed to be the natural

69

pauses for the performer to take a single breath. We use the rules to decide if
a given subgraph has an appropriate extension — i.e. if it fits with the natural
bounds in the music.

Please notice that in this section the word group is not referring to what we
earlier have described as groups of simultaneous sounding notes. We use it in
this section as in the GTTM.

We have concentrated on two rules (and subrules) taken directly from the
GTTM, which form the core in the grouping evaluation. The rules are GPR 2
and GPR 3. These rules are defined for monophonic music. GPR 2 is a proximity
rule, stating that a sequence of notes njnangny (rests can occur inbetween) may
be divided between ns and ng if:

e a. (Slur/Rest) the interval of time from the end of ng to the beginning of
ng is greater than that from the end of ny to the beginning of ny and that
from the end of ng3 to the beginning of n4, or if

e b. (Attack-Point) the interval of time between the attack points of ny and
ng is greater than that between the attack points of n; and ne and that
between the attack points of ng and n4.[LJ83]

The rules apply for example in these situations (the breathe marks suggests the

ending/beginning of the phrases):2°

RN
G

e
| 10ER

We hurry on presenting GPR 3. It is about change. Consider a sequence of
notes nyngngng (rests can occur inbetween). All else being equal, the transition
ny — ng may be heard as a group boundary if:

e a. (Register) the transition ny — ng involves a greater intervallic distance
than both ny — ny and n3 — ny, or if

e b. (Dynamics) the transition no — n3 involves a change in dynamics and
ny1 — ng and nz — ng do not, or if

e c. (Articulation) the transition ns — ng involves a change in articulation
and n; — ne and ng — ng do not, or if

e d. (Length) ny and ng are of different lengths and both pairs ny,ne and
ns3,ng do not differ in length.[LJ83]

The rules apply in these situations:

29 All examples are from GTTM [LJ83, p. 44f]

70

The rules GPR 2a, GPR 2b, and GPR 3d are all talking about change in
duration patterns. These have been the most applied in our experiments.

GPR 3a is a view on pitch. This one is important to melodic phrases as for
example polyphonic music or a single melody. On the other hand, it is less useful
for accompanying voices (not melodically independent), since their contour is of
a totally different nature. This gives some unwanted groupings. The rule was
designed for monophonic music as the other GPR’s, but this one does not seem
to generalise to non-monophonic music like we believe the others do. We must
be careful when to apply it.

GPR 3b-c are about articulation and dynamics. We have not yet taken that
kind of information into account, since rules are much less applicable than the
duration based rules. We have however made another rule, which we believe is
a natural extension to the rules: Prefer groups ending on fermatas (and groups
starting after fermatas):

The way we represent music in graphs includes representation of rests as well
as notes. The grouping structure rules evaluate a sequence of four notes and
not four MusicVertices (notes and rests). It is implicitly given that a phrase
cannot start with a rest. Phrases begin with a sound — not with silence. We are
not saying that rests are not important in phrasing, they certainly are (GPR 2
is an example of that), but it does not make sense to say that a phrase starts
before any sound is produced. In our computational approach we have to take
into account that a subgraph can begin or end with a rest. Therefore we have
made one more evaluation rule (the rest prohibition rule) that simply punishes
a phrase that starts with or ends with a rest. This does not forbid a subgraph
to include rests, but our hope is that the subgraphs found constitute natural
phrases.

The rest of the GPR’s are dealing with grouping of already found groups —
how to organise them into larger hierarchical structures. We will return to this
topic in section 5.3.1 on page 122.

Grouping structure as sequential viewpoint We are using the GPRs in
our GA search for similarities. The idea is that the rules should contribute to
the fitness of a similarity statement along the other factors involved. Better
grouping bounds gives a better fitness. So we want to evaluate a subgraph
according to the grouping rules. We have implemented the rules as a special
viewpoint. We call the viewpoint:

71

e Grouping Value (Grp): A value of how well a subgraph’s endpoints (start
and end) are locally grouped.

To evaluate a sequential subgraph, we examine the start vertex (source) and
the end vertex (sink) of the graph according to the grouping rules. The graph’s
grouping fitness is the average fitness of the start and the end vertex. The
grouping rules are applied to four consecutive vertices. When we want to ex-
amine the source, we then must find the two preceding notes and one following.
(The case is similar to what we do with the sink. The difference is that for a
sink we want to examine just one preceding and two following). We do this by
following the FOLLOW edges (in the opposite direction in the source case) to a
depth of two. Since the mother graph can be non-partwise there can be more
than one way of selecting the two preceding notes. To deal with this, we find all
possible combinations of two preceding notes (depth two) and the one following
(depth one). We then apply the GPR’s to each of the sequences of four notes.
The grouping value of the source vertex is the average evaluation value of the
found combinations.

We use one function to evaluate how suitable a bound between two notes
is as a grouping bound. Let n be the number of rules that apply. Then the
grouping value is 4", where v € [0,1]. A small y-value favours satisfying the
grouping rules, whereas a large one gives them less importance. We have been
experimenting with the y-value, and we will state the exact value when examples
are shown.

So the evaluation of a source (sink) goes like this: if the source (sink) is a
rest, no bound is found so the grouping value v° = 1.0 is returned. If not, we
find all sequences of four notes having the source as its third (the sink as its
second) note. These are each evaluated according to the four rules mentioned
(GPR 2a, GPR 2b, GPR 3d Length and the fermata rule) and each sequence is
given the value ¥™ (n is the number of applied rules). The value of the source
(sink) is the mean of the evaluated sequences.3’

Figure 24 shows an example of the grouping viewpoint in use on a mono-
phonic fragment. On this melody, we show which grouping rules apply where.
The GPR 3d applies a lot here, but also the fermatas have some influence.

Perceptionally, most people will hear this melody as consisting of three
phrases, each phrase ending after the fermatas. According to the grouping rules,
this is also the case, since there are two rules which apply after each fermata (the
appliance of GPR 2b have been calculated with respect to the continuation of
the piece). Let v = 0.6. The view of a subgraph consisting of the middle phrase
(notes 7-12) is therefore: for the source, the value (0.6)? = 0.36 and for the sink

300One remark: If we are not able to find two preceding notes from a given source, it is
because the subgraph starts too close to the beginning of the piece or it starts too close to
the end of the piece.

In the beginning of the piece there are two cases: either the subgraph starts with a source
of the mothergraph. This is seen as an appliance of a grouping rule (the start of the piece is
always a grouping boundary) and is rewarded and given the value . Otherwise the subgraph
starts with a note with distance 1 from the source of the mother graph. This is punished with
the value 1.0 since it is isolating the beginning note which is violating GPR 1. We will return
to this on page 122.

If on the other hand the source is too close to the end of the piece (it will then be the very
last note — otherwise it would have been possible to find one note following it) it is also not
preferred, and receives no reward (it is given the value 1.0).

The cases are similar for sinks.

72

Start 3d 3d 3d 3d 3 2b
o) [. I I /) /)
7 S — — — 1
| =] I I I I | | I I LJ ! I } I I
) & 1]

Figure 24: Applying the grouping preference rules.

also (0.6)? = 0.36. The overall grouping value is then the average: 0.36. If we
for example include the sixth note in the melody as well, the grouping value of
the subgraph rises to ((0.6)° + (0.6)%)/2.0 = 0.68.

To sum up, the grouping value is the average of how well the subgraph begins
and ends according to the grouping rules. The result is a number in [0, 1].

Experiments have shown that the presence of the preference rules is invalu-
able in segmenting the graph into musical belonging phrases. See the results
from the similarity segmentation algorithm in section 5.5.

4.3.2 View comparators

Applying a viewpoint p to two sequential subgraphs gives us two views v; and vs.
A view comparator is an algorithm that compares the views and thereby reduces
the two of them to a single number that tells us how similar the passages are
when seen from viewpoint p. In Section 4.4 we will introduce view comparators
comparing views of non-sequential subgraphs, so we define the first type of view
comparator as “Sequential view comparators”:

Definition 4.7 Let p(s;) = v1 and p(s2) = vy be the two views obtained by
applying sequential viewpoint p to the sequential subgraphs s1 and ss.

A sequential view comparator is a mathematical function

c(v1,v2) of two views vy and v that expresses the difference of the underlying
sequences s1 and sy when seen from viewpoint p. The result returned by a view
comparator is called a view difference.

If the view comparator returns a view difference between 0 and 1 (0 meaning
complete equality, and 1 meaning complete difference) we call it a percentual’
view comparator. View comparators need not be percentual.

It is worth pointing out that using different viewpoints and combining them
is rather a flexible method. The obvious viewpoints to use on a MusicGraph
include simple pitch and length information, but viewpoints may include any
amount of information computed from these basic data (e.g. what harmonic
context a given note is in, which requires some analysis to be done). The only
real constraints are the programmer’s imagination and the increasing computing
cost of calculating more and more complex viewpoints. As will be seen in
Section 4.4, view comparators that compare non-sequential subgraphs are much
more costly than sequential view comparators. We have attempted to keep the
view comparator evaluation, and hence the view comparators themselves, as

73

simple as possible, since they will be used heavily inside the computation of the
fitness measure for the GA.

Sequential view comparators used in the SimFinder The job of a se-
quential view comparator is mainly determined by the viewpoint used in it, but
still the comparison of each pair of values must be done, and all comparisons
along the two sequences must be combined to yield a single value. How would
you calculate a view comparison? One could evaluate ratios between the com-
pared pairs of numbers, or sizes of the intervals separating them. E.g. if we
have an absolute pitch viewpoint, comparing a ¢ with a dff would give a pitch
difference of 3. But we would like our view comparators to be independent
of viewpoint. The two comparators we have used most for sequential similar-
ities simply focus on the number of differences when pair-wise comparing the
numbers of the two views:

e Difference count: a difference count comparator first counts the number
of differences between the two views by comparing numbers at the same
indices in the views. It then returns the number of differences. This
view comparator, then, does not return a result in [0;1]. In the similarity
measures that use this view comparator, we use the number of mismatches
returned from the different viewpoints on the two sequences to decide what
relation the two subgraphs have. For example, a difference count of the
absolute pitch views [49,54,55,50] and [49,56,54,50] will return 2 because
54 # 56 and 55 # 54.

e Mean difference count. This type of comparator first counts the number
of differences between the two views by comparing numbers at the same
indices in the views. It then returns the number of differences divided
by the length of the views. Since the resulting view difference is in [0;1],
this is a percentual view comparator. As an example, a mean difference
count of the absolute pitch views [49,54,55,50] and [49,56,54,50] will return
2/4=0.5.

Combining viewpoints and view comparators A more interesting varia-
tion in view comparators begins when they take account of structure. We could
define view comparators that check if one view is the reverse of another view.
This is the case if

view; = [vg, U1, ...Un] and views = [Up, Up—_1, ..., Vo]

If the view comparator is a difference count comparator, it gives a quantitative
evaluation of 'reverseness’ in terms of how many differences there are between
view; and reverse(views). Let’s call that a reversed view comparator. A re-
versed view comparator could be combined with any of the viewpoints we have
defined in section 4.3.1 to search for reversed motifs.

Another musically useful similarity could be inversion; e.g. in fugue, a motif
can occur in an inverted form, such that whenever the original motif moves
x diatonic steps upward, the inverse motif moves x diatonic steps downward.
An inverse view comparator, coupled with e.g. the diatonic interval viewpoint,
then, is able to locate inverted themes.

74

The diatonic viewpoints were constructed specifically for similarity searches
in Western tonal music. But using inverse and reversed view comparators to-
gether with the absolute pitch viewpoint, the SimFinder may as well search for
similarities in 12-tone music.

We most often use one of the difference count view comparators; there are
enough details to keep track of with the many viewpoints, so when there is no
need to mention the view comparator, we shall speak simply of viewpoints and
assume that a difference count view comparator is at work.

4.3.3 Similarity measures

The beauty of the concept of a “viewpoint” is its flexibility. A viewpoint is a
transformation under which two structures may be equal or not. Two passages
may be very similar from one point of view but very dissimilar from another
point of view. As discussed in Section 3.2, similarities in music may arise from
a number of factors. Since a viewpoint (and its comparator) focuses on a simple
factor, we need different viewpoints to locate them. The problem of finding
good similarity matches now becomes one of building good combinations of
viewpoints so as to pinpoint many different kinds of similarities. This also allows
us to match passages that are not exact copies of each other. Exact repetitions
do occur in music, but much more frequently, a passage is repeated in a modified
form as described in section 3.2 on parallelisms. These are similarities that are
often immediately obvious to the human listener but to the software analysis
seem buried behind a rigid numerical representation of the music. Our approach
is to construct similarity measures that express the combined similarity of two
subgraphs as seen through a number of (viewpoint, viewcomparator) pairs.

Definition 4.8 Let C be an ordered set of sequential view comparators and V.
be an ordered set of sequential viewpoints.

A sequential similarity measure is a mathematical function

Mc,vy(s1,52) combining the results c;(pi(s1),pi(s2)) for all pairs (ci,pi) €
(C,V) to produce a rating of the similarity of two sequential subgraphs si and
S9. A similarity measure that returns a result in [0;1] is a percentual similarity
measure.

In short, the similarity measure applies the viewpoint p; to the two subgraphs
s1 and s3. Then it compares the obtained views using view comparator c;. The
resulting view difference is stored temporarily while this process is repeated for
all (viewpoint p;, view comparator ¢;) pairs. A single number is now calculated
as a result of all the obtained view differences. This single number expresses the
similarity of s; and s, according to the combined evaluation of all (viewpoint,
viewcomparator) pairs of this similarity measure.

Size When used as a fitness function for the GA, a similarity measure should
be able to tell a good match from a bad one to allow the GA to search, and
also, preferably, to tell how much better the good match is. Also, we want the
GA to know that longer matches are better, to a certain extent. Otherwise, it
will settle on very small perfect matches, which is boring when we know that
there are larger similarities. To be able to compare a match of two subgraphs
31 of, say, size 3, with a match of two subgraphs of, say, size 68, we need to

31What we shall introduce below as Similarity Statements.

75

balance two conflicting requirements: on one hand, a good match is a match of
two subgraphs whose vertices are very much alike; but on the other hand, the
longer a subgraph matching, the better. A perfect match of size 2 is probably
less interesting than a reasonably good match of size 12, so we have a tradeoff
between quality and size. Although as a matter of forcing the GA to search for
larger similarities, this consideration really belongs in the GA, we have chosen
to incorporate the size reward in the individual similarity measures, because it
allowed us to easily try different size weightings. In the end, we have settled on
two different schemes described below.

Sequential similarity measures used in the SimFinder Our sequential
similarity measures fall in two categories according to which view comparator
they use: Difference Count (DC) or Mean Difference Count (MD). Each simi-
larity measure therefore uses the same view comparator for all its viewpoints.
The practical reason for this is that we have constructed a similarity measure
evaluation method each. The DC set of measures therefore share the central
evaluation method that computes a result from all the view differences. So do
the measures in the MD set. Therefore, we may profitably describe the measures
under the two headings seqDC and seqMD.

seqDC Sgren’s favourite set of measures use difference count and the diatonic
viewpoints and the grouping preference rules viewpoint.

e seqDC_DAPALGrp: uses the diatonic absolute pitch, absolute length and
grouping viewpoints.

e seqDC_PIALGrp: pitch interval, absolute length and grouping.
e seqDC_DIALGrp: diatonic interval, absolute length and grouping.
e seqDC_DFIALGrp: diatonic forward interval, absolute length and grouping.

e seqDC_DITALGrp: diatonic inversion interval, absolute length and group-
ing.

Although from our measures it would seem that the number of viewpoints
used in a similarity measure was restricted to three, there are no such con-
straints in the SimFinder. We have also experimented with similarity measures
containing for example the viewpoints {AP,PI,PC,PS,AL,LI,LC} using an MD
comparator. Some of the viewpoints are more useful than others. Distributing
pitch-related viewpoints into different similarity measures allows us to reason
about the found similarities, when searches alternate between different similarity
measures. This is used in the segmentation algorithm described in section 5.4.1.
Hence the triple-wise viewpoint use, where a tonal (pitch-related), a rhythmic
(note length-related) and the grouping viewpoint are combined. The following
description of the DC measures would need to be extended, though, if more
viewpoints were added.

The idea of the DC similarity measures is in itself quite simple. We will illus-
trate it using the seqDC_DFIAL measure; the other seqDC measures are similar,
combining a tonal viewpoint with a rhythmic (note length) and the grouping
viewpoint. Let the DFI view difference (DC) of the subgraphs be

dfi = DC(DFI(sy), DFI(s3)),

76

and let the AL view difference of the subgraphs be
len = DC(AL(S]_), AL(SQ))
and the Grp view of the subgraphs

Grp(source(sy)) + Grp(sink(s1)) n Grp(source(s2)) + Grp(sink(sz2))
2 2

group =

Then

len size(sy)
1 2=
1000 + 100

The idea is that the algorithm first finds a match where dfi is zero. The dfi
value dominates all other elements in the expression. Remember that dfi and
len here are the number of mismatches in the DFI and AL views of the two
subgraphs. If the match can be enlarged and still keep a dfi value of zero, then
it can also benefit from a bonus for the subgraph size®?. As size(s1) = size(s2),
it doesn’t matter which one we pick. The size has to “compete” with the value
of the grouping rules — depending on the value used to restrict the constraint
of the rules. The length information (AL) is given very little effect. This is
useful, when the melodic content is the most important (which it often is). See
figure 33 on page 89 for an example. See section 4.3.5 for more results.

seqDC_DFIALGrp(sy, s2) = dfi +

) + group

seqMD Martin’s set of measures use mean difference count and some combi-
nations of the absolute-, interval- and contour-viewpoints. No grouping view-
points are included.

e seqMD_APAL: uses the absolute pitch and absolute length viewpoints
e segMD_PIAL: pitch interval and absolute length
e seqMD_PILI: pitch interval and length interval
e segMD_PCLC: pitch contour and length contour

In contrast to the seqDC measures, the seqMD measures treat all view dif-
ferences equally, i.e. there is no weighting of the view differences built into the
seqMD measures. The seqMD measures are percentual similarity measures, and
the calculation method is rather more complicated than that of the seqDC mea-
sures, so we will go through it in several steps: finding the product of the view
differences, scaling the product to [0;1], and modifying the result according to
the size of the subgraphs.

First, we calculate a product of the view differences. Let D be the set of view
differences obtained by evaluating all (viewpoint, viewcomparator) pairs on the
sequential subgraphs s; and s;, and let d; € D be the i’th view difference. Then
the product of view differences would be

|D|-1
prody (D) = H d;
i=0

32Up to a length of 100 in this definition. For segmentation purposes, we never even reach
subgraph sizes of 100.

7

but this quickly becomes a very small number, since all d; € [0;1]. Instead we
add 1 to every d;, so every element in the product is 1 + d; € [1;2]. Also, to
encourage similarities with one exact match above similarities with a number of
mediocre matches (according to the different viewpoints), we want to be able to
reward those similarities that have an exact match under at least one viewpoint.
We have an exact match under (viewpoint p;, view comparator ¢;) if d;=0.0.
Then we assign a “bonus value” to this element of the product. The bonus
value is set between 0 and 1, so that it really improves (lowers) the product
value when substituted for one of the product elements that would otherwise
have had the value 1 +d; = 1 4+ 0.0 = 1. Formally, the bonus value can be
described as a function 3:

bonusValue if d; =0.0
Bldi) = { 14+4d; else

bonusV alue could be set to anything between 0 and 1. We often set it to a value
such as bonusValue = 0.5 or bonusValue = 0.9. The product now becomes:

|D]-1

prody(D) =] B(d)

This product is not in [0;1], so we want to scale it to get a percentual similarity
measure. The maximum value of prods is obtained if all view differences show
maximal difference (i.e. have a value of 1.0):

|D|—1
mazx(prods) = H 2 = 2Pl
i=0

and the minimum is obtained if all view differences show exact matches (i.e.
have value of 0.0, thus being substituted by the bonus value):

|D|-1
min(prody) = H bonusV alue = bonusV alue!P!
=0

So we have that min(prodsz) < prods < maz(prods). To scale prods to [0:1] we
apply the following to prodas:

prods — min(prods)

scaledProduct; = maz(prods) — min(prods)
What now remains to be done is some scaling for the size of the subgraphs,
matches of long sequences being better than matches of short sequences. Here
we run into a problem with scaled Product; because it may assume the value 0.0.
If the scaled product is 0, it doesn’t matter how much we scale it for size; the
net effect is that a perfect match of size 10 will not be evaluated as better than
a perfect match of size 3. The size modification is cancelled for perfect matches.
To overcome this, we add a very small number, u, to both the numerator and
the denominator in the fraction of scaled Product:

prods — min(prods) + p
mazx(prods) — min(prodsz) + u

scaled Producty =

78

This way, there will always be a small u to be scaled by the size modifier, so
that size matters!

Let n be the size of the sequential subgraphs. The simplest way to scale a
value for size is simply to divide the value by n, but we have more requirements
for the scalar. The size modifier is designed to be a number between 0 and 1
to be multiplied with the value given by scaledProducts. The idea is to scale
down even further scaled Products, if the similarity is a long one, but only if it
is also a good match. The sizeM od scalar should therefore be 1 for the smallest
possible match (n = 1) and come closer to 0 as n grows; but it should not come
that much closer to 0 if the match isn’t good; a very large awful match is not
much better than a small awful match.

Imagine the size scalar begins with a value of 1. Our idea is to control
how much of the scalar can be chopped off by size considerations. As shown in
figure 25, a fixed amount 0 < valWeight < 1 determines how much weight the
unmodified value (in our case the scaledProducty result) should have, and the
rest of the scalar, sizeWeight = 1 — valWeight, may now be decided by the
size.

Om/\\?\ \1

vaWeight

sizeWeight

vaWeight+ a

Figure 25: Constructing a size modification scalar that can only shrink down to
‘valWeight’.

1 — valWeight

sizeMod; = valWeight + = valWetight +

sizeWetight
n

Figure 26 shows a 3D plot of sizeMod; as a function of n and valWeight.
When valWeight is close to 1, the modifier is almost one, no matter the size
n. When valWeight is close to 0, n has a big role to play and reduces the
sizeM od; scalar almost to 0.

There is one last thing to fix before the size modifier can be put to use. We
find that when varying n from 1 and up, sizeMod; decreases too quickly. We
would like to flatten the curve so that the benefit of increasing in size is a little
more equally distributed over size. We introduce the flattening constant ¢ to
do this:

(1 — valWeight)p
n+ep—1

stzeMods = valWeight +

For ¢ = 1, sizeMody = sizeMod;, so 1 is the neutral value. When ¢ > 1,
the curve is flattened, and when 0 < ¢ < 1, the opposite happens. This is
illustrated in figure 27 where sizeMods is shown for ¢ = 40 and for ¢ = 0.5.
We have chosen ¢ = 40 for the seqMD similarity measures.

We need to decide what value to use for valWeight. But here is exactly
the connection that we wanted between the size modifier and and the scaled
product: if we set valWeight = scaledProduct,, the size modifier has almost

79

0.8

0.6
valWeight

Figure 26: The sizeMod; size modifier as a function of the size n, shown on
the x-axis with values from 1 to 20, and of valWeight shown on the y-axis with
values from 0 to 1.

no influence, when the scaled product is close to 1 (when we have a bad match);
and when the scaled product is close to 0 (when we have a good match), the
size modifier has a lot of influence, scaling the value even further down towards
0. For convenience, we rewrite the size modifier as a function of the number
valWeight, which we shall call simply weight:

(1 — weight)p

sizeM ods(weight) = weight + n+ep—1

A few words may be appropriate on the interpretation of diagrams like fig-
ure 27. It illustrates the basic dilemma in a GA with individuals of mixed size.
The population consists of pairwise subgraph comparisons, and though the two
subgraphs in a pair must have the same size, pairs may differ in size. To decide
if comparison pair 1 is better than comparison pair 2, the fitness function must
balance two search goals: match quality and match size. We both want the
best matches and the largest matches. ¢ decides how quickly the size modifier
becomes very low, when the match size n rises (low p=very fast, highp=very
slowly). For the limited match sizes that have occurred in our graphs (n < 50),
a high flattening constant like ¢ = 40 also determines that the size modifier
overall level doesn’t come close to 0. The higher values of ¢ seem to be a good
setting, though it is difficult to detect any real difference in performance (we
have tested different values of ¢, see appendix B.1). For all settings of ¢ the
size modifier is 1 whenever either n = 1 or the value weight weight = 1, and
for all other values of n and weight, sizeMods will have a lower value if either

80

1
0.8
0.6
0.4
0.2

0

phi=40 ——

1

08

06 \
\

0.4
0.2
0

Figure 27: The effect of the flattening constant, ¢, on the sizeMods size
modifier. n is shown on the x-axis, and the weight, which is actually the
scaledProducty is shown on the y-axis. The left diagram shows sizeModsy for
@ = 40, the right for ¢ = 0.5

n is increased or weight is decreased. Thus all settings of ¢ will drive the GA
search towards larger matches and better matches.

To sum up on the construction of the segMD similarity measures, they are
constituted of a product of view differences, which is scaled to [0;1] and modified
for size. Recall that D is the set of view differences obtained by applying all
(viewpoint,view comparator) pairs of seqMD to the sequential subgraphs s; and
S9. Then

segqMD(D) = scaledProducty x sizeMods(scaledProducts)

where
— mi |D|-1 N |D|

scaledProducty = prod; mln(]')rodz) tH = Iizoy B(di) — bonusValue'™ + p

maz(prods) — min(prodz) + p 2101 — bonusValuel Pl + p
and .

bonusValue if d; = 0.0
Bldi) = { 1+4d; else

and

(1 — weight)p
n+ep—1
As explained in appendix B.2, we have found no clear indication of an opti-
mal setting for the bonusValue parameter. Test runs seem to work nicely with
bonusValue = 0.9.
An example set of parameter values we have used is:

sizeMods(weight) = weight +

bonusValue = 0.9, ¢ =40, and p = 107"

It has turned out that it is fruitful to weight the pitch viewpoints a little
heavier than the note length viewpoint. In our implementation, weighting is

81

not incorporated in the seqMD measures as such, but the weighting can be
accomplished by adding more instances of the pitch related than of the length
related viewpoints. E.g. the seqMD_APAL measure therefore has two identical
’absolute pitch’ viewpoints and one 'absolute length’ viewpoint.

Example of the use of the seqMD measures The two subgraphs in figure 28
are compared using seqMD_APAL — i.e. with the absolute pitch and absolute
length viewpoints. The evaluation output of the SimFinder is shown below the
graphs.

S1

SeqSimStmt of
Size = 3
Overlap=0

seqMD_APAL = 0.524622588884182
absPitchMD = 0.6666666666666666
absPitchMD = 0.6666666666666666
absLengthMD = 0.6666666666666666

Figure 28: Two sequential subgraphs s; and s, and the SimFinder’s evaluation
output using seqMD_APAL

The mean difference view comparisons on absolute pitch and absolute length
both give a value of 0.67, so with the double instance of the absolute viewpoint,
we have three 0.67 values in the product:

ledProduct HLZ(‘)_I B(d;) — bonusValue! P! + p H?:o B(0.67) — bonusValue® + u
scaledProducts = =
2 2101 — bonusValuelPl + p 23 — bonusValue® + u

7Hf:01.67—0.93+u74.63—0.73+10—77054
280934+ 8-073+107

Applying the size modifier yields:
segMD_APAL = scaledProducts x sizeModsz(scaled Products)

(1—-0.54) x 40, 185, B
Ta0 1) = 054 x (0544 %) = 0.54 x 0.98 = 0.52

This is a mediocre value, reflecting the fact that s; and s, are equal only in
one third of the notes (both with respect to pitch and note length).

= 0.54 x (0.54 +

82

4.3.4 Genetic algorithm

We have now come to the heart of the SimFinder. A GA is a non-deterministic
algorithm that is useful for searching immense search spaces, and also very spiky
search spaces, where optima are not necessarily surrounded by many points of
similar value, leading up to — and thus pointing the search algorithm to — the
optimum. As we have attempted to point out (appendix B.8), the search space of
the SimFinder is indeed rather spiky, and the search space of possible subgraphs
in a music graph is quite overwhelming.

Similarity statements Once a similarity measure for sequential subgraphs
is established, we can begin using a search method such as a genetic algorithm
(GA) to find similarities in the music graph. The population in our GA will
consist of similarity statements that basically are tentative assertions of the
form:

“According to similarity measure M;, subgraph s; is similar to subgraph
82.”

As such, a similarity statement can be assigned a value — a fitness value
— depending on how similar s; and ss really are; and how similar they really
are is defined by the similarity measure M; used. Through the generations,
the GA will throw away bad similarity statements and keep the good similarity
statements; the latter will survive from generation to generation, cross-breeding
new similarity statements that receive a copy of a subgraph from each parent,
and mutating now and then to point to slightly different subgraphs. This is how
the GA searches for the best possible matches of sequential subgraphs.

We have not experimented with co-evolution of similarity statements and
similarity measures, but we do give it a thought in section 6.1.8. It is important
in our implementation that the similarity measure be the same for all fitness
evaluations. The size of a sequential similarity statement is the size of each
of its sequential subgraphs, which are required to have the same size for the
sequential viewpoints, view comparators and similarity measures to work.

Figures 29 and 30 show the two sequential subgraphs of the best similarity
statement in the population of a small SimFinder test run. Population size
was 100 and the SimFinder ran for 30 generations, taking about five seconds
to complete. Note that ss is identical to s; except that it is transposed two
semitones upwards.

20.0 24.0 24.5 25.0 25.5 26.0 26.5 27.0 275

Figure 29: Sequential subgraph s;

83

Figure 30: Sequential subgraph s

Overlap Recall that the overlap of two subgraphs is the total number of ver-
tices and edges of the mother graph that the subgraphs have en common. Evo-
lutionary algorithms are masters in finding stupid mistakes in one’s definition of
the fitness function, and if overlap of the subgraphs s; and so is not taken into
account, the GA very quickly settles on a wonderful match of two subgraphs
that, upon closer inspection, turn out to be exactly the same spot in the moth-
ergraph. Fortunately we don’t need a GA to tell us that a subgraph is equal to
itself. To overcome this, we have experimented with overlap punishments that
are a multiplication of the general result by a base number k£ > 1 that is raised
to the power of the size of the overlap. We have also tried adding some constant
value to the result when overlap is detected. Finally we have decided on a very
simple method. We don’t need the additional weighting introduced by elabo-
rate overlap countermeasures; we simply don’t want subgraphs to overlap, so
we set the fitness of a similarity statement with overlap > 0 to an astronomical
number. This way the overlappers are discarded through selection??

Selection, crossover, and mutation As mentioned, selection uses the cho-
sen similarity measure as a fitness function. As similarity measures incorporate
rewards for size, the SimFinder is able to operate with a mixed population of
similarity statements of different sizes.

The SimFinder uses a steady state selection to create the next generation.
The next generation is composed of three parts: a given percentage is chosen
through selection (given in the selection parameter), another percentage is cre-
ated by crossover of two individuals of the selected individuals (given in the
crossover parameter, and the remaining percentage of the next generation is
created through mutation of the selected or crossbred individuals (given in the
mutation parameter). The percentages must sum to one, otherwise we would
change the population size from generation to generation. Finally, after the
new population is created, a number of random mutations, also specified by the
mutations parameter, are applied to the new generation. The SimFinder always

33The ultimate reason for simply discarding overlapping similarity statements is that the
segmentation algorithm presented in section 5.4.1 cannot substitute compound vertices for
two subgraphs that overlap. It does not seem to hinder the GA search, compared to the more
elaborate weighting schemes.

84

lets the most fit similarity statement in each generation survive to the next. In
GA parlance, this is an example of elitism. If it is turned off, the SimFinder
takes longer to find good matches.

selection + crossover + mutation = 1

Examples of typical parameter setup could be:
selection = 0.5, crossover = 0.1, mutation = 0.4, for a seqDC run, or
selection = 0.5, crossover = 0.0, mutation = 0.5, for a seqMD run.

There is a reason why we have set the crossover parameter so low. The
crossover operation takes two similarity statements and combines them by pick-
ing one sequential subgraph from each. The two parent statements most often
have different sizes, so the smallest of them is extended at random until the
sizes match. However, the chances that this will yield a good similarity state-
ment are very low, because often the two subgraphs that are chosen are very
different. Instead, the main search of SimFinder takes place in the mutation op-
eration, which is also unconditionally applied to statements that result from the
crossover before they are released into the new population. Experiments have
shown that crossover values of 0 or 0.1 are better for finding large matches
quickly (see appendix B.3).

Mutation on a sequential similarity statement with sequential subgraphs
s1 and sy can take several forms. The different mutation operations add and
remove edges and vertices from the subgraphs. Notice that no new vertices or
edges are created; in our implementation, it is the structure in the underlying
mother graph that is pointed to by a subgraph, and mutations on subgraphs
are only manipulations on the membership in the subgraph of the edges and
vertices of the mother graph. Common to all is that they must preserve the
constraints that make s; and s sequential.

e Substitution Substitute either s; or s with a new and randomly gen-
erated subgraph of the same size. The SimFinder has a parameter that
controls the probability of applying this mutation instead of the other
three mutations when the mutation operation is invoked. The parameter
is called fresh blood chance.

e Extension Extend both s; and ss once. Extension of a sequential sub-
graph can be either a left extension or a right extension, chosen at random.
A left extension adds a vertex v from which there is a FOLLOW edge e to
the source of the sequential subgraph in the mother graph; a right exten-
sion adds a vertex v to which there is a FOLLOW edge e from the sink of
the subgraph in the mother graph. In both cases e is also added to the
sequential subgraph, and the size of the subgraph is increased by 1.

e Shortening Shorten both s; and so once. As with extension, a subgraph
can be shortened either to the left or to the right, which is chosen at
random. A shorten-left operation removes the source and the edge that
connected it to the rest of the sequential subgraph, a shorten-right opera-
tion removes the sink and its edge. The size of the subgraphs is decreased
by 1.

85

e Slide Slide both subgraphs once to the left or to the right (s; and s3 need
not slide the same way). A slide-left operation is equivalent to doing an
extend-left and a shorten-right operation, and conversely, the slide-right
operation is equal to an extend-right and a shorten-left operation. The
size of the subgraphs is not altered by a slide. As an example of a slide
operation, figure 31 shows the two subgraphs of a similarity statement
before and after the slide.

e Another mutation that would make sense for sequential subgraphs could
be to make a number of ’simultaneous swap’ operations on either s;
or se. A simultaneous swap exchanges a vertex v; in the subgraph with
another vertex vy in its group, removes the edges connecting v; to the rest
of the subgraph and adds edges from vy to the vertices that v; was con-
nected to. This can only be done, of course, if the appropriate edges exist
in the mother graph. The simultaneous swap has not been implemented
in the SimFinder.

If we have found a good match, chances are that some more of the surround-
ings will also match. The mutation operations allow the GA to extend the best
found matches to surrounding areas in the graph. Experiments varying the
number n of mutation operations per mutation have shown that few are better
than many.

Mutation and vertex usage Figure 32 shows the verter usage at the end
of a SimFinder run. The midi file used is the Bach chorale Jesu Meine Freude
(BWV358); it was loaded into a non-partwise graph. Each music vertex in the
graph is represented by a small square, ordered in time from left to right. Verti-
cally aligned squares are simultaneous and thus form a group. The colour of each
square indicates how many subgraphs, in the final population of a SimFinder
run, the vertex is included in. The lighter the colour, the more used. The vertex
usages were obtained with the following SimFinder setting:

Population size 100
Generations 300
Crossover 0.0
Mutation variable
Initial size 3
Max size N/A
Fresh blood chance 0.3
Similarity measure SeqMD_APAL
o 0.000001
@ 40
Bonus value 0.9

When the mutation parameter is low, the SimFinder concentrates very nar-
rowly on the first larger similarities it finds and explores them. The first two
thirds of the chorale is constituted of two exactly identical copies of the theme.
Therefore this is the easiest region to find similarities in, which is why almost no
vertices from the last third are used for the low (0.1, 0.2, 0.3) mutation values.
For mutation=0.1, it looks like the SimFinder has located one similarity that it
hasn’t been able to break out of and search for other similarities: there is only

86

A
g
¢

A
B,

.‘va

A
X

i

Nl | i
R A<y
D

L
A TER
AN AN
\\\ \\\

(!
i

SeqSimStmt of
Size = 5
Overlap=0

seqMD_APAL = 0.7643451026479342
absPitchMBD = 1.0
absPitchMBD = 1.0
absLengthMBD = 0.6

A

o)
ﬂ.

i
%8

RO RA
iy 3
/@)

SeqSimStmt of
Size = 5
Overlap=0

seqMD_APAL = 0.12662088279314987
absPitchMBD = 0.2
absPitchMBD = 0.2
absLengthMBD = 0.2

Figure 31: The subgraphs of a sequential similarity statement before and after
the slide operation, the evaluation according to similarity measure seqMD_APAL
is also shown before and after the slide. Subgraph 1 is slid to the right, and
subgraph 2 is slid to the left. This slide is a lucky one; it changes the fitness
evaluation of the similarity statement from 0.76 to 0.13.

87

Figure 32: Vertex usage for different values of the mutation parameter. Colour
values range from dark blue (not used at all) to light green (has largest usage for
this population). The colours may be difficult to see on print, but the differences
are much clearer when the paper is held up against a bright light source.

one very bright green (i.e. used by almost all subgraphs) string of vertices used
— the others are dark blue and therefore unused. When mutation is raised, the
final population uses more and more of the other vertices and also manages to
explore to some extent the last third of the chorale. The SimFinder runs that
produced the vertex usage graphics ran for 300 generations; the development of
the size and the fitness of the best individual over the 300 generations can be
seen in appendix B.7.

It seems that small values (0.0 to 0.2) of the mutation parameter are worse
than higher values, as explained in appendix B.4. But we want to balance the
SimFinder so that it is able to both exploit found similarities by enlarging them
if possible, and ezplore other areas, like the third part of the chorale above in
figure 32. This will be particularly important in the segmentation algorithm,
when we use the SimFinder to search for all occurrences of a given phrase. The
segmentation algorithm stops searching for more occurrences, if the SimFinder
doesn’t find any matches that are good enough, so it is vital that it doesn’t get
stuck in a mediocre match if there is a good one to be found. Otherwise the
segmentation algorithm will fail. We have mostly used mutation values of 0.3
to 0.5, as it seems to be an acceptable tradeoff.

The most drastic method of mutating is controlled by the fresh blood chance
parameter. This is the probability that, when mutating a similarity statement,
instead of extending, shortening or sliding its subgraphs, one of the subgraphs
is replaced by a completely random subgraph of the same size. It looks like a
value of 0.2 to 0.3 is best for this, see appendix B.5 for the details on the test
results.

Yet another variable concerning mutation is the number of random muta-
tions applied in a mutate operation. Increasing this number over 1 worsens the
exploitation ability of the GA, so we only do one mutation per call to the mutate
operator (see appendix B.6).

The fitness landscape To create an idea of what the fitness landscape looks
like, we have tried sliding a sequential subgraph s; at random through an entire

88

piece and at each moment comparing it with another sequential subgraph so. s
was fixed, but initially randomly chosen inside the non-partwise mothergraph of
the piece. The changing values of the overall similarity measure seqMD_APAL is
shown in appendix B.8. The piece used was the Bach chorale BWV358 “Jesu,
meine Freude” and the length of the subgraphs was 4 (i.e. 4 vertices, or notes).
The figures should give an idea of how the similarity measure value may change
as a result of mutations on its subgraphs. As the ’slide’ operation example in
figure 31 showed, the value of a similarity statement can change quite drasti-
cally as a result of only two mutations (one slide per subgraph). The plots in
appendix B.8 confirm that the fitness landscape is indeed rather spiky.

4.3.5 Results

We here present some small examples of what we can find in a sequential search.
This is not a systematical test, but just some small examples of what the view-
points are designed to do, and how they are correlated. In none of the cases,
grouping rules have been calculated. We will present some examples with group-
ing rules applied in the section on similarity segmentation (see section 5.5).

Results from the seqDC_DFIAL similarity measure as described in
section 4.3.3.

We have made some example runs on a J. S. Bach Inventio no. 13 in A
minor (BWV 784). The inventios are for 2 parts and the search have been made
in a partwise graph. The inventios contains a lot of parallelisms as the name
reveals.

Figure 33 shows a match of size 13 in the Bach Inventio. The first example
is subgraph 1 (starting in the middle of measure 10) and the next is subgraph
2 (starting in measure 11). In the search, only the DFI and AbsoluteLength
viewpoints are used, but the values from the stronger view comparators (of
type difference count) have been calculated as well: seqgDC_DAP: 13, seqDC_PI: 7,
segDI_PI: 1, and seqDC_DFI: 0. No grouping structure rules were used in this
search (no additional grouping value was added to the fitness). The values from
the other viewpoints shows that the DFT is the only viewpoint that can recognise
this parallelism as a perfect match. The first 4 notes in each sequence have been

Figure 33: Example of perfect DFI match.
matched together even though they have different rhythmic values. This is no

mistake. The difference in durations was not given great importance in this
search. We hope most people will agree that it is the melodic similarity that

89

creates the illusion of parallelism — the melodic similarity is more significant
than the rhythmic difference. The difference in durations is: segDC_AL: 5.
Figure 34 shows a match of size 22 from the same Inventio. Here the view
comparators gave the following values: seqDC_DAP: 22, seqDC_PI: 9, seqDC_DI: 1,
seqDC_DFI: 0, seqDC_AL: 0. What you hear here is again a harmonic parallelism.

0 - '-I.I';% - '-I-I'-;
e e

Figure 34: Example of perfect DFI match. Theme in a-minor and theme in
c-major.

The first piece is the main theme in A minor (beginning in measure 1), and the
second is the theme in C major (beginning in measure 6). The theme have been
transposed to its relative key.

Results from the seqDC_DIIAL similarity measure We here show the
largest inversion match found in the J. S. Bach Invention 1 in C major (BWV
772). It has a length of 23 notes.

The first seven notes of the first passage shown origins from the main theme.
The next 2 x 8 notes continue this idea in a small sequence in thirds. The second
figure shows the diatonic inversion. All jump-intervals have been inverted.

4.4 Non-sequential similarities

The search for sequential similarities doesn’t give us a way to compare e.g.
chords or other non-monophonic material. Of course we may search for sequen-
tial similarities in a non-partwise graph, thus including strings of notes going
across parts, but it would still require a comparison of parallel combinations of
sequential subgraphs to compare non-monophonic fragments.

At first, the task to compare two non-sequential subgraphs like o; and o9
in figure 35 could seem at bit like finding the similarity between a cucumber
and an elephant. Our task in this section is to find properties of non-sequential

90

subgraphs that allow us to measure and give a numerical rating of their simi-
larity. We wish to exploit our graph representation to construct a flexible and
topologically aware comparison instead of comparing versions of the subgraphs
that are reduced to nested sequential/parallel structures as discussed in sec-
tion 3.1.3. The following three sections describe different approximations to
subgraph matching.

a.n 8.5 a.0 9.5 10.0 105 11.0 14.0 16.0 16.5 17.0 17.5

Figure 35: Comparing two non-sequential subgraphs o; and os.

The music-specific nature of our graphs is another part of the challenge
here; it is not sufficient to compare subgraphs exclusively on their topology.
The topology of a music graph reflects only temporal relations®*, but the music
graph is an attributed graph with note information too. We therefore have to
develop musically relevant approximations to subgraph matching.

4.4.1 Introducing non-sequentiality in the SimFinder

We use the framework we have already defined for looking at musical structures
from different viewpoints using the SimFinder. But some of the non-sequential
viewpoints take on different forms3®. This means that it is difficult to put down
an overall definition of what a non-sequential viewpoint, view comparator or
similarity measure is. However the basic idea remains the same: a viewpoint
filters a particular aspect of a musical fragment, and view comparators give us
a measure of how different two fragments are with respect to a given viewpoint.
A non-sequential similarity measure, then, is the overall weighting and combi-
nation mechanism that produces a numerical rating of similarity based on one
or more viewpoint-view comparator pairs. Like for the sequential measures,
overlapping similarity statements are punished promptly by setting their fitness
to a very high value. Size modification is also incorporated into each similarity
measure, as the methods used differ.

Mutation The mutation operator for sequential subgraphs was constructed
specifically to ensure that sequentiality is preserved through extension, short-
ening or slide. When mutating a non-sequential subgraph, there are no such

34We are tempted to say: the topology reflects only temporal relations yet, since it is possible
to include additional musical information as described in section 4.2.2.

35K.g. in the vertex comparison and edge comparison methods, a viewpoint gives informa-
tion on only a single vertex, or edge respectively.

91

restrictions. Extension is done by picking a vertex at random inside the sub-
graph until we find one, which has an edge in the mothergraph to a vertex v
outside the subgraph. Then v and all edges connecting it to the subgraph are
added. Shortening consists in finding a vertex that we may remove without
splitting the subgraph. This is checked using the transitive closure of the sub-
graph if we consider it a non-directed graph. The found vertex is then removed
along with all edges connecting it to the rest of the subgraph. We have only
implemented a very simple sort of slide operation, which consists in performing
first an extend operation and then a shorten operation. This could no doubt be
improved.

An interesting feature of this small and very simple set of non-sequential mu-
tations is, that subgraphs evolve towards 'dense’ subgraphs. That is, we don’t
often find non-sequential subgraphs that cover the mothergraph thinly, in the
sense that they stretch out long ’arms’ without including all vertices connected
to these arms. Rather, if a vertex lies as an island in the middle of a subgraph
while not being included in the subgraph, the probability that it will be chosen
for inclusion is higher than the probability for vertices that are connected to
the outer edges of the subgraph (in the mothergraph). The reason, we think, is
that ’island’ vertices are connected to the subgraph by more edges than vertices
on the outskirts of the subgraph are. The 'dense’ tendency avoids completely
strange configurations of subgraphs that would perhaps be in greater danger
of being meaningless than the dense ones. This is worth more experimenta-
tion, though; the non-sequential GA search needs improvements that balance
its exploration and exploitation abilities better, and introducing non-sequential
mutation operators that are 'musically aware’, i.e. make more meaningful mu-
tations than the random extend or shorten operations, could perhaps be a good
idea.

Grouping The viewpoint for grouping structure is easily extended. Since
subgraphs now can be non-sequential, there can be more than one source, or
starting point, in a subgraph. Instead we have an entire set of sources, and a
set of sinks. To evaluate if a non-sequential subgraph has a stable grouping, we
evaluate all sources and sinks (as already described in section 4.3.1) and then
take the average value. The result is again a number in [0, 1].

We would like to show two runs of the SimFinder: the first with grouping
preference rules applied, and the second without. Figure 36 shows one of the
subgraphs from the best similarity statement in each run. The runs found
similarities in the same area, so they can easily be compared. The subgraphs
found with the grouping rules applied has size 21, and the other ended with a
graph of size 20. The parameters of the experiment was these: Generations =
100, Popsize = 80, init size = 5, crossover = 0.0, mutation = 0.5 (fresh-blood-
chance = 0.4), the similarity measures used was nonSeqBagIR DAP Grp (with
grouping base value v = 0.97) and nonSeqBagIR DAP (with no grouping). The
similarity measures will be described in section 4.4.4, so please be patient — we
will only discuss the effect of the grouping rules here.

The SimFinder found in both cases perfect matches of the subgraph (the
first six bars (24 beats) are repeated unchanged). The natural grouping of this
piece of music would be to take a breath after the fermatas. So a phrase ends
before tick 16.0 and a new phrase runs from tick 16.0 to after 23.0. Notice the

92

17.5 130 185 19.0 13.5 200

Figure 36: Running the SimFinder with and without the grouping preference
rules.

difference in the extension of the graphs. The grouped graph starts rigth on the
phrase, and extends until the end of it. A natural continuation of that search
would be to include more of the notes starting on tick 20.0 since they will give
it a better grouping value than the notes on tick 19.0.

The un-grouped graph on the other hand starts and ends in the middle of
two phrases. It could expand in both directions as long as there are similarities
to be found, since only the size of the graph can make the fitness better (as long
as the match stays perfect).

The four grouping rules we have implemented, and the way we use them on
non-sequential graphs does not guarantee a perfectly well formed grouping of
the piece (that it finds the smallest pieces first), but it certainly has a remarkable

93

impact. The search for well bounded passages in the music is very important in
analysing and understanding the music in terms of its smaller components. So
when trying to segment, it is extremely important not to make phrases which
contains notes belonging to other phrases. The grouping structure rules help
us to do this correct. We will return to this issue in the section about the
similarity segmenter (section 5.4) and in the section describing the results from
the algorithm (section 5.5).

4.4.2 Comparison of vertices

We now turn to the first non-sequential similarity measure. This method tries
to match the vertices of o to those of o5 in order to determine how similar they
are. The algorithm can be sketched like this:

Algorithm NonSeqVertexCompare

1. Compare all vertices of o1 to all vertices of o3, giving a size(o1) X size(oz)
matrix of vertex comparisons.

2. Using the resulting matrix of comparisons, decide which vertices from o4
match up with which vertices from o2, giving an optimal vertex matching.

3. Compute a final similarity measure of o; and o5 based on the individual
vertex comparison values in the best matching, and on how many multiple
matchings the best matching contains.

Comparison of two vertices can be done in different ways according to which
attributes we choose to focus on. It is natural to pick some viewpoints that we
have already used for sequential similarities, e.g. the note pitch of each vertex,
and the note length. But we also need some topological information to compare
the structure of two subgraphs. The viewpoints we use here on each vertex v
are:

e The number of in-edges of type FOLLOW of v
e The number of out-edges of type FOLLOW of v

e The number of in-edges of type SIMULTANEOUS of v (which is the same as
the number of SIMULTANEQUS out-edges, since both ways are represented
in the graph)

The vertex comparison thus both incorporates note relevant information and
graph topological information.

When constructing a new vertex comparison-based non-sequential similarity
measure p in the SimFinder, you add a number of view comparators to u’s list of
comparators, and supply p with a way to combine the view differences resulting
from each view comparator into an overall measure of similarity (just like for
sequential similarity measures). Step 1 of Algorithm NonSeqVertexCompare
above is accomplished in each view comparator using its associated viewpoint,
and steps 2 and 3 are taken care of by u in the algorithm supplied to it. We have
written a standard algorithm that can be used when constructing new vertex-
based non-sequential similarity measures. It tries to minimise the number of

94

multiple matchings while letting each vertex be matched to its favorite partner
in the other subgraph. If several vertices in the other subgraph match up equally
well with a vertex v, then v has several favorites. If many of the vertices have
several favorites, the combinatorial explosion makes the search for a best match
substantially slower. At subgraph sizes of about 30 and higher, the search
becomes painfully slow, but it runs on, and finds some beautiful examples of
matches in the graphs.

Please note that when we do single vertex-vertex comparisons, the delta-
viewpoints that look at changes from vertex to vertex (e.g. PitchInterval) cannot
be implemented; a single vertex does not have a PitchInterval, there need to
be another vertex preceding or following it. For the delta-viewpoints to work,
then, we need at least two times two successive notes. Or put another way,
it is a comparison of edges — since an edge has two notes. This is used in
the edge comparison similarity measures. Not having delta-viewpoints in the
vertex comparison viewpoints significantly reduces the specific-general ordering
of viewpoints that we’re able to reason about in the segmentation algorithm. We
have therefore chosen to only build one vertex-based non-sequential similarity
measure. It is called nonSeq PLIOS. The letter combination 'PLIOS’ signifies
that it uses the five viewpoints cited above: note pitch (P), note length (L),
FOLLOW in-edges (I), FOLLOW out-edges (O), and SIMULTANEQUS in-edges (S). The
view comparators used in nonSeqVertex PLIOS all compare individual vertex
views in the same way, designed to give a number between 0 and 1. The further
the views of vy and ve (say, the pitches of v; and vy) are from each other, the
closer the vertex view difference comes to 1; and if the views are equal, the
view difference becomes 0. Such a vertex view becomes an entry in the view
difference matrix of each view comparator:

1
1+ |viewpoint;(vy) — viewpoint; (vs)]

VertexViewDif ference;(vy,va) =1

The similarity measure nonSeq_PLIOS begins by computing a weighted mean
matrix M of its five view difference matrices. Experiments have shown that it is
necessary to weight the pitch and length matrices stronger than the topological
viewpoints. Pitch and length each are given weight = 3, and the three topolog-
ical viewpoints are given wetght = 1. Then, using this linear combined matrix
M of similarities, a best match for each vertex in o7 is found in os.

Best match Let’s assume that o; and o5 have the same size, n. Now we let
each vertex in oy choose a preferred match in o5. lLe., for each vertex v; € oy,
we let its match be the vertex v; € o2 that has the lowest vertex comparison
value with v;. In other words, we find the smallest (best) value of row 7 of the
weighted similarity matrix; the index of this value we call j. This gives us a
set of matched vertex pairs (v;,v;). Let bestmatch(i) be the number j of the
vertex matched to v;, and let bestvalue(i) be the value of this match. This does
not prevent several vertices from o7 from matching up with the same vertex
vk € og. Let matches(k) be the number of vertices in o; matched to vertex
Vg € 02.

Defining the similarity measure nonSeqVertex PLIOS The final value of
the similarity measure is computed as a mean value of the vertex comparisons

95

(vi,v;) in the best match. Only, we reward perfect vertex matches and pun-
ish multiple matches where v; has chosen a v; that has been chosen by other
vertices, i.e. matches(j) > 1. This is done through the v-function. Perfect
matches we let have their 0.0 value if there are no other vertices from o that
have preferred v; € o2 as a match. In other words, there should not be mul-
tiple matchings with v;. We add a value nonPer fectPenalty to non-perfect
matches that are not multiple; and multiple matches we add an even greater
value multiple Penalty to.

0.0 if val=0.0 and matches=1
v(val, matches) = ¢ wval + nonPer fectPenalty if val > 0.0 and matches=1
val + multiple Penalty if matches > 1

Experiments have shown the settings nonPer fect Penalty = 3 and multiple Penalty =
6 to be reasonable. Now we sum the y-values of all (v;,v;) pairs in the best
match. Remember that j = bestmatch(i), so the sum can be written:

n

Z v(bestvalue(i), matches(bestmatch(i)))

i=1
n is the size of the subgraphs. We want the similarity measure to be a mean
of the n y-values, so we divide by n; also, we scale the value to be in [0;1]
by dividing the sum by the maximal y-value: maz(val + multiplePenalty) =
1 + multiple Penalty, which is equal to 7 with our parameter settings. We can
now write the similarity measure as:

o, v(bestvalue(i), matches(bestmatch(i)))
(multiplePenalty + 1) X n

nonSeqVertex PLIO0S;(0y,02) =

We shall use the same size modifier as described for the sequential seqMD mea-
sures. This means that we have a problem if the y-values sum to 0.0 — there
would be no value for the size modifier to modify, cancelling the bonus that
guides our GA towards larger matches. The GA then stays locked with very
small (n = 2 or n = 3) matches. We solve this problem by adding 1 to both
numerator and denominator in the fraction:

1+ 3" y(bestvalue(i), matches(bestmatch(i)))
1+ (multiplePenalty + 1) x n

nonSeqVertex PLI0Sy(0y,02) =

We have kept the equal size assumption on o; and o5 although it is not really
necessary for the method in nonSeq_PLIO0S. For comparison of subgraphs with
different sizes, we could have chosen to let all vertices in the largest subgraph
choose a preferred match in the other subgraph; this would necessarily assign
more multiple matches, because not all vertices in a larger subgraph can be
matched to a single vertex in the smaller subgraph; and due to the added
multiple matches, the mean ~-value will be worse, making subgraphs of equal
size potentially more similar than subgraphs of unequal size. We have chosen
not to use this for vertex comparison, but for edge comparison, it is necessary
(see section 4.4.3). As it is, we apply the size modifier described in section 4.3.3:

(1 — weight)p

sizeMods(weight) = weight + P—

96

to the mean value, giving the final value:

nonSeqVertex PLIOS(oq,02) = nonSeqVertex PLI0S;(0q,02)X

sizeMods(nonSeqVertex PLI0S;(0y,02))

n is still the size of the subgraphs, and ¢ we set to 40 as for the sequential
similarity measures.

An example of the use of nonSeqVertex PLIOS Let’s look at how the two
subgraphs in figure 35 fare when measured using nonSeqVertex_PLIOS. They
were taken from generation 40 of a SimFinder run with the following parameters:

Population size 50
Generations 40
Crossover 0.0
Mutation 0.3
Initial size 3
Max size N/A
Fresh blood chance 0.2
Similarity measure nonSeqVertex PLIOS
%) 40

The parameter settings have been chosen loosely through experimentation. The
SimFinder outputs:

NonSeqSimStmt of
Size = 6
Overlap=0
nonSeqVertex_PLI0S=0.7504180887641042
Similarities matrix=
[0.611[0.391[0.42]1[0.70]1[0.48][0.47]
[0.46]1[0.61]1[0.57]1[0.44]1[0.70][0.69]
[0.62]1[0.20][0.51]1[0.59][0.11][0.40]
[0.651[0.47]1[0.51[0.591[0.371[0.36]
[0.68]1[0.53]1[0.44][0.57][0.44][0.42]
[0.44]1[0.69]1[0.64]1[0.37]1[0.61][0.59]
Best match=
bestMatch[0]=1([0.39])
bestMatch[1]1=3([0.44])
bestMatch[2]=4([0.11])
bestMatch[3]1=5([0.36])
bestMatch[4]=5([0.42])
bestMatch[5]1=3([0.37])
Matched notes=
(SV of Note=<65,1.0> start=8.0)=(SV of Note=<69,1.0> start=16.0)
(SV of Note=<52,0.5> start=8.5)=(SV of Note=<50,0.5> start=17.0)
(SV of Note=<69,1.0> start=9.0)=(SV of Note=<69,1.0> start=17.0)
(SV of Note=<65,1.0> start=9.0)=(SV of Note=<62,1.0> start=17.0)
(SV of Note=<55,1.0> start=10.0)=(SV of Note=<62,1.0> start=17.0)
(SV of Note=<53,0.5> start=11.0)=(SV of Note=<50,0.5> start=17.0)
Multiple matchings in best=2

The output of the SimFinder for this non-sequential similarity statement tells
us that the value nonSeqVertex PLIOS = 0.75 is the overall value, and a bad
one, reflecting the difference of o; and o2. Below we’re given other information:

97

1. The similarity matrix M that is the mean of the five view difference ma-
trices. Take for example the first entry (0.61) which compares vertex 0 in
a1 (v10) to vertex 0 in oy (vg).

pitch 65 pitch 74
length 1.0 length 0.5
V10 = in-edges 0 and v99 = { in-edges 0
out-edges 2 out-edges 0
simult-edges 0 simult-edges 2

so this entry in the five individual view difference matrices will be:

pitch 1 g =1 15 =09
length 1- 1+\l0g2(0.5)17logg(1.0))\ =1-3=05
in-edges l—mzl—%:OO
out-edges 1- m =1- % = 0.66
simult-edges 1 — m =1- % = 0.66
3x09+3x0.5+0.0+0.66 + 0.66 _ 2.7+1.5+0+0.66 + 0.66 _ 5.53 — 0.61
3+34+3 9 9

For note lengths, we use the more meaningful ’length interval’ instead of
the simple difference between the note lengths, hence the logs function.

2. The best match of each vertex in o1 as well as the value in the similarity
matrix of that match. The pitch and length of the matched notes is also
shown under 'Matched notes’ to make it easier to see the exact match-
ing. It is an important feature of the vertex comparison method that it
actually gives us a complete best matching of the vertices. We use this
information to intelligently mutate the subgraphs: an extension of two
similar subgraphs is more likely to randomly pick another pair of similar
vertices for inclusion if we extend the subgraphs from two vertices that
already match in the subgraphs. We could have implemented the same
trick in the edge comparison, but time has forbidden it.

3. The number of multiple matchings is given. As seen in the “best match”
vector, both v;; and vyis in 07 are matched to vas in o3, giving one mul-
tiple matching, and both vy3 and vy4 are matched to vss, giving another
multiple matching. This totals to two multiple matchings. The number of
multiple matches is the number of vertices from o; that would be without
a match if the vertices of oo were allowed to pick one, e.g. the best, of
its “solicitors” from oy. 'SV’ means simple verter — as opposed to the
compound vertices that we introduce in section 5.1.

Since o1 and oo were so different, lets have a short look at the two sub-
graphs of another similarity statement in the same population as the similarity
statement containing oy and os.

The SimFinder reported:

NonSeqSimStmt of

Size = 6
Overlap=0

98

20.0 24.0 24.5 25.0 25.5

Figure 37: 03 and o4 are a much better match than o7 and o9 in figure 35.

nonSeqVertex_PLI0S=0.28713263693577823
Similarities matrix=

[0.0][0.53]1[0.52] [0.40][0.67]1[0.67]

[0.531[0.0]1[0.25]1[0.60]1[0.471[0.21]

[0.52]1[0.25][0.0]1[0.59]1[0.50][0.46]

[0.40]1[0.60]1[0.591[0.0]1[0.681[0.67]

[0.44][0.68]1[0.67]1[0.37]1[0.48][0.47]

[0.671[0.21]1[0.46]1[0.67]1[0.26]1[0.0]
Best match=

bestMatch[01=0([0.01)

bestMatch[1]1=1([0.01)

bestMatch[2]=2([0.0])

bestMatch[3]1=3([0.0])

bestMatch[4]=3([0.37])

bestMatch[51=5([0.01)
Matched notes=
(SV of Note=<50,0.5> start=24.0)=(SV of Note=<50,0.5> start=0.0)
(SV of Note=<65,1.0> start=24.0)=(SV of Note=<65,1.0> start=0.0)
(SV of Note=<62,1.0> start=24.0)=(SV of Note=<62,1.0> start=0.0)
(SV of Note=<52,0.5> start=24.5)=(SV of Note=<52,0.5> start=0.5)
(SV of Note=<53,0.5> start=25.0)=(SV of Note=<52,0.5> start=0.5)
(SV of Note=<65,1.0> start=25.0)=(SV of Note=<65,1.0> start=1.0)
Multiple matchings in best=1

The overall value close to 0.29 is clearly much better than the 0.75 of o1 and
o2. Only the lower right note (53, 0.5) in o3 has trouble finding a good match
— its best match has value 0.37, whereas all the other notes in o3 have 0.0. It
thus chooses to be matched to the note (52,0.5) starting at 0.5. This produces
one multiple match.

In the appendix (B.9) we show how the best found similarity in a SimFinder
population evolves over 100 generations. The example is taken from a test run
using the NonSeqVertex PLIOS measure, and it shows that the GA is able to
exploit found matches using this measure. The located match begins from the
start of each of the two repetitions of the theme in BWV358 and is extended to
the right. We think the series of pictures give a good impression of the way in
which the SimFinder proceeds in its search. However, the GA does not always
stumble upon a match of the two repetitions of the theme in BWV358, which

99

are rather large and allow for great expansion of the match, as shown in the
series of pictures in B.9. More often, a small (but perfect) similarity of three to
six notes is located in a place where the surroundings are different, so the match
cannot be enlarged. This is somewhat problematic, because the GA seems to
get stuck on these smaller matches, unable to jump to better locations in the
graph. As we discuss in section 6.1, running several SimFinders with a periodic
exchange of genetic material — the subgraphs — could perhaps improve on this.

Self-similarity of a graph through vertex comparison Vertex compar-
ison can be used on its own — outside the SimFinder — to give a picture of
the inner similarities in a piece. Figure 38 is a pictorial version of the weighted
mean similarity matrix of the entire Bach chorale Jesu Meine Freude (BWV358),
comparing all vertices to each other. The vertices are sorted by start time so
that it is possible to see development in the temporal structure; from left to
right, and from top to bottom, the vertices proceed from first to last. Thus a
comparison of the first vertex and the last vertex in the piece may be found in
the upper right corner, or alternatively (the matrix is symmetric) in the lower
left corner. Darker colours mean little similarity, brighter colours mean more
similarity. The whitest pixels have been replaced by red colour so that we can
spot the areas of great similarity more easily.

The diagonal reflects the fact that the entire piece is equal to itself. The
parallel line appearing after it shows that the chorale contains an exact repeti-
tion of the first six measures. In general, lines parallel with the diagonal show
repetitions, and lines perpendicular to the diagonal show reverse occurrences
of the same passage. There are no reverse examples here, but generally, small
reversed passages occur not infrequently. The broad dark lines show where all
four chorale voices end on a whole note; it is the length that makes these notes
differ so much from the rest.

Complexity and evaluation To summarise, the vertex comparison is an ap-
proximation that allows us to compare non-sequential subgraphs on the basis of
both graph topology and the musical attributes of vertices. The main drawback
of this method is, that the computation is so heavy. The vertex comparison itself
runs in O(n?), but where the real problem lies in the current implementation is
in the computation of the best match: if a vertex is equally well matched with
several vertices from the other graph, we have to choose its preferred match
out of these. But the choice may, in conjunction with the choices of the other
vertices, affect the number of multiple matches. We run through all possible
combinations of best matches of all vertices in one subgraph. In the worst case
this is an O(n™) task. But the worst case occurs only if the subgraph is a group
(i.e., a chord) of notes with the exact same pitch and length, otherwise the topo-
logical or pitch and length viewpoints would make the matches differ, so that not
all matches had the same similarity rating. In practice it never occurs, but once
in a while the SimFinder hangs for a number of seconds due to such a compu-
tation. Generally, the more inner similarities (be it simultaneous similarities or
temporally spaced similarities, i.e. repetitions) the two subgraphs have in com-
mon, the more severe the complexity of the vertex comparison. Bearing in mind,
that this is only meant as an approximation to graph matching, we have built in
a skip mechanism in the ’find best combination’-algorithm; if the computation

100

Figure 38: Self similarities of the Bach chorale Jesu Meine Freude BWV358
according to the nonSeqVertex PLIOS similarity measure, shown in a 314x314
matrix. Computation time: approximately one minute. Red was substituted
for similarity values under 0.01 (i.e. for the highest similarity values).

time for a given best combination exceeds some fixed time, say, one minute, the
evaluation is skipped, and the similarity statement in question is assigned 1.0 in
fitness. The combinatorial problem is much worse for the comparison of edges,
where simply skipping complex calculations would ruin our chances of finding
anything at all, and we have had to take other countermeasures.

In the vertex comparison, we are unable to use delta-viewpoints36, since we
compare vertices one against one. The “comparison of edges” method described
in the next section is a solution to this.

Let’s point out once more that the vertex comparison is an approximation.
It is one-sided in that only vertices from one subgraph o are allowed to choose a
preferred match in the other subgraph o3. This does not necessarily mean that

36That is, viewpoints giving the increase or decrease in some attribute, e.g. pitch, from
vertex to vertex.

101

the chosen vertices in o would also have preferred the vertices that chose them.
This is an area where a study of graph matching algorithms may improve very
much on our method. We do however come up with an approximation to the
best matching, which allows us to mutate more intelligently. The best match
information might also be useful for more general reasoning on the relationship
of the given subgraph with its surroundings in the mothergraph. We have not
pursued this further yet.

4.4.3 Comparison of edges

The trouble with the vertex comparison method is that information about
changes from note to note cannot be incorporated, since we look at only one
vertex at a time. The ’comparison of edges’ approach focuses on edges instead,
thereby allowing comparison of the change between the vertices that one edge
connects, with the change between the vertices that another edge connects.

The method used is almost exactly the same as for vertex comparison. For
each of a number of viewpoints, we compute a similarity matrix showing com-
parisons of all edges in subgraph o; with all edges in subgraph o;. These
similarity matrices are combined into a weighted mean matrix; a vector of best
matches is found, and a final score is computed on the basis of the values of
the best matches. For details of the method, see the previous section (4.4.2)
on vertex comparison. It turns out that it is beneficial to have a more strict
evaluation of pitch and length than the view comparator described for vertex
comparison. If the pitches (or lengths) of the notes connected by the two edges
are exactly equal, a 0.0 value is given, otherwise a 1.0 value. The viewpoints in
the list below which have been used in combination with this more strict view
comparator have been labelled ’(strict)’. Otherwise the vertex view comparator
is used and a mean of the two vertex comparisons (compare the from-vertices
of the two edges, and compare the to-vertices of the two edges) is given. The
viewpoints we have defined are:

Acronym | Viewpoint View comparator
AP Absolute pitch (strict)
PI Pitch interval (strict)
PC Pitch contour (strict)

DAP Diatonic absolute pitch (strict)
DI Diatonic interval (strict)
DFI Diatonic forward interval (strict)
AL Absolute length (strict)
LI Length interval
LC Length contour
- In-edges
- Out-edges
- Simultaneous-edges

Like for sequential similarity measures, we have opted to combine only one
pitch related viewpoint and one length related viewpoint in each measure; except
that for these non-sequential edge-based measures, the topological viewpoints
concerning in-edges, out-edges and sim-edges are always included, so we don’t
include their acronyms in the names of the measures. We have defined the
following similarity measures, naming them after the viewpoints above that are

102

included:

nonSeqEdge_APAL
nonSeqEdge _PIAL
nonSeqEdge _PCAL
nonSeqEdge _DAPAL
nonSeqEdge _DIAL
nonSeqEdge _DFIAL

Differences from the vertex comparison When comparing two non-sequential
subgraphs of size n, they often have a different number of edges. The similarity
matrices then are not square. We have chosen to let the vertices of the subgraph
with most edges (say, m + k edges) choose preferred matches in the subgraph
with fewer edges (say, m edges). This way, there will automatically be more
multiple matches, since m + k edges cannot each have a singular match with one
of m other edges. The increase in multiple matches then serves to automatically
punish comparisons of subgraphs of different numbers of edges, which must have
a different topology.

Another significant difference from the vertex comparison is that the number
of edges most often grows much faster than the number of vertices when non-
sequential subgraphs are extended. As an example, consider the evolving (i.e.
growing) subgraphs shown in appendix B.9.

Generation | Vertices Edges
8 3 2
14 6 17 (12 sim., 5 follow)
24 10 48 (24 sim., 20 follow)
80 19 99 (48 sim., 51 follow)

This makes the computation of edge comparisons much heavier, so we have
introduced some countermeasures:

First, we have limited the edges considered to FOLLOW edges. There is really
no need to do this, other than the wish to reduce the computation time. An
obvious improvement to comparing all edges of o; to all edges of o2 would be
to compare SIMULTANEQUS edges of the two subgraphs separately, and FOLLOW
edges separately; this is a good idea since comparing a SIMULTANEOUS edge with
a FOLLOW edge will give a rating of 1.0 (i.e. 'unsimilar’) anyway. We have not
implemented this, only the mixed comparison of all edges has been tried out.
It ran very slowly but otherwise seemed to work well. Ignoring SIMULTANEQUS
edges in the present running version of SimFinder has one major drawback: a
subgraph that is a group (i.e. a chord) is only connected by SIMULTANEOUS
edges and therefore cannot be compared to any other subgraphs; it has no
FOLLOW edges to compare.

Secondly, using the strict view comparator, where either 0.0 or 1.0 values
are given, results in a lot of edges having solely 1.0 values for comparisons
with all edges from the other subgraph. The algorithm that finds the best
combination of matches now sees a combinatorial explosion in the number of
match combinations it has to run through to find the best one. The solution
has been to assign not exactly 1.0 but 1.0 minus some random microscopic
amount. The net effect of this is that if an edge has only very awful matches to
choose from, a random one is picked. This should not be too much of a problem

103

— choosing a match at random doesn’t matter if all possible matches to the
edge are equally bad anyway? But it does nevertheless make the nonSeqEdge
measures non-deterministic. The bad subgraph matchings are more variable
than the good ones.

The edge comparison in action The following screen shots show the best
match located in a Bach 2-part invention (Inventio 1, BWV 772) after 30 gen-
erations.

SimFinder Settings

Population size 50
Generations 30
Crossover 0.0
Mutation 0.5
Initial size 3
Fresh blood chance 04
Similarity measure nonSeqEdge DIAL
%) 40
g1 02
455 4575 46.0 43.0 43.25 435

Figure 39: Subgraphs o; and o3 in a similarity found using edge comparison
with the diatonic interval viewpoint (DI).

There are only three edges in each of these small fragments, and they match
perfectly, as the 0.0 values in the best match vector show. The similarity mea-
sure used diatonic interval as its tonal viewpoint. This means that the two
fragments are diatonic transpositions of each other. Notice that the interval
between pitches 60 and 64 in o7 is 4, while the interval between pitches 62 and
65 in ¢ is 3. But the diatonic interval in both is 2. Thus a simple pitch inter-
val (PI) viewpoint would not have found this similarity. The calculation of the
similarity measure proceeds in the same way as described for vertex comparison.

NonSeqSimStmt of

Size = 4

Overlap=0
nonSeqEdgeDIAL_nocompounds=0.042427445704401316
Similarities matrix=

[0.0]1[0.80][0.72]

[0.80][0.0][0.86]

[0.72][0.86][0.0]
Best match=

bestMatch[0]1=0([0.01)

104

bestMatch[1]=1([0.0])
bestMatch[2]=2([0.0])
Multiple matchings in best=0

Summary and evaluation Generally, the search using vertex and edge com-
parison is heavier computationally, but also more difficult to control in the GA.
The evaluation scheme seems to work reasonably well (modulo the O(n™) com-
plexity of the algorithm that produces the best combination of best matches),
and the found matches really are similar. But it seems we cannot expect to
always find what there is to be found. It is difficult to tune the SimFinder so as
to be able to both explore and exploit. Often, it gets stuck in a moderately bad
match, e.g. when the match cannot be improved by extending or changing it,
and it seems that the algorithm cannot escape this local optimum. If mutation
is raised to alleviate this, we often find a best match that could profitably be
extended, but in fact isn’t extended, so we guess that the mutation has been
raised too much. It is a more difficult balancing act to find suitable mutation
settings for the non-sequential vertex and edge comparisons.

Due to the uncertainty thus involved in the present implementation, we
have chosen to focus more on the last non-sequential method, we have devised:
using an intersection ratio of bags of sequential subgraphs of the non-sequential
subgraphs. Particularly in the segmentation algorithm, which repeatedly uses
the SimFinder to find building blocks for the segmentation, uncertainties of
successive SimFinder runs multiply and add up to a more unstable segmentation.
We have also included grouping viewpoints in this third and last non-sequential
similarity measure, making it even more suitable for segmentation purposes.

4.4.4 Comparison of bags of subgraphs

Instead of explicitly matching single vertices and edges to each other and in the
same relations, we have tried another simpler approach by examining if a vertex
or edge in one subgraph o relate to any vertex or edge in the other subgraph o4
and by counting the differences give a value for how similar o; and o9 are. This
can be done by comparing vertices and edges (SIMULTANEQUS and FOLLOW), but
also by comparing the sets of all sequential subgraphs that can be found in each
of the two graphs (all melodies) to be compared. Actually these sets are bags
of sequential subgraphs, since a sequential subgraph may occur more than once
in a graph. If the bags of sequential subgraphs are alike for all length of the
subgraphs, the graphs truly are alike. The graphs in Figures 40 will have the

Figure 40: The graphs have equal sets of FOLLOW edges.
same bags of sequential subgraphs of length 2 (their edges), but their sequential

subgraphs of length 3 will differ. Therefore we would like to evaluate the bags
of all sequential subgraphs of length m > 2 as well as the FOLLOW edges.

105

BagIR Let bag; be the bag of all desired elements of a subgraph ¢;. Then we
define the similarity of the content of two bags in terms of this function:

1
2

|bag; Nbags| |bagy N bags|
|bag | |baga|

BagIR(bag:,bags) =1 — ~(

The co-domain of BagIR is [0,1], where 0 means complete equality of the bags
and 1 means complete inequality, i.e. the intersection of the two bags is empty.
BagIR(bag1,bags) is thus a measure of to what extent all elements of the two
bags (no matter of what kind the elements are) are alike.

Applying BagIR In our implementation of BagIR, we have used a string
encoding of the elements of the bags, and a Trie datastructure is used to compare
the content of the bags.

The idea is to fill the bags with encodings of elements (vertices, edges or
sequential subgraphs) of the non-sequential subgraphs and to do this according
to a desired sequential view of the elements.

Given two bags (one for each subgraph) of whichever content we would like
to compare, each element of the first bag is encoded as a string (according to
what we are comparing) and added to the trie. The trie counts the occurrences
of doublets. The content of the other bag is then also converted to the same
string format. Each string is tested for membership in the trie. If it is a member,
the occurrence of the string is removed from the trie. We count the number of
strings found in the trie. In the end we know how many strings the bags have
in common, and we can calculate the intersection ratio.

As mentioned we have experimented with four uses of the BagIR algorithm:

e BaglRy¢rte; compares encodings of all vertices in the two subgraphs.
This can only be done with an absolute view of the vertices, since we try
to match the vertices with each other, not regarding their relations.

e BaglRg;m, compares encodings of all SIMULTANEOUS edges in the two sub-
graphs according to the wanted view (absolute or relative) of the edge.
Also some information about the vertices the edge is connecting can be
encoded.

e Bagl R0 for FOLLOW edges compares encodings of all FOLLOW edges in
the two subgraphs according to the wanted view (absolute or relative) of
the edge. Information about the vertices the edge is connecting can be
encoded.

e BaglRggsy) for sequential subgraphs compares encodings of views (both
absolute and relative) of all possible sequential subgraphs of size n in the
two subgraphs. The former case is a special case of this one, where n = 2.

The BaglIR idea can thus be used for both the absolute views (only nodes — not
their relation) and the relative views (delta views) on nodes and edges. Since the
BaglIR compares sequential subgraphs, vertices and edges, we use some of the
same views as in the sequential case: Diatonic Absolute Pitch (DAP), Diatonic
Interval (DI), Diatonic Forward Interval (DFI), and also the midi pitch based
Pitch Interval (PI).

106

We will now describe the encodings: The absolute viewpoint we have used
for encoding vertices is the DAP, so that each note is encoded as string telling
the name, octave, accidentals, and duration. The relative viewpoints used are
PI, DI and DFI. An edge is encoded as the duration of the first vertex, followed
by the view of the edge (the view of the relation between the vertices) followed
by the duration of the second vertex. To be more explicit, vertices and edges
are encoded like this:

name,_octave, _accidental s, _duration,,
enc(vi)pap-enc(v2)pap

encode | Vertex | enc(v)pap
absolute | Edge | enc(vi,v2)pap

duration,
enc(v1)piew-view(vy, v2)-enc(ve)view

Ll

encode | Vertex | enc(v)vpe{pr1,pI,DFI}
relative Edge | enc(vi,v2)viewe{PI,DI,DFI}

When encoding a sequential graph we simply use the latter encoding scheme
too:

enc(o = (U17v27"'7vn))viewE{DAP,PI,DI,DFI} — enC(’Ula’UQ)view;
enC(UZa US)view;
e

enc(Vn—1,Vn)view;

For example, the first graph in figure 40 would under the view PI for Bagl Rsg(3)
be encoded as one string: 1.0.5.1.0;1.0_-5_1.0;. This string is then put in
the first bag (and will be the only element) for the Bagl Rgg(3) algorithm.

We have 5 view comparators: 4 using the BagIR algorithm on different
sequential viewpoints and one non-sequential grouping structure viewpoint. The
first rely on all four uses of the intersection ratio, whereas the next three only
use the relative sequential viewpoints.

e bagI RTrieDAP which calculates BagI Ry ertew,pAP(01,02)+BagIRsim,.pap(o1,02)+
BagIRpoiiow,papr(01,02) + BagIRss(n)’DAp(Ul, o2) for a suitable n.

e bagI RTriePI which calculates Bagl Rs;m, pi(o1,02)+BagI Rpoiiow,p1(o1,02)+
BaglRgsn),p1(01,02) for a suitable n.

e bagI RTrieDI which calculates BagI Rs;m,pi1(01,02)+BaglRroliow,p1(01,02)+
BaglRgsny,p1(01,02) for a suitable n.

e bagI RTrieDFI which calculates BagIRgim pri(01,02)+BagI Rroiiow, DF1(01,02)+
BaglRgs(ny,pri(01,02) for a suitable n.

e nonSeqGroupingStructure

The length n of the sequential subgraphs used in BaglRss(n),prr is calculated
according to the subgraphs in question. We calculate the length of the longest
possible sequential subgraph in each of the graphs. n should be shorter than
both of them (to get more than one string in the bag from one of the graphs),
so we take half the length of the shortest of the longest:
n = min(maxLengthSS(c1), maxLengthSS(02))2/2.

The viewcomparators are combined into four NonSeqSimMeasures which com-
bine the BagIR based view comparators with the grouping structure:

e nonSeqBagIR_DAP_Grp

107

e nonSegBagIR_PI_Grp
e nonSegBagIR_DI_Grp
e nonSeqBagIR_DFI_Grp

The NonSegSimMeasures are calculated in ways similar to each other, so we
present the standard one here:

Size(o1)

nonSeqBagIRTrie VIEW = bagl RTrieyiew (01, 02)+grouping(oy,o9)+1— 100.0

Remember that the nonSeqBaglIRTrie calculates and adds the intersection ratios
for vertices (only under the DAP viewpoint), SIMULTANEQUS edges, FOLLOW edges
and sequential subgraphs of size n. All this topological information contributes
to the overall fitness of the similarity statement. There is a punishment if
BagIRgiy, and Bagl Rpojiow returns 1.0 (no matches). This is to help the GA
to forget about this similarity statement right away.

It is not always possible to calculate the respective ratings. For example
if a graph does not have FOLLOW edges we cannot calculate BaglRpojow O
BagIRgss(n)- Then the view comparators get a bit degenerate. If this happens,
the GA can have a hard time to extend the subgraphs to contain FOLLOW edges,
since whenever it tries to expand vertices along FOLLOW edges, it gets a worse
score if they do not match right away, and it is happier with the graph with
only SIMULTANEOUS edges. We do of course have to allow subgraphs existing
solely of simultaneous edges in order to match for example chords.

The BagIR method counts ezact matches in the encoded elements of the
bags. Two similar subgraphs, for example differing only on one duration of
one note will get different encodings and count as a mismatch, so we cannot
judge this as a ‘almost perfect’ match as we are able to do when searching for
sequential subgraphs in general. The problem is that we don’t know which
strings to compare to each other. One thing we can do is to encode the graphs
less explicitly — for example by excluding the rhythmic material. This would
make the search totally pitch dependent however.

The BaglIR similarity measures have proven to work very well in searching
for similarities in a non-sequential graph. The calculation time however seems
to explode when the subgraphs grow too large. We present here two examples of
using the SimFinder with this measure. Furthermore we give a larger example
in the evaluation of our system in chapter 5.5.3. The first is a run for a couple
of minutes. It found a perfect match of two subgraphs, and a perfectly grouped
one as well — see figure 41.

Population size 80
Generations 200
Crossover 0.0
Mutation 0.5
Initial size 5
Fresh blood chance 04

Similarity measure nonSeqBagIR DI Grp
¥ 0.5

Here is the evaluation from the last generation:

108

Figure 41: Similarity found with the nonSeqBagIR _DI_Grp.

NonSeqSimStmt of
Size = 13
Overlap=0
nonSeqBagIRTrie_DiatonicInt_Grp = 1.3425543478260868
Size Penalty=0.87
Sequence rating, BagLength=3=0.0
{ Match size=48
Bag 1 size=48
Bag 2 size=48 }
Sequence rating, BagLength=2=0.0
Sequence rating for Vertices=-1.0
Sequence rating for SimEdges=0.0
nonSeqGroupingStructure = 0.47255434782608696

The size of the match is 13. The value of the measure is = 1.3425. The
BagIRgs(n) was calculated for n = 3. The graphs have 48 of 48 matching
sequential subgraphs of size 3, giving a score of 0.0. The SIMULTANEQUS edges
and FOLLOW edges are also equal. The grouping value is 0.47255. The size value
is 0.87. Both of the subgraphs have their last notes on a fermata. So the over-
all score 1.3425 is the sum of BaglRss(m) + BaglRpoliow + BaglRyertex +
sizeValue + groupingValue = 04+0+04-0.87+0.47255 = 1.3425.

By changing one note in each graph (see figure 42), the result is remarkable.
The value of the measure is now = 2.4003. The BaglRgs(,) was calculated
for n = 3. The bags of sequential subgraphs of the two subgraphs now have
different sizes: The size of the first bag is 51 (sequential subgraphs of size 3)
and the size of other bag is 60. The match size is 40, so the intersection ratio
is 0.2745. BaglRpoiiow = 0.1927, Bagl Rs;mm = 0.2307. The grouping value is
now 0.8322.

The last example is less detailed, but a nice example of what similarities
there are to find in a small chorale. Figure 43 shows a cadence in two different
keys — the first cadencing on F major and the last on D major. The measure
was nonSeqBagIR PI (no grouping, and no Bagl Ry crte; Was calculated).

4.5 Summary

We have now presented the graph representation and we hope that the reader
is convinced of its versatility and that it really does let us out of the sequen-

109

Figure 42: By changing one note in each subgraph of figure 41, the fitness drops
dramatically.

Figure 43: Two similar cadences from the chorale BWV 358 found with the
nonSeqBagIR_PI similarity measure. The cadences are direct transpositions of
each other.

tial/parallel dichotomy. The graph is rather a complicated structure, however3”,

and searching for exactly matching subgraphs is NP-complete. The chosen ap-
proximation is a GA imbued with a multiple viewpoint system and with several
other requirements on chosen subgraph matches built into the fitness function.
Sequential subgraphs are much easier to compare, so we implement the search
for sequential similarities as one type of search and the search for non-sequential
similarities as another.

Viewpoints We have defined a number of absolute and relative viewpoints
operating on the note attributes of vertices. Most of our viewpoints are also
included in the set of viewpoints proposed by Conklin and Witten [CW95], and
all of their viewpoints are possible to implement, if we operate on MuseData
files. But our diatonic viewpoints have no equivalent in Conklin and Witten’s

37 As Curtis Roads predicted, see the citation on p.17.

110

article. As we argued in section 3.1.1, there are important variations, that would
not be found without the diatonic viewpoints, so this is an improvement.

Viewpoints concerning pitch and length respectively have a specific-to-general
ordering; a perfect subgraph match under a very specific pitch viewpoint will
also be a perfect match under a more general pitch viewpoint. A viewpoint is a
transformation under which we hope to find subgraphs to be equal, and the type
of the viewpoint therefore tells us which kind of relation two similar subgraphs
are in. This we shall use more in the next section on graph grammars and
the segmentation algorithm. The grouping viewpoint is not a real viewpoint in
this respect but more of a heuristic introduced to guide the search of the GA
into comparing more musically logically connected subgraphs. It is one of five
fundamental and conflicting goals for the GA, which we shall come back to in
a moment.

The SimFinder is an experimental system. The design is based on the mod-
ularity of viewpoints and similarity measures, which allows us to easily invent
and replace viewpoints and measures.

We have experimented with two sequential view comparators, one percentual
(mean difference) and one which isn’t (difference count). This gives rise to two
families of sequential similarity measures. We have found both the seqDC and
the seqMD families to work. The seqMD measures are more complex, because
we have striven to constrain their value to [0;1] in a smooth way. In practice the
seqDC measures are more easy to interpret because they are so much simpler.

Sequential and non-sequential search We have tuned the GA a little for
sequential search. Crossover is a bad operation, so it is very important to get
the mutation operations correctly tuned. The SimFinder usually settles on an
area and exploits it. Exploration of other areas does happen, but most often
the algorithm has a favourite spot in the graph where most of the vertex usage
is concentrated.

A convenient exploration/exploitation balance seems harder to strike for
non-sequential searches. In particular, the mutation parameters are difficult to
tune into a good balance. The most stable of the three non-sequential compari-
son methods seems to be the one based on the intersection of bags of encodings of
information of smaller parts of the two subgraphs, so we have also incorporated
the grouping viewpoint in a non-sequential version into this (bag intersection
ratio) measure. All the proposed non-sequential comparison may be used on
subgraphs of different sizes, preferring matches where the subgraphs have the
exact same size®®. A nice feature of the vertex comparison however is that
it actually gives us a matching of all vertices in the two compared subgraphs.
This information can be used intelligently. In general, the non-sequential simi-
larity measures are much more computationally complex, and in some cases, we
need to restrict the computation time spent on evaluation in order to keep the
SimFinder running.

Computability Let’s recapitulate on the points of critique of the GTTM (see
the summaries in sections 2.5 and 3.3). We have described in more detail how to
use a graph for the representation and analysis of non-monophonic music, and

38In the implementation, however, we still require the SimFinder to locate subgraphs of the
same size, i.e. having the same number of vertices.

111

we have described how we use a multiple viewpoint system to detect a subset
of musical parallelisms, namely repetition and simple transformations. And
through the implementation of the SimFinder, the third goal of computability is
reached.

We have chosen to construct numerical evaluations of similarity, embodied
in our similarity measures. Such constructs are bound to include a lot of fid-
dling with equations and numbers to produce any sensible rating. But in the
SimFinder, we have avoided thresholding, as Lerdahl and Jackendoff criticise
(see p.22). The search of the SimFinder is based only on the pairwise relative
fitnesses of randomly chosen similarity statements in the selection process. Thus
it does not guarantee the best found match to be good, only that it is better
than the other matches considered. In the next section on the segmentation
algorithm, we will introduce thresholds as a means to control the SimFinder
from the SimSegmenter.

The SimFinder is a search that balances the five conflicting goals that we
mentioned in section 4.3:

e maximise the musical similarity in terms of equality under viewpoint trans-
formations,

e maximise the size of subgraph matches,
e prohibit overlap,

e maximise subgraph agreement with grouping and phrasing boundaries in
the surrounding graph, and

e maximise the ‘importance’ of the located subgraphs, in terms of the num-
ber of occurrences present in the entire graph.

We hope that the test runs in the next section will give a better impression of
how good a balance or tradeoff we have struck between these five goals.

112

5 Graph grammars

A good similarity measure gives us a starting point for building a grammar for
a given piece of music. If monophonic music represented in strings of notes can
be described using a grammar, non-monophonic music represented in a graph
could possibly be described using a graph grammar. This section describes our
efforts to use the developed similarity measures to segment a piece and build a
graph grammar for it.

The passages identified as similar by the SimFinder are used as building
blocks in the overall structure induced from the music. Segmentation is a recur-
sive process of finding interesting recurrent patterns, identifying all instances
of these patterns, and substituting the instances in the graph with compound
vertices that represent the different versions of each pattern.

The idea here in fact is close to Dannenberg’s vision that we cited in sec-
tion 4.3.1. The method of locating patterns and substituting all occurrences of
them with compound vertices in the graph is akin to the idea that each motif
be represented globally only once, while each occurrence of the motif is a local
view on it. Dannenberg points out some naturally arising problems concern-
ing how shallow the local view should be. “If a note in a view is edited, and
then the original note in the motif is deleted, should the view’s note be deleted
as well? Can the user control such decisions? Can views be nested?”[Dan93,
p.-26] The answers to these questions depend on implementation. Let’s first
look more closely at the mechanisms at play, and we’ll return to the answers in
section 5.4.3.

5.1 Extensions of the MusicGraph

Before we can explore the segmentation algorithm further, we need to extend the
definition of a MusicGraph, as well as many ideas introduced in the SimFinder,
to accommodate the new so-called Compound Music Vertices.

Definition 5.1 A simple vertex is a vertex that contains information on a sin-
gle note. A compound vertex C is a vertex that contains a subgraph oc instead
of note information. Substitution of a subgraph o of the mothergraph G with a
compound vertex C such that oc = o is called a compound substitution. If a
graph contains no compound vertices, it is a simple graph; if it does contain at
least one compound vertex, it is a compound graph.

A first requirement for compound substitution is that the operation be re-
versible, so that we may accurately restore the original simple graph from a
compound graph. We also want the FOLLOW and SIMULTANEQUS relations rep-
resented by edges in the graph to hold for the compound graph resulting from
the compound substitution.

Consider the example graph in figure 44°°. Imagine that the vertices c-e-f
(the letters refer to vertex names — not pitch names) have been identified as

439

39Please note that the example graph given in figure 44 is a somewhat artificial one, since
most often, parts are monophonic. In that case, figure 44 would represent at least a two-part
passage (since there are several occurrences of two simultaneous notes). In that case, the notes
e and h each would also have a simultaneous rest of length 1.0 and 4.0 respectively, because
rests are explicitly given in traditional music notation. This would solve some of the problems
discussed below, but on the other hand, figure 44 might still occur, e.g. in a piano part; each
part corresponds to a hand, which can play several simultaneous notes. Or figure 44 could

113

10
a

LS P
0/

Figure 44: An artificial graph example. Vertices c-e-f will be substituted by a
compound vertex.

1.0 20 3.0 4.0 5.0

\ h

Figure 45: Leaving all existing edges in place, only going to and from C in-
stead of to and from og. Both the FOLLOW and the SIMULTANEOUS relations are
wrecked.

a pattern to be substituted by a compound vertex C'. The vertex substitution
yields the graph in figure 45. Here all edges going between a vertex v, outside
C and a vertex vy, in o¢ have been replaced by edges going between v, and
C. The problem with this edge substitution is that it wrecks the FOLLOW and
the SIMULTANEQUS relations. According to figure 45, d is simultaneous with C,
which in turn is simultaneous with g. Thus, by transitivity of the SIMULTANEQUS
relation, d should be simultaneous with g, which it clearly isn’t. Also, there is
something wrong with the temporal relations when e.g. C follows immediately
upon a, while C also follows immediately upon d, that follows immediately on
a. It seems that d would need to have a length of 0.0 for this to be possible,
but it has length 1.0. d and C' having both SIMULTANEQUS and FOLLOW edges
between them also requires that d have length 0.0 to be possible, so it seems
that this strategy cannot be used.

Another strategy for edge substitution could be to remove all edges to and
from vertices in o¢ and regard C as any simple vertex, i.e. having a start time
and a length. This situation is shown in figure 46. C begins at the same time as
d and thus has SIMULTANEQUS edges to and from d. C follows immediately on
a and on b, and h follows immediately on C, giving FOLLOW edges (a,C), (b, C),
and (C,h). A problem arises here with d which no longer has any immediately
following vertices to connect to at its ending time 3.0. Surely, g follows on d but
not immediately. Therefore it would be wrong to add a FOLLOW edge between

be the subgraph o¢ contained in a compound vertex C, in which case there might have been
other notes or rests simultaneous with e and h and formerly connected to them but that are
now outside C'.

114

1.0 20 3.0 4.0 5.0

C
\ h
b d 9 ool

Figure 46: Treating the compound C' as a simple vertex with start time 2.0 and
length 3.0.

d and g. Another solution could be to add a rest vertex i with the missing
length 1.0 between d and g. This solution, we feel, is too complex and difficult
to work with. We would have to keep track of which vertices were inserted (and
which vertices were original) in order to do the reverse compound substitution.
Also, separating C completely from g and inserting i is a change of the graph
structure that could possibly influence what similarities can be found in the
piece. If there exists a sequence of pitches and pauses [62,+,53] with lengths 1.0
somewhere else in the piece, it will now be matched perfectly with the sequence
[d, i, g] although the note e is still sounding inside C during 4. It is unclear
what such changes would amount to when running the recursive SimSegment
algorithm and substituting many different patterns with compound vertices.
Instead we propose the following solution:

1. In a compound substitution, keep all edges to and from o¢ as edges to
and from C (just like in figure 45).

2. Distinguish between the endpoints of an edge (simple or compound vertices
— whatever things that edge connects) and the anchors of an edge (simple
vertices, be they still present in the graph or abstracted away behind one
or more layers of compounds). This is explained further below.

3. Distinguish between strong and weak FOLLOW and SIMULTANEQUS relations.
Edges representing strong relations uphold the relations we have been
speaking of as FOLLOW or SIMULTANEOUS until now. Edges representing
weak relations may e.g. break the transitivity of the SIMULTANEQUS rela-
tion, but they state that there once existed a strong relation between the
anchors of the edge.

Definition 5.2 Lete;; be an edge. If an endpoint ¢ or j is a compound vertex C,
then the anchor of e;; in C is the simple vertex v, inside oc, that e;; connected
to before oc was substituted by C. Locating the anchor of an edge inside a
compound vertex is called anchor resolution. If an endpoint i or j is a simple
vertex, then that vertex itself is the anchor of e;;.

Anchor resolution can be accomplished by sorting vertices in o¢ according
to some total ordering on vertices. The index in the sorted list of the anchor v,
is then saved in e;j, such that each edge “knows” what it is anchored to inside a
compound. Resolving the anchor of e;; now amounts to looking up the anchor’s

115

[0] to[1]
~{ [4to[0]

(5]

—»”/_ﬂ[vol

Figure 47: An edge e;c, connected to a compound vertex Cy but whose anchor
vertex v, is hidden inside yet another compound C3. Therefore both the index
of Cs inside Cy (which is [2]) and the index of v, inside Cy (which is [1]) are
needed to resolve v, from e;c,. Indices of vertices inside the compounds are
shown in square brackets, and likewise, lists of indices for edge endpoints are
shown in square brackets. For simplicity, the lists of indices on edges are only
shown to and from (i, although all edges having a compound as an endpoint
should have indices pointing the way to their anchor vertex.

index inside o¢’s list of vertices. Since a directed edge may be connected to
compounds both at the originating vertex and at the destination vertex, an
edge should have both an origin anchor and a destination anchor. In the basic
case where the endpoint is a simple vertex, the anchor can be considered as the
simple vertex itself. Then that endpoint will have anchor index =[0].

What if the vertex C> that e;; connects to inside o¢, is itself a compound
vertex? Then clearly C5 is not the anchor of e;; (since an anchor must be a
simple vertex), but some other vertex inside ¢, must be the anchor. We need
another number — the index of the anchor inside o¢, — to find the anchor. Since
compound vertices can contain nested compounds in any number of layers, we
may need an entire list of indices to peel through the onion layers of compounds
to get to the right anchor vertex of an edge. This situation is illustrated in
figure 47, where the index list [2,1] allows us to first resolve e;¢,’s anchor to Cs
(index [2] inside C1) and then finally to v, (index [1] inside C5).

As mentioned, leaving all edges in place as in figure 45 wrecks the FOLLOW and
SIMULTANEQUS relations. Our solution to this is to distinguish between strong
and weak relations. Strong FOLLOW and SIMULTANEQUS relations are as defined in
definitions 4.1 and 4.3. When substituting subgraph ¢ with compound vertex
C, we replace all edges connecting o and the surrounding graph with edges
connecting C' and the surrounding graph. Looking once more at figure 45, the
FOLLOW edges eqc, epc, and ey, still hold, since a and b end precisely at the time
when C starts. But eqc and ecgy no longer hold. These two edges become edges
of type WEAKFOLLOW. This means that there once was a FOLLOW relation (the
strong relation) between the two anchors of each of these edges. This expresses
that in some weak sense, C' still follows upon d (since it keeps sounding after d

116

1.0 20 3.0 4.0 5.0

&) c
K = \
d

Figure 48: All edges present in figure 44 going to and from o¢ have been
replaced with (strong) FOLLOW and SIMULTANEQUS edges to and from C where the
relations still hold, and WEAKFOLLOW and WEAKSIMULTANEQUS edges elsewhere.
The weak edges have dashed lines.

has ended), and likewise g weakly follows upon C.

Similarly, the SIMULTANEOUS edges between C' and d still hold, because C'
and d have the same start time. On the other hand, the SIMULTANEQUS edges
between C' and g should be replaced by WEAKSIMULTANEQUS edges, expressing
that once, before any compound substitutions were made, there existed a strong
SIMULTANEQUS relation between the anchors of these edges. C' and g are simul-
taneous in a weak sense, since some inner part of C' begins simultaneously with
g. The SIMULTANEOUS relation remains transitive, but the WEAKSIMULTANEOUS
relation is not transitive.

Weak relations will be drawn with dashed lines in the graphical representa-
tion, as shown in figure 48. Please note that the GUI part of the SimFinder sys-
tem is not completely finished; sometimes, WEAKSIMULTANEOUS edges are shown
as solid lines, because drawing several dashed lines on top of each other creates a
solid line. It should be clear from the placement of the edge relative to the com-
pound vertex which kind of edge it is: only SIMULTANEQUS edges connected to
the first beat of the compound should be strong. Also, sometimes WEAKFOLLOW
edges connected to the last beat of a compound are ending a little to the right
of the compound. We apologise for these mistakes and hope that it does not
hinder the understanding of the graphs substantially.

We end this section by defining a few properties of compound vertices.

Definition 5.3 Let C be a compound vertex containing subgraph o = (V,, E,).
Then

startTime(C) = minyey, (startTime(v)), and

endIime(C) = maxycy, (endl'ime(v)), and

length(C) = endTime(C) — startTime(C)

Nesting of compounds introduces nested size and depth of vertices:

size(C) = size(o) = |V,

nestedSize(C) = ZLZ"J nestedSize(v;), where

nestedSize(v) =1 for simple vertices.

nestingDepth(v) + 1 if v is a compound vertex }

nestingDepth(C) = maxuey, { 0 if v is a simple vertex

In other words, the start time of a compound is the earliest start time of all its
simple vertices (however deeply nested they may be inside its inner subgraph),

117

B <> B A
T i
=

C

Figure 49: A: Comparing two simple vertices. B: Comparing a simple vertex
with a compound vertex and its subgraph. C: Comparing two compound vertices
and their subgraphs.

and the end time of the compound is the latest end time of all its contained
simple vertices. The nested size of a compound vertex is the number of contained
simple vertices, and the nesting depth is the length of the largest string of
nestings recursively containing each other in its subgraph.

In summary, replacing edges to and from o¢ with edges to and from C' under
compound substitution of o with C' introduces WEAKFOLLOW and WEAKSIMULTANEQUS
relations. Strong FOLLOW and SIMULTANEOUS relations are as defined in sec-
tion 4.2.1. The WEAKSIMULTANEQUS relation is not transitive, but the strong one
is. Edges are modified with a list of anchor indices for each endpoint so as to
allow anchor resolution.

5.2 Extensions of the SimFinder

Having introduced compound vertices and weak edges in the graph, we still
need to figure out how these should be interpreted in the similarity measures,
view comparators and viewpoints of the SimFinder. Up until now we have only
compared simple vertices and done so in terms of their note information. We
now need a way to compare arbitrary simple or compound vertices with each
other. A simple vertex only contains information on the note it represents,
while a compound vertex does not in itself have any note information. Instead
it contains a subgraph. The simplest possible subgraph contains only a simple
vertex. On the other hand, a (non-sequential) subgraph may be as complex
a structure as one can find time to devise, containing hundreds of simple and
compound vertices and thousands of strong and weak edges. We thus have three
basic comparisons to make (see figure 49):

1. Compare two simple vertices
2. Compare a simple vertex with a compound vertex

3. Compare two compound vertices

The set of sequential subgraphs is contained in the set of non-sequential sub-
graphs and therefore could be treated under the non-sequential case. But the
SimFinder system is built up around these two different kinds of search, which

118

/

Figure 50: Allowing WEAKFOLLOW edges in sequential subgraphs would allow
e.g. the coloured subgraph [a,b, C, ¢, f], although C is sounding simultaneously
with b and e. If only FOLLOW edges are allowed, the only subgraphs possible are
[a,b,d, e, f] and [a,C, f]

@
\

we shall use separately, and combined, in section 5.4.1. Therefore, we have
chosen to extend each search type separately.

5.3 Sequential compound subgraphs

Let’s consider first the sequential case. The most important fact about a se-
quential subgraph is that all vertices in it are connected by FOLLOW edges in
a string-like fashion — a sequence. Should we allow WEAKFOLLOW edges in a
sequential subgraph? Including a WEAKFOLLOW edge in a sequential subgraph
would mean that there is a compound vertex in the subgraph (weak edges are
only created when a subgraph is substituted by a compound and are thus al-
ways connected to at least one compound vertex) and that, if the WEAKFOLLOW
edge goes into the compound, the start time of the compound is less than the
end time of the preceding vertex in the sequence; or, if the edge goes out of
the compound, the end time of the compound is greater than the begin time of
the following vertex in the sequence. In other words, part of the compound will
be sounding simultaneously with other notes in the sequential subgraph (see
figure 50). If such a compound subgraph were unfolded to a simple graph, it
would be two sequences of notes that cross in one shared note.

This conflicts with our idea of sequential subgraphs as strings of notes that
follow immediately upon each other. The search would incorporate strings of
notes possibly with attached branches of notes, and these in turn could have
other branches attached etc. We would be matching trees of notes, or even
non-sequential subgraphs with cycles, if the edges are regarded as non-directed.
Perhaps this would make sense for some purpose, but it is difficult to see the
relevance for our search for melodic similarities in and between parts. We have
chosen to forbid WEAKFOLLOW edges in sequential subgraphs. Thus when a com-
pound vertex appears inside a sequential subgraph, it is connected to preceding
and following notes only by FOLLOW edges. Subgraph [a,C, f] of figure 50 is an
example hereof.

An entire part (i.e. one long string of notes) can then be reduced by sub-
stituting substrings of the part by compounds. Compounds may contain other
compounds, thus exhibiting a nested structure. This is equivalent to describing
the string by way of a grammar, where each compound vertex corresponds to a
non-terminal that produces the substring described in its subgraph. Building a

119

grammar from a music graph using the SimFinder is discussed in section 5.4.4,
but we shall use the notion of non-terminal in the comparison of two compound
vertices. Compound substitution is done on groups of fragments of the graph
that are chosen and grouped for their similarity. In this respect each group is
like a family of production rules for a single non-terminal that may produce dif-
ferent, although similar, results. Compounds from the same substitution group
therefore share the same non-terminal and in this respect can be thought of as
roughly equal, without comparing their inner subgraphs again.

When comparing two sequential subgraphs, two simple vertices may still be
compared as before. How a compound vertex should be compared with either a
simple or another compound vertex depends on the viewpoint in question. We
have made the following choices:

e Absolute pitch: a simple vertex and the entirety of a compound vertex
cannot meaningfully be compared according to their absolute pitches. A
compound vertex does not have an absolute pitch. We might have chosen
the pitch of the first vertex in its subgraph to represent the compound,
but of course the first pitch is not always representative for a subgraph
as a unit. A counterexample could be a piece where the sequence ends
a longer melody, which harmonically is supported by a cadence. The
last note then typically would return to the tonic and therefore be struc-
turally more important or representative of the sequence than the first
note. Other examples might be given, where a note in the middle of the
sequence could be said to be more representative, or where no note can
be said to be the most representative of a sequence. On these grounds, we
have chosen to simply increase the difference counter whenever a simple
vertex and a compound vertex are compared, as though they were maxi-
mally different.

When two compounds are compared, we compare the non-terminal that
they represent. If their non-terminals are equal, they are identical (just as
if comparing two simple vertices with the same pitch); if not, they’re dif-
ferent, and the difference counter is increased. The comparison could also
be made on their inner subgraphs, but if the compounds share the same
non-terminal, their subgraphs have already been found similar enough by
an earlier comparison. Constraining the comparison to the non-terminals
therefore is a fair approximation and one that spares an appreciable amount
of computing power, especially for the non-sequential similarity measures.

e Pitch interval: the pitch interval viewpoint focuses on the changes from
note to note. The transition from a simple vertex to a compound is heard
as the change in pitch from the simple vertex’ note to the first note in the
compound. Similarly, the transition from a compound to a simple vertex is
heard not as a transition from all notes in the compound but from its last
note to the note represented by the simple vertex. We therefore define
the pitch interval along an edge to be the difference in pitch of its two
anchors. Thus the first and the last note in a compound still have a role
in pitch interval comparison even after they have been abstracted away
into a compound vertex. The transition from a compound to a compound
then is the transition from the last simple vertex in the first compound to
the first simple vertex in the last compound.

120

e Pitch contour: the pitch contour can be thought of as a more loose, un-
quantified, version of pitch interval. It therefore does as described above
and uses the first and last simple vertex in a compound to represent it
when computing the pitch contour for the in-going edge and the out-going
edge respectively.

e Pitch class: just as the absolute pitch viewpoint, the pitch class viewpoint
compares two vertices. It is unclear what the pitch class of a compound
should be, so we regard a simple vertex and a compound vertex as different,
and two compound vertices are considered as equal if and only if their non-
terminals match.

e Diatonic absolute pitch is also treated like absolute pitch.

e Diatonic interval, Diatonic inversion interval, Diatonic forward interval,
and Diatonic pitch contour: these viewpoints all focus on transitions and
use the same strategy as the pitch interval and pitch contour viewpoints.

e Absolute length: the length of a compound is defined above in defini-
tion 5.3, so a simple vertex and a compound vertex may be compared on
length as usual without problems. Similarly with two compounds.

e Length interval and length contour: as there are no problems identifying
the length of a compound, these viewpoints also work in the usual manner.

There are now several possibilities for size modifications. We have found it
fruitful to use the nested size of subgraphs instead of the size. The nested size
counts all simple vertices that may be nested in many layers inside compounds
in the subgraph. The size of a similarity statement we take to be the mean
nested size of its two subgraphs. With these changes in place, the SimFinder is
able to compare nested sequential structures of simple and compound vertices.

5.3.1 Non-sequential compound subgraphs

We now turn to the non-sequential subgraphs, similarity measures and view-
points. We have found no problems in allowing weak edges in non-sequential
subgraphs. This means that definition 4.6 is revised to:

Definition 5.4 A Non-Sequential Subgraph o1 = (V1, E1) of the mothergraph
G = (V, E) is a connected set of vertices Vi C V whose connecting edges F1 C E
are of type FOLLOW, WEAKFOLLOW, SIMULTANEQUS, or WEAKSIMULTANEQUS and
where

Vo,vueVi:(Fe€E:ecout(vy) Ae €in(vz)) = e € By

Figure 51 shows an example of a non-sequential subgraph containing mostly
weak edges. The simple vertices are only connected to the compound via weak
edges. The inclusion of weak edges in the non-sequential subgraphs has the
following effects.

121

05 1o 1.5 2.0 25 30

: { N . nesting depth
non=terminal number Icnluﬂl nested size

Figure 51: A non-sequential subgraph containing a compound and four sim-
ple vertices from the beginning of the Bach chorale “Jesu, meine Freude”
(BWV358). The simple vertex on beat 1.0: (53;0.5) is only connected to the
compound by weak edges. The other three simple vertices (67;1.0), (64;1.0),
and (62;0.5) are internally connected by strong SIMULTANEOUS edges, but to
the compound they connect only through WEAKFOLLOW and WEAKSIMULTANEOUS
edges.

Applying Grouping Preference Rules to a Compound-graph The group-
ing structure rules must be modified. We consider a compound vertex to be an
already well-grouped entity. This has some relation to GPR 4 that states:

(Intensification) Where the effect of GPR 2 and GPR 3 are rel-
atively more pronounced, a larger-level group boundary may be
placed [LJ83, p. 49].

We use a graduation of how many grouping rules that apply, so that more
preferred groupings will be found first. We will also use the compounds as
indicators for good further divisions, since they in the first place were found as
having a good grouping value.

In addition to the grouping rules already described, we have made a small
handful of rules taking care of what to do when some of the vertices in the four
note sequences we calculate the grouping value from (remind section 4.3.1 page
72) are compound vertices.

We have two rules: Prefer groups starting/ending with a compound. This
is an incarnation of GPR 4 presented. The second rule is more like a prohi-
bition rule like the rest-prohibition already described: Do not prefer groups
starting with the sequence (simple, compound, ...) nor groups ending with
(..., compound, simple).

This is a choice we have made. This will encourage the SimFinder to extend
its subgraphs until they are adjacent to another compound. The intention is
to prevent single notes in being left in between two compound nodes, if we can
avoid it. That is not a desirable grouping structure, as GPR 1 states: “Strongly
avoid groups containing a single event.”[LJ83, p. 43] If a note is in between two
compounds, it is implicitly bound to be in its own group.

We now turn to describing the additions to our search-system needed to take
care of compound vertices.

122

Vertex comparison Compound vertices have in-, out-, and sim-edges just
as simple vertices, so there is no problem in comparing vertices on number of
edges of these kinds. In addition to the single-vertex viewpoints that look at the
number of FOLLOW in- and out-edges, and the number of SIMULTANEQOUS edges,
we now also have versions of these viewpoints that count the corresponding
number of weak edges:

e The number of in-edges of type WEAKFOLLOW of v
e The number of out-edges of type WEAKFOLLOW of v

e The number of in-edges of type WEAKSIMULTANEQUS of v (which is the
same as the number of WEAKSIMULTANEOUS out-edges, since both ways are
represented in the graph)

The weights of the similarity matrices according to the different viewpoints
also need to be changed. We set the weight of the pitch and length viewpoints
each to weight = 5, while the now six topological viewpoints each are given
weight = 1.

The absolute pitch vertex comparison can still be done when comparing
two simple vertices. Simple-compound comparisons we have chosen to always
evaluate to 1.0 (the worst possible value), because it is unclear in what sense a
compound could be equal to a simple vertex with respect to pitch. The other
choice concerns compound-compound comparisons: here we evaluate them to be
equal (value=0.0) if their non-terminals are the same and completely different
(value=1.0) otherwise. An improvement of this could be to additionally check if
there is a match between the viewpoints under which each compound was found
to be a member of its non-terminal.

Absolute length of compounds is easily evaluated, so there are no changes
there.

Edge comparison Edge comparison is affected by the introduction of weak
edges. We still keep the requirement that edges be of the same kind to be
comparable. This means that a FOLLOW and a WEAKFOLLOW edge are always
maximally different (value=1.0). If they are of the same type, we now com-
pare edges on the basis of their anchors, not their endpoints. This solves the
pitch-related problems we have with vertex comparison and with the absolute
sequential viewpoints, that compounds have no pitch as such. Each anchor is a
simple vertex with a pitch, which represents the compound when seen from the
edge whose anchor it is. An edge is “entering” the compound, so to speak, at a
particular point, reaching into it, and being tied to it, at its anchor. Therefore
the anchor’s pitch is relevant to the edge.

The one exception in edge comparison is the absolute length viewpoint,
where it is still the lengths of the endpoints, not the anchors, that we compare.

Comparison of bags of subgraphs We would still like to regard non-
sequential subgraphs as consisting of solely sequential information. The sub-
graphs can now contain compound vertices, but this is not a big change in the
algorithm. We can still pick out all vertices and edges in the graph and com-
pare these to each other, and we can still find all sequential subgraphs of the
non-sequential graph. Only the type of the vertices have changed.

123

We need only to change our encoding scheme. Encoding simple vertices (SV)
proceeds as before. When encoding (comparing) compound vertices (CV), we
encode the production rule number and the measure under which the compound
was found to be similar to its corresponding compound. This is the information
that determine the character of the compound. Encoding edges proceeds also
almost as before. Edges can now point from simple vertices to compounds, but
the edge is always anchored to a simple vertex inside the compound. This is
valuable information which we will use. Since we can find the simple vertices
on any edge, we can take a sequential view of it no matter which vertices it
connects. So in the encoding of edges, we encode some information about each
of the vertices and also the sequential view of the edge. Strong and weak edges
are encoded similarly. Thus for two non-sequential subgraphs to be judged
equal in the Bagl Rss(n), view Setting alone, they must consist of equal sequential
subgraphs (of size n) where equal means that they have the same vertices at
the same places. Here is the extended encoding scheme of vertices and edges:

encode | Vertex | enc(SV)pap — name,_octave,_accidentals,_duration,
absolute | Vertex | enc(CV)pap — nonterminal Numbercy + measurecy
Edge | enc(vi,v2)pap — enc(v1)pap-enc(v2)pap
encode | Vertex | enc(SV)upe{rr,p1,0FI1} — duration,,
relative | Vertex enc(CV)vpe{pLDI,DFI} — nonterminal Numbercy + measurecy
Edge | enc(SVi, SVa)viewe{pr,pr,prry — enc(SV1)vicw view(SV1, SVa)_enc(SVa)vicw
Edge | enc(SV,CV)yiewe{pPI,DI,DFI} = enc(SV)yiew-view(SV, CV.anchor)_enc(CV)yiew
Edge | enc(CV,SV)yiewe{pr1,01,DFI} = enc(CV)yiew-view(CV.anchor, SV)_enc(SV) view
Edge | enc(CVi,CVa)viecwe(pi,pr,pr1y — enc(CV1)yiew-view(CVi.anchor, CVa.anchor)_enc(CVa)view

When encoding a sequential graphs we take the same approach as before:

@nc(o’ = (U17U2)"'7Un))viewE{DAP,PI,D[,DFI} — ETLC(Ul,UZ)view;
ETLC(UZ, Ua)view;
o
enc(Vn_1,Vn)view;

5.4 Segmentation

We have described the graph representation and the SimFinder with all its view-
points. We now want to start using multiple runs of the SimFinder to discover
and categorise different kinds of similarities inside a piece. By looking at indi-
vidual similarity patterns as delimited objects, we can find further similarities
encompassing these patterns. This is done by substituting similar subgraphs of
the mothergraph with compound vertices of the same non-terminal. A subse-
quent SimFinder run on the graph now needs to also take account of compound
vertices in the graph and compare these with other vertices on equal terms with
simple vertices — as described above. This subsequent SimFinder run again lo-
cates similarities which it substitutes with compound vertices, and so forth. The
segmentation of the piece by substitution of subgraphs with compound vertices,
and in several layers, gives a hierarchical structure of nested abstractions that
are essentially production rules in a graph grammar.

124

5.4.1 Recursive segmentation algorithm

The program that uses the SimFinder to produce a segmentation is called
the Similarity Segmenter, or the SimSegmenter for short. It can instruct the
SimFinder to use different similarity measures in different runs and can thus
use the specific to general ranking of the viewpoints that we described back
in section 4.3.1, p.67. The idea is similar to the algorithm of Smaill et al.
(see 3.2.2), where motives and all derivations of them are located and labelled
according to the measure that deemed them to be similar. The label describes
the transformation that can turn the derivation into its originating motif. Re-
call that patterns which are related by a transformation function can be thought
of as being in some music-semantic relation to each other. In our case, it is a
music-semantic relation that is a paradigmatic relation of similarity, akin to the
linguistic relation of synonymy. A motif and its derivation can be argued to be
musically synonymous, because they are instantiations of the same musical idea.
The viewpoint that was used to find the similarity between motif and derivation
designates more specifically which relation they have to each other (e.g. the DI
viewpoint means that they are diatonic transposes of each other). In linguis-
tics, hyponymy is a relation of general-to-specific ordering, which could perhaps
also be argued to exist between different levels of elaboration/simplification of
motives. We have not dug deeper into this, since we have restricted ourselves to
repetition and simple transformations. Meronymy designates whole-part rela-
tions which are implicit in the grammatical structure of a context-free grammar.
The analogy with the last linguistic example we have given of paradigmatic rela-
tions, antonymy (opposite meaning), is less clear. We could say that two phrases
that are pitch interval inversions of each other are opposites, although they are
also in a sense very much alike. We think that a systematic account of such re-
lations would be a useful basis for a more well-structured segmentation than we
have achieved here by using mostly similarity relations among subgraphs. We
find similar subgraphs, substitute them with compounds, and label the com-
pounds with the name of a non-terminal (and also the similarity measure used),
so that a compound’s meronymy relation to its contained subgraph belongs to
a certain non-terminal, or class. Common to the subgraphs produced by com-
pounds of the same non-terminal is a certain similarity relationship which is
dependent on the viewpoint with which we located the matches.

Algorithm SimSegment The idea of the algorithm is first to find one pattern
that occurs twice. This similarity should be seen from as strong a viewpoint
as possible, so we begin with the most specific viewpoint*’. Then we find
all occurrences of these two patterns when seen from the successively more
general viewpoints; e.g. if there are no more direct transpositions (i.e., with
the PitchInterval viewpoint) of some pattern p, there could perhaps still be
patterns that had the same contour as p, i.e. according to the PitchContour
viewpoint, which is a more general viewpoint than PitchInterval. By ordering
the viewpoints and by searching with the strongest first, we can categorise the
occurrences with as strong a viewpoint as possible. The compound node that
replaces a pattern when we find it is labelled with the similarity measure whose

40Tt is the similarity measure we are changing between SimFinder runs, but the measures
we have defined have only one pitch viewpoint each, so in the area of pitch, they can still be
ordered by the specific-to-general ranking.

125

viewpoint combination was used to locate it; and each found pattern and all
of its repetitions and transformed repetitions belong to the same non-terminal,
which we will use in the graph grammar. We therefore know what kind of
relation a given pattern has to the original motif of the same non-terminal. In
this way, the non-terminal categorises all transformations and shades of a given
motif, and labels them with the transformation — the paradigmatic relation —
that relates them to the original motif.

One problem is that there is no guarantee that the musically most important
version of a motif is found first. Then it is a less important derivation that is
considered as the original motif, while the original one is labelled as e.g. a
’transposed version’ of it. We don’t consider this a real problem however, since
the relationships still hold, no matter which of the two patterns in a transposition
relation we take to be the original. If the importance of different versions can
be ranked by some algorithm, then such an algorithm may be applied in the
SimSegmenter after all occurrences in a family of motives/derivations are found.
And in a simple way there is some weighting built into the SimSegmenter: we
can consider the version occurring most frequently under the strongest possible
viewpoint to be the most important. If a pattern occurs more frequently, there is
a greater chance that the SimFinder will stumble upon it, so there is a primitive
importance weighting built into the search. E.g. in the nonSeqEdge search
example in section 5.4.4, p.131, there is a greater probability of finding the
pattern of the very frequently occurring non-terminal NT5 than of finding other
recurring patterns seen only two or three times.

When we are done with one pattern and all of its occurrences according to
the successively more general viewpoints, we move on to the next. The search
is repeated until no more relevant similarities are found. When that happens,
hopefully we have found, categorised, and substituted the most significant pat-
terns.

The algorithm looks like this:

double limit
int nonterminalNumber=-1

for(SimMeasure sm_i = 1..k){
nonterminalNumber++
//search for new repeated patterns
while(there are more repeated patterns to be found){
let s_1 and s_2 be the most similar subgraphs of a SimFinder run with sm_i
//search for more occurrences
if (SimMeasure(s_1,s_2) is within the similarity limit){
substitute sl and s2 in the graph with compound nodes with type nonterminalNumber
for(SimMeasure sm_j = i..k){
while(there are more occurrences of one of s_1 and s_2 to be found){
let s_i be the graph found in an Occurrence search for s_1 with sm_j
if (SimMeasure(s_1,s_i) < limit){
substitute s_i in the graph with a compound node with type nonterminalNumber
}
let s_i be the graph found in an Occurrence search for s_2 with sm_j
if (SimMeasure(s_2,s_i) < limit){
substitute s_i in the graph with a compound node with type nonterminalNumber
}
}
}//advance to next SimMeasure in the occurrence search
}//no more patterns to be found with the SimMeasure
}//advance to next SimMeasure

126

When an occurrence search is started, the used viewpoint is always the
same or weaker than the viewpoint that located the original pattern. This
means that when we have given up looking for new motives with viewpoint
vpy (e.g. AbsolutePitch), and moved on to the search of motives using vpy
(e.g. PitchInterval), it is impossible to find similarities according to a stronger
viewpoint than vps. The rationale in this is that we ought to have already
found all of these stronger similarities — that was the termination condition
for the search using vp;. In the algorithm above, the termination condition is
stated as “while(there are more repeated patterns to be found)”. In practice,
we have imposed a limit value, or threshold, on the fitness of the best found
similarity statement. The value of limit depends on the similarity measure used;
it specifies how bad the best found match should be before we give up searching
with the current viewpoint*! We have used the following limits:

seqDCGrp 2.0
segMD 0.0001
vertexComparison 0.05
edgeComparison 0.06
nonSeqBagIR 1.7

E.g. when the similarity value of the best found match using edgeComparison_APAL
rises above 0.06, we change to similarity measure edgeComparison PIAL.

If we didn’t find and substitute all occurrences of all transformations of a
motif A before searching for other motives, we might locate fragments of these
occurrences in other motives and substitute them. It would thus be impossible
to find the connection with motif A later on, because part of A would be sub-
stituted away into some compound vertex. On the other hand, by substituting
all occurrences at once, the inserted compounds can constitute new patterns
in conjunction with other fragments of the graph. Since the algorithm builds
the hierarchic structure in a bottom-up fashion, it is advantageous to begin
with patterns that are not too large. Large repeated patterns are most often
extensions of smaller repeated patterns, which may in fact be more significant
as a pattern, so we want to substitute these with their own compound before
substituting the encompassing, larger pattern. Also, on the practical side, the
SimFinder is exceedingly slow as the size of subgraphs rises, and setting a maxi-
mum size on patterns, and thus putting an artificial upper bound on the running
time of one SimFinder run, is sometimes a necessity. So there is also a practical
reason to first locate and group together smaller similarities that are repeated
inside larger patterns.

5.4.2 The SimSegmenter’s use of the SimFinder

We see now why even the smallest overlap in similarity statements is annoying
in the segmentation algorithm. The pairwise substitution of similar subgraphs
with compound vertices cannot be done — or would need some special scheme
to be carried through — if the two subgraphs overlapped. Having substituted
one of the subgraphs, all of its vertices have in fact been removed from the

410r rather, the current similarity measure, as it really is.

127

mother graph, so what do we do with the missing vertices (those that were in
the overlap) of the next subgraph? As mentioned in section 4.3.4, this is the
ultimate reason for simply discarding overlapping similarity statements in the
SimFinder by setting their fitness rating to an astronomical number instead of
the value given by applying the similarity measure in use.

As a GA, the SimFinder is a stochastic search method that does not give us
an exhaustive search, so there is no guarantee that all pattern occurrences have
been located when the SimFinder is stopped. This can be a problem. The prac-
tical solution has been to estimate the number of generations necessary to find
a useful match and fix a maximum number of generations that allows the GA to
find matches if there are any. If no matches with better similarity than the limit
value are found after the maximum number of generations have elapsed, the
search is considered to be a dead end, and the similarity measure is changed to
a more general one. As described in the appendices on GA tuning, we have also
tried tuning the mutation settings to allow the SimFinder to tumble around in
the search space even while narrowing in on the best match it has found. Even
s0, the entire SimFinder population often does narrow in on a single similarity
it has located and then exploits it by trying to extend the match to bigger sub-
graphs. But the GA is also an “anytime algorithm”, able to deliver intermediate
results whenever we need them. This could be exploited in an extended search
program that controls a host of SimFinders, each searching its own corner of
the search space. The search might benefit from a periodic exchange of genetic
material from one SimFinder to another. Using multiple concurrent SimFinders
would allow us to locate several similarities at once instead of narrowing in on
only one, as the SimFinder does. From an implementation point of view, this
would be very easy to test, because the SimFinder is described in its own class
and can thus be instantiated in any number. But it would also be a little more
expensive in computation time.

5.4.3 Discussion and relatives of the SimSegment algorithm

In section 3.2.2, we described a segmentation algorithm used by Smaill et al.
(described in [SWH93]). Hopefully it is now clear that the SimSegment algo-
rithm is a close relative; the segmentation is done also on the basis of found
similarities. Similarities are located according to a number of similarity mea-
sures that are ranked from strong to weak. Strong similarities are found first,
and weaker ones are labelled with the measure that located them.

Now the differences: while the Smaill et al. algorithm works on streams,
i.e. sequences of notes, the SimFinder is able to locate both sequential and
non-sequential similarities, in monophonic or non-monophonic music. The Sim-
Segmenter does not simply remove occurrences of motives as they are found.
It replaces them with compound vertices which may in turn be part of other
similarities. This allows us to build a hierarchical structure instead of the flat
segmentation output by the Smaill et al. algorithm. This could be remedied by
running their algorithm again on its own output to produce another segmenta-
tion level, but in the article [SWH93] they have not described how to compare
streams containing constituents - the structure used to group notes together.

We still have a few pending questions from Roger Dannenberg (see sec-
tion 5). As to nesting, yes, the whole idea of compounds in the SimSegmenter
algorithm is to construct a nested structure. Shallowness of compounds is more

128

dependent on implementation. In our implementation of the SimFinder system,
each compound vertex contains a deep clone of the subgraph it is substituted
for, i.e. a complete cloning of all objects in that structure, and all these clones
are ’owned’ by the compound. Thus the only thing that connects it to the
other occurrences of the pattern it represents, is their common non-terminal in
the graph grammar. Editing the subgraph of a compound would not change
anything in the patterns, or subgraphs, of its sibling compounds, but it would
change the relationships of the compound to its surroundings, possibly delet-
ing or inserting new strong or weak edges to and from the compound. So the
user cannot control (in the sense ’to manually edit’) how close a connection the
occurrence of the motif or pattern has to the global, idealised, description of
the motive. There is no such global description of motives in a SimSegmented
piece, only the individual occurrences. Anyway, the SimFinder system does not
allow editing of the subgraphs of compound vertices. The analysis yielded by a
SimSegmenter run points out similarities between different compounds in terms
of their shared non-terminal and, more specifically, in terms of the similarity
measure under which they were found to be similar. If subgraphs were edited by
the user, the claimed similarity may no longer hold. So Dannenberg is right to
point out that the ’one global pattern - many local occurrences’ scheme “would
quickly lead to many interesting problems” [Dan93, p.26].

5.4.4 Building a graph grammar

In grammatical terms, a compound substitution corresponds to a production
rule. When the first pair of similar patterns of a motif is found, both patterns
are substituted, giving two production rules:

c1 X co = ¢1 motify co
c3 X cqg — c3 motifa cy

where X is the non-terminal that links the motives and all their derivations
together, and the c’s are the context of each production. If other derivations of
the two motives are located, each of them is also added as a production rule:

cs X cg — c5 derivation; cg

These examples belong in a context sensitive grammar. But we are building
a context sensitive graph grammar. This means that the context can be any
number of music vertices connected to the non-terminal by music edges.

An example of production rules in a graph grammar Let’s look at
the chorale that we know so well by now (BWV358). The following graph
production rules are taken from a simple SimSegmenter test run using the
nonSeqVertex PLIOS measure on a partwise graph built from a midi file. The
substitutions are not particularly smart, but they serve to illustrate the mech-
anism and the connection between compounds, non-terminals and graph pro-
duction rules. The parameter settings of the SimSegmenter are shown in ap-
pendix C.1.

This particular test run resulted in 28 graph production rules concerning 13
non-terminals. Every match found by a SimFinder run inside the SimSegmenter
yields two production rules*?, and additional occurrences of the motif are added

42Qne for each of the matching subgraphs, or motives.

129

as production rules for derivations. There were thus only 28 — (13 x 2) =
2 derivations — a little disappointing, but of course the nonSeqVertex PLIOS
measure finds only matches on absolute pitch and length — it does use relative
views between vertices. All in all, the graph was not at all well segmented, and
much more was left unsegmented in the mother graph. Please note that the
“time rulers” are shown at the top of each subgraph only as a practical means
to tell us where the fragments were found in the mother graph. The matching
of subgraphs using nonSeqVertex PLIOS is done purely using the pitch, length,
and topological information present in each vertex and thus is indifferent to
the absolute times indicated in the rulers — only the structure of the subgraph
counts.

>
44.0 48.5

D € By ©
?T? ® @ ®
. ‘/

Figure 52: Production rule PR23 for non-terminal nt 10 (nonSeqVertex PLIOS).

44.0 48.0 48.5 44.0 500

@

— &) ¥
.
@ \ ntS nsd3 nd=10

bl — — - —

h h 4
| nt3ns4nd0

i} 1.0 2.0

0.0 1o 2.0

9, na=3, nd=0
2.0 1

kit 10, hs=8, nd=1
20

X
nt 3, hi=4, nd=0
2.0

Figure 53: Production rule PR24 for non-terminal nt 10 (nonSeqVertex PLIOS).

For non-terminal nt 10, no derivations were found, so we have only the two
productions of the motif. These are shown in figures 52 and 53. The two
rules tell us that when an nt 10 compound occurs in the context shown on
the left-hand side, the context and the compound can be substituted by the
right-hand side, which comprises the context and additionally two compound
vertices of nt 9 and nt 3, and a simple vertex (62,1.0). What next happens

130

is determined by the production rules for nt 9 and nt 3. One rule for each
is given in appendix C.1, and following these will produce a simple subgraph
(i.e. containing no compounds) that is a subgraph of the original music graph
created from the file. It is the rules that will apply to the situation resulting
from PR24 that are given in the appendix.

Please notice that it is not necessary that our graph grammar be context sen-
sitive. As we have implemented it, a compound vertex can be said to produce
its inner subgraph irrespective of the context. But we would have to specify
formally how substitution of edges between compound/subgraph and the sur-
roundings should happen. We would have to formalise how the scheme described
in section 5.1 should behave in all circumstances. In practice, in the algorithm
that effects compound substitution in a mother graph, we have chosen to use
anchors of edges to point to simple vertices inside compounds, thus facilitating
the reverse substitution that a production rule corresponds to. But the reverse
substitution could be effected simply from the knowledge of start times of all
involved vertices. This has not been implemented. Instead, we have chosen to
show the production rules as context sensitive, because the substituted edges
can then be shown explicitly in the production, but we could have built a con-
text free graph grammar. We discuss the generalisation of graph context below
on p.133.

Building structure from simpler building blocks The following example
is taken from a test run using the nonSeqEdge DAPAL, nonSeqEdge DIAL, and
nonSeqEdge DFIAL measures. The piece was the Bach fugue part of the Prelude
and Fugue in C minor (BWV 847).

E4.5 B9.75 oo 705 7075 1o 71.25 715 725 7325 735 745 7525 75.5 75.75 7R.0 7R.25

nt 27, ns=3, nd=0
0.75

-
-

nt 5, ns=3, nd=0
1.0

nt 5, n3=3, nd=0
1.0

Figure 54: Example from the mothergraph after segmentation using
nonSeqEdge_DAPAL, nonSeqEdge DIAL, and nonSeqEdge _DFIAL.

This SimSegmenter run used a non-partwise graph of the fugue, which makes
it more difficult to segment it in a meaningful way. But if we begin with some
very small building blocks, we may find it easier. As seen in figure 54, the
non-terminal nt 5 occurs in many places: twice on 72.5, twice on 74.5 and once
on 70.5. These are all variations of the same three-note fragment, which starts
the theme of this fugue. Figure 55 shows what the first occurrence on 70.5
contains. In fact, the sequence [(67,0.25), (65,0.25), (67,0.5)] beginning on 70.5
is also an instance of the nt 5 pattern (being equal to the nt 5 subgraph in
figure 55 under the nonSeqEdge DIAL measure), and it is clearly a mistake that
the SimSegmenter hasn’t located and substituted it along with all the other nt 5
compounds. Then we would have had three pairs of simultaneous nt 5 variations

131

separated by nt 9’s in figure 54. In a more successful run, a new non-terminal
nt z could have grouped the recurring [nt 9,<nt 5,nt 5>] structure.

05 7075 710

Figure 55: The subgraph contained in the nt 5 occurring at 70.5.

360 36.25 38.25 385 40.25 40.5 41.25 41.75

; | nt 15, ns=15, nd=3 ‘ !

¢ T i)
! -~ " \ !
/ I [\ !
4 1)
nt 29, ns=16, nd=4 ‘ Y, \ '

i
ht 24, nse3, na=] n 23, ns=3,
4
I
Y Y ~ | RN \\ \{‘ T
Y R
i‘ ¥ A& A ¥
1

nt 7, hs=7, nd=
1.5

Figure 56: Part of the mothergraph after segmentation using edge comparison
on DAP, DI and DFI.

36.25 365 390

Kt 15, fns=15 nd=3
2.5

Figure 57: The subgraph contained in the nt 29 beginning at 36.25.

But there are other examples of nesting in this run. In figure 56, the recurring
structures are not immediately visible. But upon closer inspection, we see that
an nt 29 is actually an nt 15 with just one additional note (see figure 57). The
nesting is even deeper: nt 15 contains an nt 14, which contains an nt 7, which
contains the most recurrent pattern, nt 5, for this analysis. For the fragment
shown in figure 56, we can therefore visualise the analysis as a derivation tree,
shown in figure 58. The subgraphs inside the compounds contain simple vertices
in addition to the compound vertices just mentioned, but we haven’t drawn
them in the derivation tree. The subgraphs for these compounds are given in
appendix C.2.

These two examples should give an idea of the SimSegmenter’s building of
hierarchical structures, although the the derivation tree is more like a sequence
of very deep nestings than a real tree structure combining more compounds on

132

MotherGraph

‘NTS‘ ‘NTS‘ ‘NT24‘ ‘NTS‘ ‘NTZS‘

Figure 58: A derivation tree showing the nesting of compounds in the fugue
fragment of figure 56. The individual notes (simple vertices) which constitute
the musical surface are not shown here, only the nesting relationship between
compounds. Each compound vertex also contains one or more simple vertices.

a single derivation level. As mentioned, this run used a non-partwise graph,
and no grouping viewpoints that could help the segmentation process. We have
had better results using partwise graphs and similarity measures with grouping
viewpoints incorporated. This is presented in more detail in section 5.6.

Using a graph grammar generatively We have not yet experimented with
the generative capabilities of the induced graph grammars. The purpose would
of course be the sheer fun of seeing the mechanism in action, but more impor-
tantly, it would be an important step in the validation of the SimSegmenter.
How well a grammar generalises to describe valid musical structures is a good
indication of its quality.

How would we generate a piece using the set of production rules output by
the SimSegmenter? If the rules were context free, we would need only search
for non-terminals (compounds) and then pick a production involving that non-
terminal. The substitution mechanism would be specified so that the edge
substitution is feasible under all circumstances. As mentioned, we have not
implemented this. Instead we have context sensitive rules; to apply a context
sensitive rule, we have to locate a non-terminal with a certain context in the
graph. Such a search can be accomplished using the SimFinder, since a context
is just a subgraph. For a non-terminal that has m production rules associated
with it, we would have to search for m different contexts. Here it could be
useful to generalise the m different contexts, in order to be able to search for all
variations of it in one search. The generalisation would consist in finding “the
transformation under which the contexts are equal”. Does this sound familiar?
We happen to have a solution in our viewpoint system. It is possible that some
of the contexts could be described as equal under some viewpoint, so that the
search for matching contexts could be effected using that particular viewpoint

133

in the SimFinder search.

Generalisation of context also raises the question of how much context we
really need to include. At present, the context of a compound is the set of
all vertices connected with the compound by an edge. It might be that it is
appropriate to include more than this, e.g. the set of all vertices whose distance
to the compound (in the number of edges) is less than n. But we think it is
more likely that context depends on musical constraints too. A highly relevant
context could be the underlying harmonic context. Also, it seems likely that the
size of the relevant context depends on the size of the compound. A sentence
like:

He looked away and said: Because I love you.

is much more sensible than a sentence where “Because I love you” is replaced by
a 500 page speech. In the same way, a subgraph of three notes is probably not
the best context to an entire movement, and conversely, an entire movement is
too much of a context for three simple notes. If we have already abstracted a
movement into a compound vertex, a suitable context would be building blocks
at the same level: movements, or perhaps ezxpositions and developments at the
next lower level, but certainly not a subgraph of three simple vertices. Here is
a genuine problem with our approach: we have based the segmentation almost
purely on paradigmatic relationships of similarity, without considering syntag-
matic relationships governing the token-to-token relationships in the grammar
(the grouping viewpoint being the only exception). An explicit account of syn-
tagmatic relationships could give us a better idea of the contexts in which com-
pounds occur, e.g. that a compound C' always starts on the tonic after a certain
cadence.

An interesting experiment would be to analyse several pieces at once to build
a common grammar. This would be easily implemented in the SimFinder: it
amounts to loading two music files into a common graph, without connecting
them with each other. The SimFinder would then search in an unconnected
graph consisting of two internally normally connected subgraphs, each describ-
ing a piece. Similarities could be found in and among the pieces, and a grammar
describing stylistic traits common to the pieces would be built. The last thing
to do would be to separate the start production into several possibilities — the
islands in the common graph representing each piece.

5.5 Running the SimSegmenter on two pieces of J. S. Bach

We have used two pieces of J. S. Bach as a test for our similarity based analysis:
One homophonic piece — a chorale Jesu meine Freude (BWV 358) and one
polyphonic piece — a fugue Fugue in C minor (BWV 847 from WTK 1). The
pieces are thus of very different compositional natures. We have conducted three
experiments:

e Segmenting Jesu meine Freude as a partwise graph in a sequential search.
e Segmenting Fugue in C minor as a partwise graph in a sequential search.

e Segmenting Jesu meine Freude as a non-partwise graph in a non-sequential
search.

134

We have chosen to let the nature of the pieces inflict on the way we set up
the experiment so that the fugue is analysed sequentially and, but the chorale
also non-sequentially. Because of its polyphonic nature the fugue begs to be
analysed in a sequential search in a partwise graph. When searching in non-
partwise graphs, the computation task becomes rather heavy, so we were forced
to impose a maximum size on the subgraphs handled by the SimFinder. The
pieces we have chosen are otherwise as partwise graphs fairly computable on
our computers. The SimFinder is however not able able to handle an entire
movement from a symphony since it uses too much memory. We must optimise
the system at a later time.

Unfortunately we have not been experimenting with music in between the
two types (homophonic and polyphonic), as for example a piano piece (which is
hard to find in the MuseData format), where we could possibly benefit from the
way our non-partwise graph representation handles both chords and melodies
as the same thing.

The sequential similarity measures used in the two sequential experiments
have been three of the five measures relying on the difference count (DC) view
comparators and they all include the grouping preference rules. They are all
based on the diatonic information: seqDC_DAPALGrp (uses diatonic absolute
pitch, absolute length viewpoints and grouping), seqDC_DIALGrp (diatonic in-
terval, absolute length and grouping), and seqDC_DFIALGrp (diatonic forward
interval, absolute length and grouping) (see section 4.3.3).

Setting the stopping criteria The SimSegmenter is equipped with a limit
value. All similarities found must have a fitness below this limit. When a
SimFinder is not able to find anything below the limit, the best similarity state-
ment found is not good enough and is discarded.

Since we are using the difference count approach in our search, we can see
from the fitness of the similarity statement if a mismatch in pitch occur. By
setting the limit of worst acceptable fitness to a value that allows zero errors,
we can find only exact matches of pitches (according to the viewpoint used).
Let’s give an example: Remember that the seqDC are calculated like this (in
the DI case):

seqDCDIALGrp(sy, s2) = di + {4t + (1 — %) + group. Setting the limit
to 2.0 gives a rather good guarantee of finding sequences with no mismatches:
the size value of the subgraphs (1 — Si%(osl)) is in practice (in our experiments)
roughly between 0.5 and close to 1.0. The difference in durations (variable len)
are given almost no importance. The grouping value is in practice from v2 to
1.0. If v is not too small, this will also give a value not too far from 1.0. So
the overall fitness is with no mismatches (di = 0) between 1.0 and 2.0. The DI
difference count will have to be 0 to be below the limit. This kind of reasoning
is of course a little risky, but our experiments have shown that this value works
in practice at least on our problems. The tuning of the variables in a GA is
always connected with these kinds of choices.

Since we do not allow inexact matches (in pitch) in these three experiments,
we can use any of the correct matched subgraphs to search for more occurrences,
so we would like to save the time looking for occurrences of them both (since
they are equal), but instead only search for occurrences of one of them.

The non-sequential similarity measures used in the non-sequential search are

135

based on the intersection ratio of vertices and edges (BagIR) idea: nonSeqIR_-
DiatonicAbsPitch Grp and nonSeqIR DiatonicInt_Grp(see section 4.4.4). They
are thus also all based on the diatonic information.

We again set the limit to try to make sure that no mismatches occur. The
fitness of the nonSeqIR suite of similarity measures depends on the sum of
Intersection Ratios, the size of the subgraphs and the grouping fitness
(nonSeqIR DiatonicInt _Grp = baglRTrieps(o1,02) + grouping(oy,oq) + (1 —
Silzoeo(%l))). So the size and grouping values are calculated in a way rather similar
to the case of the sequential subgraphs, and thus yields the same kind of values.

This leaves a little slack to the error of the intersection ratios from the
different kinds of encodings, so we cannot be as sure as in the sequential case,
that no mismatches occur. But as one non-matching vertex in two subgraphs
is likely to affect the value of more than one of the different encodings that the
graphs are tested for intersection with, this mismatch will generate a not so
insignificant error value, and will thus influence somewhat to the overall fitness.
The limit value 1.7 has proven to be useful in the non-sequential case.

5.5.1 Partwise sequential segmentation of Jesu meine Freude

Segmenting the chorale should reveal that there is an exact repetition of the first
three phrases. The chorale has the form: ABCABCDEA’. The A’-part has the
same melody as the first two A sections, but some of the underlying harmonies
have changed. So the best we can hope to find is to find three occurrences of
the melody in the A parts. Furthermore we should find the exact repetition of
the first 6 bars. It should be mentioned that the soprano and bass starts on the
same notes in all three phrases, so it is possible to find similarities going across
all three phrases.
We set up the SimSegmenter run for this task with these parameters:

Population size 100
Generations 500
Crossover 0.01
Mutation 0.5
Fresh Blood Chance 0.1
Initial size 5
Max size N/A
Similarity measure = SeqDC_DAPALGrp
SeqDC_DIALGrp
SeqDC_DFIALGrp
Limit 2.0
vy 0.7

Figure 59 shows the beginning of the resulting graph (the full graph is printed on
page 172). The beginning two repetitions have in each voice been reduced to one
compound vertex each. Let’s look inside the compounds. The score on page 171
in the appendix shows the nesting structure of the chorale. The SimSegmenter
in this run split the chorale into 11 different kinds of similarities of varying sizes.
We will in this section refer to compounds by their given nonterminal number
(nt). Notice the nt 3. It is the six-note melodic phrase, which appears three
times as mentioned. The repeated phrases were found as expected. Otherwise
only small bits of similarities (nt 8 and nt 9) are found in the last 7 bars.

136

I

nt

Figure 59: The start of the segmented chorale. Each voice starts with two
similar compound vertices.

Soprano ‘ \ nt3 l nt 6 ‘
Alto ‘ \ o l nt 10 [m9] [ni8] ‘
Tenor ‘ I nt 2 \ nt4 | nt7 ‘
Bass ‘ \ T l nts ‘

Figure 60: The first six bars and the repetition of them were segmented equally.

The grouping rules help the SimFinder to stretch the phrases from fermata
to fermata. This has helped to find some of the phrases in the repeated part.
Figure 60 shows the segmentation of the repeated 6 bars in a more simplified
way. Most well grouped is the tenor voice, since all the natural phrases are
suggested in it. Since the SimFinder prefers larger subgraphs to smaller, it has
included the first compound found in the tenor (nt 2) into the next (nt 4) and
again that one into the last (nt 7): (((2)4)7). A more equal partition of the
phrases would have been ((2)(4)(7)). But the effect of the grouping rules is
clearly present.

5.5.2 Partwise sequential segmentation of Fugue in C minor

We have run the SimSegmenter algorithm on the three part fugue in C minor
from WTK 1. We have set the grouping value rather high, giving not so strict
boundaries.

137

Population size 100

Generations 500
Crossover 0.05
Mutation 0.5

Fresh Blood Chance 0.1
Initial size 5
Max size N/A
Similarity measure = SeqDC_DAPALGrp
SeqDC_DIALGrp
SeqDC_DFIALGrp
Limit 2.0
¥ 0.97

This results in larger sequences on the lowest level of the hierarchy, and thus a
rather flat hierarchy since there are no larger scale repetitions in the piece. The
themes however can sometimes be put together of smaller motifs or phrases,
which we also will give an example of.

The run resulted in 25 different similarities found — from size 3 to 40 when
counting simple vertices. We have decided to stop when reaching graphs of size
2. We will go through the main events found in the fugue here, but a full score
with indications of all substituted compounds is found on page 173 and page 174
in the appendix. Unmatched notes are marked with an ‘x’. There are not many
of those. The resulting graph is found on page 175.

An error has unfortunately occurred in this run of the segmentation algo-
rithm. This has the effect that the order in which similarity measures were used
for occurrence search has not been as described. The result is that some sim-
ilarities could have been categorised with other viewpoints than they actually
are. For example: some DAP similarities are labelled instead as DFI, so the
labelling we found is not the strongest possible. We will in this section denote
the parallel passages with the labels the algorithm gave them. The matches are
not incorrect, but some of them could have been labelled stronger.

The fugue consists basically of a sequence of expositions of a theme, in-
terweaved with some other thematic material. The main theme comes in two
variations: the first is traditionally called duz. This is the theme in its purest
form. The second is a harmonic imitation of the dux and is called comes. It
begins one fifth above dux, so in order establish the key of the dux, some of the
jumps have changed in the comes and hence the term harmonic imitation. The
rhythm of the two themes is equal, and so is the contour.

Our run of the SimSegmenter located the dux and comes in perfectly bounded
subgraphs — no notes belonging to other phrases are included. The nontermi-
nal number 2 (nt 2) is the dux, and nt 10 is comes. We show here the first
occurrence of them: dux, nt 2, measure 1:

43

43There is only one occurrence of nt 2 labelled DAP. This is also because of the bug in this
run of the segmentation algorithm. That occurrence was found as in an occurrence of another

138

comes, nt 10, measure 3:

There are a total of 6 expositions of dux in the fugue spread out on the three
different voices (5 starting on C and one on Eb) and 2 expositions of comes
(both starting on G). The algorithm located them all as occurrences of nt 2 and
nt 10 respectively. The nt 2’s have however on two occasions been put inside a
compound (nt 20) consisting of just one rest and then the nt 2. We will return
to the themes below.

The theme (dux and comes) is often accompanied by a counterpoint which
is a little thematic fragment which fits well to the theme. The counterpoint is
therefore also an important fragment in the fugue. The SimSegmenter did not
find the counterpoint in a so well grouped form as with the dux and comes. In
the purest form, the counterpoint looks like this:

fH |

- T

|
L 4

J

|
[4 ——t—— T l
-r-

but what we found are these variants:
nt 4, measure 3 and 20, two extra notes (and one rest) in the end:

i s e e
dfl II—I—I—II-I m hl N
-r-

These two preceding figures are in fact a good example of what DFI was designed
to do — notice the decim (octave + third) jump in the first figure in the first
whole bar. It has been matched with a third jump in the next.

The nt 23’s in measures 11 and 27 consist only of the last part of the coun-
terpoint, and have been discovered as a nested structure. The first part of the
“real” counterpoint — the descending 7 sixteenths were never connected to it as
in this case. This has two explanations: in measure 27 the counterpoint has been
split in two voices — the first part of the counterpoint is found in the top voice
and the last part is found in the the middle voice. Since the graph is partwise,
the SimFinder cannot connect the pieces, but there is also a difference in the
jumps between the two parts, so it would demand another viewpoint to locate

nt 2 and with the measure SeqDC_DAPALGrp

139

this connection. In measure 11 the first part of the counterpoint was connected
to another very long repeated pattern (nt 3). This is nt 23 in measure 11:

nt 23
nt 18
nt 15 nt 15
Co i ~ 4 >]
>¥, — Lt rre

The longest match found is nt 3 of size 40 which occur twice. The first in
measure 9 (shown below) and the next in measure 22, this time starting on bes.

Other similarities of thematic origin occur, as for example nt 0 (inside nt 14),
which can be found in imitation with itself (two beats displaced) twice in the
score (starting in measure 9 and measure 22):

nt 14
nto

0 | | \ — e~ . .
Y 1D | N T 1 | 1 N N
bt e a1 e st e
~V - a T u
o =

i

| YA

This should not be considered as a dux nor comes, but this is a little theme in
its own right. The nt 14 could in two occasions with success have extended the
phrase with one more note in the end, which would have completed the phrase,
but the four occurrences do have different endings.

The score on page 173 and page 174 constitutes the final analysis from our
program. We are not able to generate a more overall analysis of the piece —
an analysis on a higher hierarchical level, where we abstract away the explicit
information characterising the compound vertices. Such an analysis could reveal
a structure in the structures we have found. Let us look at what there is to
find. To give a short more overall and less detailed formal-founded analysis
of this piece according to its similarities to itself, we have made figure 61. It
shows the occurrences of dux, comes and counterpoints found in the piece. We
see a pattern in the expositions of the themes in relation to the counterpoint.
The counterpoint seems to occur alternately below and above each theme entry.
This is a structural phenomenon, shaping the music according to the particular
idea. Dux and comes are not represented with the same compound vertex. If we
designed a viewpoint ignoring that differences of the two (and if we found the
correct boundaries of the counterpoint), perhaps by running a non-sequential
search on the resulting mothergraph, we could group some of the occurrences
of theme and counterpoint together into larger compounds, and thus show a
higher hierarchical level.

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
nt 10 DFT nt 1 DFT nt 2 DI nt 1 DFI nt 2 DAP

1. C— — . —— — —
nt 2 DFT nt4 DFT nt 10 DFT nt 4 DFI m 23 DFI
= = — [:
nt 2 DI nt 23 DFI ul 2 DI
3 — - " —
Dux: —
Comes: —

Counterpoint: m

Figure 61: The overall structure of the fugue. The lines refer to the correct
occurrences of the themes. The numbers refer to our analysis.

Another issue in using the SimSegmenter as a fugue analyser is that we
are not able right now to determine the importance of the patterns found. By
looking at the mothergraph, we cannot tell which compounds could be dux or
comes or counterpoint, but some reasoning about the size of the similarities and
the number of the occurrences would be needed to determine this.

Finally let’s look at the beginning of the resulting mothergraph:

0o 4.0 8.0 8.25 85 16.0 16.5 16.75 170 1775 180 19.0 19.25 200 210

5] o
) 025 T M4
. ‘ \ /’ \ nt 15,[ns=3]nd=0 ﬂ
+ ‘ LG “l’
I i, ns= b 75 \ ‘ Int 15, ns=3, nd=0 | nt 15, ns=7, nd=1]
125 | !
: ‘ " 1
1

T | x I ., 1 o 1 re
. I o
4 L 2 L J L 4
nt 10, ns=20, nd=0 nt 24, n3=5, nd=0 nt 24, n3=5, nd=0
8.0 2.0 2.0
nt 20, ns=21, nd=1
8.25

The nt 20 is the dux and the nt 10 is the comes. Above the comes is the coun-
terpoint nt 4. Remember that the vertical position of the compound vertices
do not reflect pitch. Also visible is three occurrences of nt 15 and two of nt 24.
This analysis is based totally on the self-similarities of the piece. In a fugue,
self-similarity is an extremely important feature. Not many notes are left un-
matched. Only one pattern (nt 15) has the smallest allowed size of three simple
vertices. We would like to conclude that to make an analysis totally based on
self-similarity seems certainly to be one legal, though incomplete, way to gain
insight into the structure of this kind of music.

5.5.3 Non-partwise non-sequential segmentation of Jesu meine Freude

This time we used only two similarity measures. Due to performance reasons we
were forced to impose a maximum size of the subgraphs we used for searching.
Otherwise the program would go slower and slower as the size of the match
increased, ending in too long evaluation time. Here are the parameters:

141

oo 10.0 15.0 24.0 4.0 43.0 45.0 45.5 45.0

nt 5, ns=81, nd=3
240

Figure 62: The start of the resulting mothergraph

Population size 120
Generations 250
Crossover 0.0
Mutation 0.4
Fresh Blood Chance 0.4
Initial size 10
Max size 16

Similarity measure nonSeqBagIR_DAP_Grp
nonSeqBagIR_DI_Grp

Limit 1.7

¥ 0.5

We have chosen to forbid the subgraphs to grow to a size of more than
16 vertices. This restriction has some serious consequences for the result of
the search. The SimFinder tries to make well bounded phrases, but the size
restriction forces it to leave out some notes in each phrase. Another restriction
in this search is that the minimum size of accepted subgraphs is 3. This is
also highly visible in the result. But the SimFinder does what it can to meet all
restrictions and preferences, so here we present the result. Again the similarities
in the repetition are found — the possible overlap with the last phrase did not
occur. Figure 62 shows the start of the resulting mothergraph. At first sight,
the segmentation result does not look as beautiful as in the sequential case. The
piece is segmented into seven different compound vertices. The limit value of 1.7
leaves no room for matches which are not totally correct, so the segmentation of
the first six bars and the repetition of them is done in exactly the same way. The
repeated six bars have been reduced to three vertices each: a compound (nt 5),
a note and a compound (nt 6). Please notice that although our graph window
decided to layout the 2x 3 vertices in question in different ways, they are actually
equal. With the minimum size of accepted subgraphs on 3, the SimFinder is
not allowed to put the remaining six vertices into two final compounds, each
containing six bars. This is a little unfortunate. Had there been four vertices
left in the mothergraph, we are convinced that this would have happened. The
same restriction means that no matches are found in the last seven bars of the
chorale.

But let us look inside the compounds. Figure 63 shows the first six bars
segmented. The nt 4 is a perfectly bounded entity consisting of the entire first

142

nt 501

7

1 S
ol

0 T - I | -,
= e s e s
=11 i =
— 1 i’ T T j i’ = ©
f [I wen &
o4 DI \E‘ m 3dl L il D_ ' _ m2Dl DI .I - t E

Figure 63: The segmentation of the repeated first six bars.

phrase of the chorale. Due to the maximum size of the subgraphs, the nt 0
is not able to span over the entire first measure (which contains more than 16
notes), but nt 0 also suggests that the first bar alone could be a subphrase.
Also nt 1 suggests a subphrase. It is well bounded by ending on the fermata.
But nt 2 and nt 3 are pulling the extension of the phrase in different directions.
Instead, we end up not finding the boundaries of the last two phrases, but still
the similarities found are correct.

For this experiment we also give the graphgrammar built when substitut-
ing subgraphs with compound vertices. The graph grammar is found in the
appendix, beginning on page 178. It is a list of production rules, one for each
compound vertex ever substituted in the run. This means a total of 14. The left
side shows a compound (nonterminal) in a context — the vertices which have
edges connecting to it, and the right side shows the result of the production
(also including the context).

5.6 Summary

In this chapter, we have presented a segmentation algorithm based almost
uniquely on musical parallelism. Building blocks for a graph grammar are sim-
ilarities located by the SimFinder. We have introduced compound vertices in
the graph and discussed problems with compound substitution and the result-
ing inconsistencies in the graph. The solution has been to distinguish between
strong and weak edges, and compound substitution is reversible in the present
implementation by virtue of the anchor resolution of edges**.

The viewpoints, view comparators and similarity measures of the SimFinder
have been extended to cope with compound vertices. The way we compare and
handle compounds in the view comparators can be improved, as we discuss in
section 6.1.3.

The SimSegmenter uses thresholds to control the SimFinder and uses the
general-to-specific ordering of its viewpoints to find motives and derivations in
a piece. These will constitute the building blocks for the grammar, and their
internal relations are based on similarity. Musical similarity or parallelism thus
becomes the basic relationship between tokens of the grammar, and the re-
lationships can be labelled more specifically with the viewpoint under whose
transformation they were found to be equal. The SimSegmenter resembles the
algorithm of Smaill et al., but it improves it in two respects: the SimSegmenter

44 Although the actual reversal mechanism has not been implemented yet.

143

handles non-sequential similarities, and it not only removes the found similar-
ities but substitutes them with compound vertices, which allows a hierarchical
structure to be built with successive runs of the SimFinder. The result is a set
of production rules that are context-sensitive in this implementation but could
have been context-free. We have discussed how to use such a graph grammar
generatively, which poses questions on the size of the included context and on
the generalisation of context.

Lastly, we have presented three test results on a chorale and a fugue, which
have shown a segmentation based on similarities. The similarities found are
correct. The SimSegmenter most often finds what we expect it to. The grouping
boundary rules from GTTM have a tremendous effect compared to segmenting
without them.

We have introduced almost no mechanisms to control syntagmatic relations
between grammar tokens on the same level. The grouping viewpoint is the
only exception; it is an attempt to ensure that similarities are located at (and
chopped out of) appropriate places in the graph, according to phrasing and
grouping constraints. We believe that a deeper study of syntagmatic relations
must be included in order to improve the built grammars.

The SimSegment algorithm tries to build a hierarchic structure much in the
sense of Herbert Simon (see section 2.2.1). It uses the SimFinder to locate
stable intermediate forms, which can then be used as building blocks for fur-
ther construction. The parallel drawn by Simon himself to evolving biological
systems, finding more and more fit individuals, is the more striking because
the SimFinder is actually a genetic algorithm, i.e. a search method based on
the principle of evolution. The central question is that of ’selectivity’ — the
information feedback that gives an ability to discern more stable subsystems
(subgraphs) from less stable subsystems in order to abstract them away into
components (compound vertices) that may be regarded as units in themselves.
The SimSegmenter selectivity lies in a thresholded use of the SimFinder, the
latter being almost solely based on similarity, although a few grouping prefer-
ences have been thrown in as well. Simon’s two kinds of selectivity, the trial and
error method, and learning from previous experience, are not implemented in
the SimSegmenter. Trial and error could be built into the algorithm if a reason-
able measure could be given of whether an analysis was coming to a dead end
or proceeding in an acceptable way. The SimSegmenter could then backtrace
and undo the compound substitutions that were unbeneficial and try another
choice of stable intermediate forms. Learning from previous experience could be
introduced through a number of ingenious methods. A simple way would be to
remember often seen patterns (i.e. subgraphs) and allow the SimFinder to addi-
tionally rate the fitness of similarity statements according to their resemblance
to statements that were previously found to be good intermediate forms.

144

6 Conclusion

Let’s evaluate the three main ideas we have described.

Graph representation for non-monophonic music

We think there are many possibilities in the music graph. It is a very flexible
and extensible representation. But this also means that we need very powerful
analysis tools to exploit it. Searching for similarities in the graph is certainly
possible, but locating the right fragments for segmentation purposes does not
happen automatically. Particularly, the non-sequential subgraphs would benefit
from additional guiding heuristics to ensure that they are sensible subparts of
the piece.

Both sequential and non-sequential search in the partwise graphs have proven
more successful than the respective searches in non-partwise graphs. This is
almost certainly due to the added complexity of graphs that include inter-part
edges.

Search for musical parallelism

We find that he use of the multiple viewpoint system is the most successful
of our three ideas. This idea is also very extensible; ideas for new and better
viewpoints keep popping up, so there are still many to try out. Even though
we have restricted ourselves to repetition and simple transformation, we have
succeeded e.g. in finding similarities in the fugue that we hadn’t noticed before
the SimFinder pointed them out. An important ingredient in our success with
finding melodic similarities have been the MuseData encoding of diatonic infor-
mation and our diatonic viewpoints. The addition of elaborating/simplifying
viewpoints would be a great improvement.

Segmentation using a graph grammar

We regret that we haven’t been able to present more results, both in the way
of analyses of other pieces than the chorale and the fugue, but also in the
way of validation of test results we have. The best validation we have of the
graph grammar found is the analyses given in section 5.5. Using the grammar
generatively would probably point out a number of weaknesses present in the
current approach.

Even so, we have built a system that is able to segment a piece of music
to some degree. We have tried it on a chorale and a fugue, which represent
two extremes in compositional technique. We count it as a strength that we
have been able to treat both with the SimFinder system and the graph rep-
resentation. As discussed in section 5.4.4, p. 133 and under ’improvements
and extensions’ below, there are a number of loose ends that would improve
the SimSegmenter. E.g. a more systematic and concrete examination of what
constitutes syntagmatic relations in a musical grammar. The introduction of
the grouping ’viewpoint’ has improved the SimSegmenter results significantly.
The similarities found in the SimFinder are usually good similarities, but the
boundaries are the problem; we have tried a few of the grouping rules from the
GTTM and seen that they do actually improve grouping significantly in spite
of their small number.

145

Different analyses

The GTTM proposed four ways of making a preferred analysis: grouping struc-
ture, metric structure, time-span reduction and prolongational reduction. Our
analysis approach was based solely on parallelism. This approach was not in-
tended to be the only way to understand music, but a way of illuminating the
structure of the music. No doubt we could have made a more complete ana-
lysis had we been able to perform other types of analysis — making multiple
hierarchies to contribute to the final analysis.

Meter could be another viewpoint usable when searching for similarities.
The metric accentuation emphasises passages in the music. For example on the
measure level, in a 4/4 meter measure, the first and third beat are the most
metrically accentuated — the first is the most important. A viewpoint picking
out notes on metrically accented beats would be a natural one. In this way
we are likely to find only the most important notes and thus discard all other
differences.

We have not dealt with information regarding tension and relaxation (pro-
longational reduction). This is where the meaning or the logic of the music can
be found, or at least a meaningful relation between the musical fragments in
each hierarchical level (syntagmatic relations). Important on this issue is the
harmonic progression of the piece. From a MuseData score we should be able
to quite easily extract harmonic information. The graph representation allows
us to express each ‘underlying chord’ as a set of notes, ranging in a given time
span. A harmonic analysis could contribute to extending the vertex versus ver-
tex based search we are depending on. Harmony could have been a basis for
finding similarities in differently structured musical objects.

6.1 Improvements and extensions of the SimFinder sys-
tem

6.1.1 The GA and the definition of musical similarity

A systematic tuning of the GA is still to be done. On the other hand, there are a
number of general questions on musical similarity that are probably too loosely
answered here to justify spending large amounts of time on fine-tuning the GA.
It may not make sense to begin a thorough tuning before we are sufficiently
confident that the defined similarity measures actually capture what we want
to find. What fragments people judge as similar (when not depending on the
most basic melodic alikeness) is a question we have completely skipped over, for
fear of getting lost in the jungle of music psychology. For example a similarity
measured in pitch contour is a hard one to control. If two passages have similar
contour, they might be heard as such, but if one of them furthermore forms a
harmony, and the other does not, or forms another harmony, we are likely to
say that they do not sound alike. It would, however, bring substantial weight to
a claim of finding similarities in music, if the similarity measures were backed
with empirical evidence that they do really describe similarities that perceptible
and thus relevant to human listeners. In the early versions of the SimFinder,
we made a couple of informal listening experiments to judge the quality of
the first similarity measures we had constructed. The impression was that
there is a large deviation both among ourselves but also between our subjective

146

similarity ratings and the ratings computed by the similarity measures. If a
sufficient number of human similarity ratings were produced in a listening study,
machine learning techniques could be used to tune the numerical combinations
of viewpoints that happens in the similarity measures.

There is ample room for improvement in the use of the GA. We have used
a plain standard algorithm, but the search could be improved with several
more advanced techniques from the evolutionary toolbox. Below we suggest
co-evolution of similarity statements and similarity measures (section 6.1.8).
As discussed on p. 128, the search could also be improved by using multi-
ple SimFinder populations evolving concurrently and periodically exchanging
genetic material between them.

There is room for creative improvement of the non-sequential mutation op-
erations. E.g., using the best match found by the edge comparison could be
used to mutate intelligently as we do for the vertex comparison (see p. 98). In
general, mutations that are more 'musically aware’ could improve the SimFinder
search.

Although the GA that is at the heart of the SimFinder is a search algo-
rithm like many others, the choice is not arbitrary. The music graph represents
an enormous search space of subgraphs; particularly when inter-part edges are
added (to create a non-partwise graph) and the search is extended to non-
sequential subgraphs, the number of possible subgraphs explodes. Genetic algo-
rithms are useful to search such enormous search spaces. But the price of using
a stochastic search method, as we have discussed in section 5.4.2, is a non-
deterministic analysis, where additional work is needed e.g. to ensure that all
occurrences are found. It is also necessary to introduce heuristics to help the GA
find stable intermediate forms of the appropriate sizes. In Jesu Meine Freude
(BWV358), we would rather first find similarities among the three phrases con-
stituting the repetition and then find them to constitute a larger repetition,
than locating the entire repetition in the first run. This is necessary to build
a good hierarchical description, and the grouping viewpoint and the maximum
size parameter are examples of such heuristics. But the use of viewpoints is
applicable to other search methods, as e.g. the work of Conklin has shown
[CW95], and the music graph is a general and flexible representation. Despite
our reasons to choose a GA, there could be a sensible extension of this project
in trying out other viewpoint-enabled search methods on the music graph.

6.1.2 The music graph

As described in section 4.2.2, there are many possible extensions to the graph.
We think it would be beneficial to include other symbols in a score such as slurs,
beams, fermata, bar lines, either in vertices or as additional edges. The whole
mechanism of viewpoints, view comparators and similarity measures would need
to be revised to either take account of the new graph elements or to just ignore
them if they are irrelevant to the particular viewpoint and keep on comparing
graphs as though the new elements did not exist.

Non-sequential graph matching can probably be done a lot smarter and
faster than we do. Edge comparison can be easily improved by comparing sepa-
rately SIMULTANEQUS and FOLLOW edges of the two subgraphs, since comparing a
SIMULTANEQUS edge with a FOLLOW edge will give a rating of 1.0 (i.e. 'unsimilar’)
anyway.

147

6.1.3 The SimSegmenter

The vertex comparison of compounds should do something smarter than simply
compare the non-terminals of the two compounds. After all, they may be very
different kinds of derivations of the same motif (e.g. a variation that is equal
to the motif in absolute length and another variation found under ’diatonic
interval’).

It would have been nice to have more evaluation of grouping structure, in
order always to find the smallest entities first, and thereafter using them for
larger compounds. The maximum size imposed on the subgraphs (for better
performance) does too much damage when segmenting.

We feel that there is a lot more to be done in the structuring of known trans-
formations of the building blocks located in the graph, and probably letting this
knowledge influence the SimFinder during segmentation. At present we store
only the paradigmatic relation between a derivation and its original motif, but all
the derivations are also in some kind of paradigmatic relationship. We may also
wish to find variations that are related by the consecutive application of several
different transformations, such that fragment; = t1(ta(. .. t,(fragments))).
We might use such a web of paradigmatic relationships to infer which is the real
original version of the motive — not just the first located version, which is what
we call ’the original’ at present, but the purest and musically clearest version
of it. This may in turn be used to guide the segmentation process to a more
reasonable result.

In section 5.6, we considered briefly how learning mechanisms might be in-
troduced in the SimSegmenter to improve segmentation through experience.

As explained in section 5.4.4 (p.131 and p.133), we could have made the Sim-
Segmenter output context free graph grammar rules, or we could have worked
more on generalising the context of production rules for the same non-terminal.

6.1.4 Multiple hierarchies

Perhaps a more stable hierarchical ordering could be obtained by searching
separately for different basic kinds of compound vertices? We might build a
separate harmonic grammar of the piece, where compound vertices are always
simultaneities, i.e. chords, as well as a melodic grammar, where compounds
are always sequences or near-sequences of notes, and then combine the two
grammars. Other hierarchies describing meter, prolongation, etc. could be of
use.

6.1.5 Elaboration, simplification, reduction

In section 3.2.2, we distinguished between two basic types of parallelism: repeti-
tion/transformation, and elaboration/simplification. The latter are more com-
plicated, since they are transformations that insert and/or delete events in a
musical fragment. E.g. a melody can be repeated in an embellished form,
where grace notes are added. To see the exact similarity between the embel-
lished version and the original, we would have to determine which are the grace
notes and then remove them before comparing with the original. In other words,
the viewpoint applied to the embellished version should be selective, picking out
some notes that are not necessarily connected in the graph.

148

We have no way of locating patterns in notes that are not connected by the
immediate precedence relations (FOLLOW, WEAKFOLLOW), or simultaneity (SIMULTANEQUS,
WEAKSIMULTANEQUS). For example, in the GTTM, Lerdahl and Jackendoff base
the time-span reduction on a reduction hypothesis: “The listener attempts to
organise all the pitch-events of a piece into a single coherent structure, such that
they are heard in a hierarchy of relative importance” [LJ83, p.106]. The time-
span reduction locates the most important pitch-events and thus, when moving
to a higher reductional level, leaves out less important pitch-events in between
the important ones. The reductionally important events therefore are not con-
nected directly to each other by FOLLOW edges in our graph. It is probable that
certain interesting patterns recur on higher reductional levels, but we are not
able to locate these, because the details of the less important pitch-events must
be included in the subgraphs compared in the SimFinder.

Again this could be remedied by the introduction of selective, or reducing
viewpoints that omit some of the information in a view. Such a viewpoint is
basically a small reduction mechanism that picks out the most important events.
We believe this would be an extraordinary improvement to the SimFinder.

6.1.6 Structure in structures

When trying to segment music, at some point we have to abstract away the
information from the compound and simple vertices in a graph. We would like
to be able to compare structures in the music with each other — disregarding
the explicit note information revealed in the vertices below. For example to
see that two pieces have similar forms (for example a sonata form), we must
be able to compare the structures of both pieces to each other. The sonatas
have most probably no similar significant melodic material in common, but
their structure — the overall form is similar. We could call this a higher-order
structural similarity because the resemblance pertains to a similarity in the
structures of the building blocks, rather than to the correlation between the
building blocks.

We are yet unable to find this kind of similarity with the SimFinder. Let
us give a smaller example: the pattern AAB is similar to the pattern CCD,
even though A and C (and B and D, respectively) could be very different.
The SimFinder would not find such a similarity, because the view comparison
requires A and C (and B and D, respectively) to be directly similar according
to some viewpoint. This could be a viewpoint that compares the 'type interval’
between two objects. In the present SimSegmenter, the idea closest to a 'type of
compounds’ is the non-terminal. We have not experimented with a viewpoint
able to do this. For example, if we let the viewpoint denote type equality
between successive elements, the sequence [A,A,B] gives [0,1] and [C,C,D] also
gives [0,1]. From this viewpoint, we could discover the similar structure of the
two sequences.

Another solution could be to introduce viewpoints which are more intelligent
in comparing compounds and their relations, than the ones we have used, only
comparing on the parallelism type. We could attempt to locate similar struc-
tures on the basis of relations between compounds. E.g. if B is a transposition
of A, and also D is a transposition of C, the similarity can be located by looking
at the paradigmatic motif-derivation relationships in and among the patterns.
This presupposes, of course, that the A, B, C, and D patterns are correctly lo-

149

cated in the first place. This example is a sequential one, but the paradigmatic
relationships must be comparable along edges in the graph in order to apply to
non-monophonic music. This is a feasible extension of the SimFinder.

But this raises another question. Is it interesting to compare a sequence of
three ‘small’ compound vertices (when counting in nested size) with a sequence
of three much ‘larger’ compound vertices just because both passages contains
repetitions? Sometimes yes, but the point here really is to be able to keep track
of which abstraction level the two sequences are located — can we compare a
top layer with a lowest layer? In the way we build our hierarchy we have very
little control over which elements could be classified as belonging to the same
abstraction level. A schenkerian division of the abstraction levels into exactly
three reduction levels could be a way to deal with this.

6.1.7 Ambiguity

We have ignored altogether the issue of ambiguity. Sometimes a musical frag-
ment may be interpreted in different ways and no interpretation is more promi-
nent than another. A small example is elisions, where a single note can be
construed equally well as ending one phrase or beginning the next. On a higher
level, there might be different structural interpretations of an entire phrase,
section, or movement. In terms of generative grammars, we can insert another
production for a given non-terminal to produce alternative renderings of the
same fragment. For purposes of analysis, it could be useful to be able to in-
sert, in a derivation tree for a given piece, nodes containing several alternative
derivations for a fragment.

6.1.8 Co-evolution of similarity measures and similarity statements

A more drastic change to the SimFinder would be to drop the idea of produc-
ing weighted evaluations of similarity statements through the combination of
viewpoints and view comparators in similarity measures. Instead, each trans-
formation function describing a musical similarity we desire to locate could be
implemented in an evaluator object that 'clicks’, or responds, when the two sub-
graphs are exactly equal under its transformation®. It would have a boolean
output that was much easier to interpret and combine with other outputs. The
SimFinder could then be adaptive in the sense that we don’t tell it what kind
of similarity to look for, it adapts to the similarities it finds. If a similarity
statement is found, where the PitchInterval evaluator ’clicks’, a natural muta-
tion of the similarity statement would be, not to move the subgraphs, but to try
out the AbsolutePitch evaluator. The fitness of a stronger viewpoint that clicks
should of course be better than the fitness of a weaker viewpoint that clicks.
This is an example of co-evolution of the similarity statement and its similarity
measure, where the viewpoints applied are selected through evolution.

The whole notion of similarity statements could be elaborated more. A state-
ment can be true or false in itself. But it could also be a conjunction of other
similarity statements. This way, if the subgraphs contained in a conjunction
of similarity statements were required to be related to each other, a similarity
statement could describe not only the similarity of two subgraphs but of sets of

45The transformation could be applied to only one or to both of the subgraphs, according
to the kind of transformation we are talking about.

150

subgraphs that are alike. The occurrence search, which the SimSegmenter per-
forms now, would be built into the SimFinder, weighting similarity statements
that combine many subgraphs stronger than those combining only two. This
idea, especially in conjunction with the previous one of ’evaluator objects’, we
find very promising and indeed would have implemented if we had had another
month.

6.1.9 Applying SimFinder to audio arrangements

In her attempt to define an abstract “Music-piece” (see section 3.1.3 and [Bal92]),
Balaban defines an abstract framework of “Music Structures” whose elementary
components are not necessarily confined to notes and rests, as found in a tradi-
tional staff notation of Western tonal music. The elementary components might
as well be recorded audio sounds.

What would it take to extend the SimFinder to handle loop-based audio
structures such as programmed drum tracks? Such compositions are typically
constructed using a sequencer and a sampler and consist of a temporal arrange-
ment (in the sequencer) of occurrences of pre-recorded digital audio representa-
tions (played back by the sampler) of individual drum sounds. Some occurrences
are specified to be played back faster or slower than others, or to be transformed
through other kinds of digital signal processing (DSP), e.g. equalisation, filter-
ing, reverb, delay, compressor, chorus, distortion, etc. If this structural informa-
tion is available for analysis (as it is from the sequencer file), we could imagine
defining music objects not as individual notes or rests, but as occurrences of
the basic pre-recorded audio sounds. Properties of such objects would include
which basic sound is used, the playback speed, loudness, and applied DSP ef-
fects, and the viewpoints used when comparing objects would be constructed
either with reference to their basic sounds and other properties, or using com-
mon DSP analysis tools, e.g. cross correlation, Fourier transforms, wavelets,
etc. The introduction of audio comparison capabilities in the SimFinder system
amounts to the following:

e subclassing the MusicVertex class with an audio-specific vertex class that
has properties as mentioned above,

e imbuing the compound vertex class with abilities to envelop groups of
music objects in DSP effects,

e writing audio-specific Viewpoints, ViewComparators, and SimilarityMea-
sures

The temporal structure in a programmed drum track differs from the tem-
poral structure in a staff notation of tonal music in that the music objects in the
sound track most often will not be placed in relations of immediate precedence.

The obvious solution to this is to insert rest objects spanning from the end
time of the preceding object to the start time of the following object. There
still might be issues with the inferred graph structure, depending on the level
of quantisation imposed on the structure by the sequencer. In a quantised
structure, the start times of all music objects have been discretised to some
extent, or “snapped” to a temporal grid of beats imposed on the structure,
just like notes and rests in a staff notation occur at an integer multiple of half

151

the smallest note length?® occurring in the piece. In a non-quantised structure,
however, the basic sounds might be placed on a much more fine-grained time
scale, e.g. down to the sample length for the highest sampling rate occurring
in the piece. It is common to have different attack lengths on different drum
sounds, which means that the audible onset of the sound occurs at different
intervals from the start time of the sounds. This means that a very precise
placement of the audible onset times on a grid of beats requires the start times
of different sounds to be aligned at different (although small) distances before
the exact beat. It should be possible, though, to solve such problems by inserting
an intermediate analysis that guesses at the structural starting points intended
in the actual placement of sounds.

If no rest objects are inserted, the MusicGraph could be built using, say,
FOLLOW2 edges, that do not represent immediate precedence, only precedence.
Vertices would then have FOLLOW2 edges connecting them to the next occurring
vertex — or vertices, if there are more than one occurring on that beat.

Analysing a drum track would probably yield many more exact repetitions
of patterns than the analysis of scores of classical music. It is difficult to predict
if this will increase the complexity of the SimFinder results so much that it will
need remedy in some form of alteration of the search scheme, to work. Although
the example given here focuses on drum tracks, any loop-based music arranged
in sequencer files would be analysable in this way.

6.1.10 Applying SimFinder to non-western music

We have not tried our program on non-western music. But our system should
be able to represent any kind of music which has a discrete division of pitches.
Idiom-specific knowledge such as knowledge of diatonic scales is encapsulated
in the viewpoint mechanism and should be easily replaceable.

6.1.11 Applying SimFinder to other areas than music

The SimFinder locates similar patterns in temporal configurations of attributed
events. In theory, this should be applicable to other areas than music, where
data may be configured as attributed events occurring over time. For example
(although there are much more developed systems that specialise in this), if
there are any recurrent patterns in the fluctuations of stock market prices, it
should be possible to find them using a SimFinder. Imagine following the stock
values of n companies. The continuous flow of data describing the stock price
of company; must be reduced to discrete events such as “stock 7 begins rising”,
“stock i begins stagnating”, and “stock ¢ begins falling”. These events will then
be the vertices in the graph that the SimFinder searches for similarities, and
they will be connected by edges signifying the temporal relations among them.
Viewpoints could include e.g. the mean increase/decrease over the period that
the event spans.

46 There might be dotted notes, or double dotted notes, in which case start times would be
integer multiples of a quarter of the smallest note length.

152

A SimFinder design and implementation

A.1 UML diagram

Data structures
MusicEdge (.2
edges
* mutEdgesJ> gnEdges
A % N N from, to
MusicGraph

SimilarityFinder

AN

A

Sequential
SimilarityStatement

Subgraph
Sequential NonSequential |
< Subgraph Subgraph original
i L G < ST U
2
g
a0 derivations
J
&\'&
@ .
O LY
2 K
£] RN R
(3
A S viewpoints . Vi int
SimilarityMeasure ViewComparator [lewpoin
T T Lr LT 1]
simMeasure A A
Sequentia NonSequential Sequential NonSequential Sequential NonSequential
2 SimilarityMeasure SimilarityMeasure ViewComparator ViewComparator Viewpoint Viewpoint
SimilarityStatement A
s
T T :
i NonSequential A
SimilarityStatement origin origin
B
SimM easureResult viewDifferences ViewDifference
VAN
s
View Comparators,
NSSMBaglRResult) -
NSVDBagIR Viewpoints

Figure 64: UML diagram of the SimFinder system

The classes of the graph structure are grouped in the dotted box ’Data

structures’.

The 'Measures, View Comparators, Viewpoints’ box groups the

classes of the viewpoint system, and to the left is shown the SimFinder class
and the similarity statements that are individuals in the GA population. The
two remaining classes 'GraphProductionRule’ and ’'NonTerminal’ really belong
to the sphere of the SimSegmenter, which controls the use of the SimFinder.
We haven’t shown the SimSegmenter in the UML diagram.

The seqDC and segMD sequential similarity measures are static instantia-
tions of anonymous subclasses of the abstract class SequentialSimilarityMeasure.
The sequential view comparators are likewise to the SequentialViewCompara-

153

tor class. Non-sequential similarity measures are subclasses of NSSM Vertex,
NSSMEdge, or NonSequentialSimilarityMeasure; non-sequential view compara-
tors are likewise with the subclasses of NonSequential ViewComparator. The
following acronyms are used:

NSSM = Non-Sequential Similarity Measure

NSVC = Non-Sequential View Comparator

NSVD = Non-Sequential View Difference

A.2 Implementation

We have implemented the SimFinder system in Java. MuseData files are read
using our own file input Java methods, but to read midi files, we use the jMusic
package. jMusic discretises the midi events and interprets them as notes in a
score notation. jMusic is available at http://jmusic.ci.qut.edu.au/ .

The implementation of view comparators differs a little from the description
in the SimFinder section (4) and from the design shown in figure 64. In the
implementation, a SimilarityMeasure object does not point to a set of (View-
Comparator, Viewpoint) pairs, instead it points to a set of ViewComparator
objects. Each ViewComparator object then does the actual computation of its
viewpoint on the subgraphs, because the implementation wouldn’t be prettier if
the viewpoint job was abstracted into a separate class. Therefore there exists no
Viewpoint class. The NSSMBaglIR, class doesn’t exist in the implementation ei-
ther, because all the BagIR measures subclass NonSequentialSimilarityMeasure
directly.

154

B SimFinder performance and tuning

We have not found time to tune the GA thoroughly, so the following sections
are mostly presented in order to give an impression of the GA mechanism.
Parameters are only varied one at a time. Also, there are a number of general
questions on musical similarity that are probably too loosely answered here to
justify spending substantial amounts of time on fine-tuning the GA.

Only the seqMD_APAL and seqMD_PIAL similarity measures have been tested,
without any grouping structure evaluation. Parameter values are different for
the non-sequential similarity measures, but we expect that the values be much
the same for the seqDC measures. It seems that the crossover, the fresh blood
chance and to some extent the mutation parameter do affect the mean size of
the best found similarity after a fixed number of generations. The number of
mutations applied in a mutate operation also influences the mean size. The
bonus value and the flattening constant ¢ are not so important.

B.1 Varying the flattening constant ¢ (seqMD)

The following table shows how varying ¢ affects the mean size of the best simi-
larity statement in a population of size 100. The mean size was calculated over
30 test runs of 100 generations each.

SimFinder parameters:

Population size 100
Generations 100
Crossover 0.0
Mutation 0.5
Initial size 3
Max size N/A
Fresh blood chance 0.3
Similarity measure SeqMD_APAL
o 0.000001
Bonus value 0.9
Results:

155

¢ | Mean size of best
(30 x 100 gens.)
0.1 9.8
0.2 11.3
0.3 8.3
0.4 9.8
0.5 94
0.6 10.0
0.7 9.7
0.8 10.3
0.9 9.0
1.0 9.4
5.0 8.9
9.0 10.8
11.0 10.2
13.0 9.7
17.0 11.3
21.0 8.4
25.0 10.5
31.0 11.6
41.0 9.7
51.0 9.6

We do not find any significant development in the size of the best found
similarity statements over ¢. We have therefore chosen a high value of ¢ = 40
because it does not decrease the size modifier as close to 0 as lower values of ¢
do.

B.2 Varying the bonusValue parameter (seqMD)

The following table shows how varying the bonusValue parameter affects the
mean size of the best similarity statement in a population of size 100. The mean
size was calculated over 30 test runs of 100 generations each.

SimFinder parameters:

Population size 100
Generations 100
Crossover 0.0
Mutation 0.3
Initial size 3
Max size N/A
Fresh blood chance 0.3
Similarity measure SeqMD_APAL/SeqMD_PIAL
I 0.000001
7 40
Results:

156

bonusValue | APAL Mean size of best | PIAL Mean size of best
(30 x 100 gens.) (30 x 100 gens.)
0.1 94 7.1
0.2 7.8 7.3
0.3 10.3 7.5
0.4 9.5 8.6
0.5 9.8 8.2
0.6 9.0 9.2
0.7 8.9 10.0
0.8 9.4 8.2
0.9 10.8 9.8
1.0 8.6 7.5

It is difficult to judge if there is any development in these numbers without
resorting to statistics. We won’t. It looks like if some bonusValue is better than
the others, it may be located in the high end. But this is only speculation. We
set the bonusValue to 0.9.

B.3 Varying the crossover parameter

The following table shows how varying the crossover parameter affects the mean
size of the best similarity statement in a population of size 100. The mean size
was calculated over 30 test runs of 50 generations each.

SimFinder parameters:

Population size 100
Generations 50
Mutation 0.3
Initial size 3
Max size N/A
Fresh blood chance 0.3
Similarity measure SeqMD_APAL/SeqMD_PIAL
I 0.000001
Bonus value 0.9
7 40
Results:
crossover | APAL Mean size of best | PIAL Mean size of best
(30 x 50 gens.) (30 x 50 gens.)
0.0 6.2 5.4
0.1 5.5 5.6
0.2 5.5 4.9
0.3 4.0 3.4
0.4 4.2 3.0
0.5 3.4 2.9
0.6 3.4 2.8

157

We find that there is a visible degradation in the size of the best match when
the crossover rate is increased. We therefore keep it close to 0.

B.4 Varying the mutation parameter

The following table shows how varying the mutation parameter affects the mean
size of the best similarity statement in a population of size 100. The mean size
was calculated over 30 test runs of 100 generations each.

SimFinder parameters:

Population size 100

Generations 100

Crossover 0.0

Initial size 3
Max size N/A
Fresh blood chance 0.3
Similarity measure SeqMD_APAL/SeqMD_PIAL
I 0.000001
Bonus value 0.9
7 40
Results:
mutation | APAL Mean size of best | PIAL Mean size of best
(30 x 100 gens.) (30 x 100 gens.)

0.0 3.0 3.0
0.1 6.4 5.3
0.2 8.7 7.8
0.3 9.5 9.6
0.4 10.7 11.5
0.5 10.7 9.0
0.6 9.4 8.8
0.7 10.2 8.1
0.8 10.2 10.0
0.9 9.3 9.9

The tendency here is that small values (0.0, 0.1, and 0.2) of the mutation
parameter are not enough. We obtain better results when a certain amount of
mutation allows the SimFinder to tumble about and explore more possibilities.
Since there is no crossover used in these results, what is not created by mutation
in the new population, is chosen through selection. Selection and mutation must
work together, both to explore and to exploit the search space. We have to
balance the exploitation-exploration goals to be able to use the SimFinder in
the segmentation algorithm. Values between 0.3 and 0.5 seem to give such a
balance.

158

B.5 Varying the ’fresh blood chance’ parameter

The following table shows how varying the freshBloodC'hance parameter affects
the mean size of the best similarity statement in a population of size 100. The
mean size was calculated over 20 test runs of 100 generations each.

SimFinder parameters:

Population size 100

Generations 100

Crossover 0.0

Mutation 0.3

Initial size 3
Max size N/A
Similarity measure SeqMD_APAL/SeqMD_PIAL
o 0.000001
Bonus value 0.9
7 40
Results:
freshBloodChance | APAL Mean size of best | PIAL Mean size of best
(20 x 100 gens.) (20 x 100 gens.)

0.0 7.9 7.2
0.1 11.6 9.3
0.2 10.3 10.4
0.3 12.5 8.2
04 8.4 7.7
0.5 8.0 6.9
0.6 7.5 6.7
0.7 7.0 5.7
0.8 54 4.6
0.9 3.7 4.1
1.0 3.0 3.0

We find that the size of the best match rises when freshBloodChance is
increased until 0.2 or 0.3. Then it keeps falling when freshBloodChance is
further increased. We keep this parameter close to 0.3.

B.6 Varying the number of mutate operations per muta-
tion

The following table shows how the mean size of the best similarity statement
in a population of size 100 is affected when we vary the number of randomly
chosen mutations applied each time the GA calls a mutation operation. The
mean size was calculated over 30 test runs of 100 generations each.

SimFinder parameters:

159

Population size 100

Generations 100
Crossover 0.0
Mutation 0.3
Initial size 3
Max size N/A
Similarity measure SeqMD_APAL/SeqMD_PIAL
I 0.000001
Bonus value 0.9
@ 40
Results:
#mutations | APAL Mean size of best | PIAL Mean size of best
(30 x 100 gens.) (30 x 100 gens.)
1 9.7 8.7
2 6.8 5.7
3 4.3 4.6
4 4.6 4.2
5 3.9 3.9
6 3.6 3.5
7 3.1 3.1
8 3.1 2.9
9 2.8 2.9

The time needed to locate larger matches clearly increases when the number
of applied mutation operations in each mutation is increased. We conject that
the exploitation ability of the GA is worsened. The fitness landscape is very
spiky, so when applying more than one mutation operation to a reasonably good
match, there is a greater risk of ’overshooting’ and mutating to something worse
than if we apply only one mutation at a time. We stick to a single mutation per
mutate operation.

B.7 Size and fitness of the best individual over 300 gen-
erations

In section 4.3.4 the vertex usage was shown for six different settings of the
mutation parameter: 0.1, 0.2, 0.3, 0.5, 0.7, and 0.9 (see figure 32, p.88). Below
is shown the size and the fitness of the best individual from the 300 generation
SimFinder runs that generated each of the vertex usage graphics.

SimFinder settings:

160

Population size 100
Generations 300
Crossover 0.0
Mutation variable
Initial size 3
Max size N/A
Fresh blood chance 0.3
Similarity measure SeqMD_APAL
n 0.000001
® 40
Bonus value 0.9
9.5e-08 T
01 ——
0.2 —------
0.3 oo
9e-08 05 B
8.5e-08 B
E 8e-08 B
5
12}
14
£ 7.5e08 | B
w
7e-08 |- <
6.5¢-08 L
6e-08 ‘ ‘ ‘ ‘
0 50 100 200 250 300
Generations
1 Best Fitness. Size of most fit |
35 T
0.1 ——
0.2 —-nn
0.3 oo
20k 0.5)
25 B
% 20 | J
3
5
4
® 15 —
10 B
s | i
o ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350
Generations

The two graphs are inverses of each other because the best similarity state-
ment in all runs has been a perfect match, so the decrease in fitness value
depends solely on an increase in size. The size modifier is thus shown in effect

161

here. For all mutation setting cases, the best fitness in the population converges
to a value over the 300 generations.

B.8 The fitness landscape

The following figures show the values of a sequential similarity statement while
sliding one of its subgraph through the graph. The graph was built from the
Bach chorale BWV358, and the plots are intended to show how spiky the fitness
landscape is, in terms of how much the fitness of a similarity statement may
be changed by a single slide operation. Subgraph s; of the similarity statement
is picked randomly and stays fixed while subgraph ss is also initially randomly
picked in the beginning of the graph and then slid from left to right through
the graph. After each slide, the fitness value of the similarity statement is re-
evaluated; this value is what is shown on the plot as a function of the slide
number. Thus sharp points show places in the fitness landscape where the
fitness rapidly changes — making it more difficult to locate a good match using
slide operations.

These plots are only intended to give a vague idea of the fitness landscape,
since the subgraphs are completely randomly picked. We have made a slide plot
for each of the sequential similarity measures. In addition to other differences,
the seqDC measures incorporate grouping structure while the seqMD measures
do not. Please note that the y-range may change.

6 —— ——— —
| \‘ ‘[w“ “w w“ ‘g \‘ “‘ squchAPN‘L E—

| | | \o \

| | \/ \ \

0 L L L L L L L

0 10 20 30 40 50 60 70 8 g quC_DAPAL

1

NERYRVERE | feog A

IR W

T Iy
| U i

0 10 20 30 40 50 60 0 seq_DC_PIAL

162

‘\ ‘(| p‘ f\‘ f\mMMT
W I el H || V)
e

\/ \/0\ U ‘\/ | \’; //
04 ‘/ \ \‘ ‘/

163

© seqDC_DIAL

© seqDC_DFIAL

® geqMD_APAL

TTYET T T =P

\ . M [l
TPV

| | | AN HQHL‘
SR I
. SRR

\ |
T IRk
|
o.4f | ‘L) ‘l‘

AR “““‘\L‘
i

ot |11

02 -

o
e
o

2 ® p % % 70 % segMD_PIAL

I‘ ‘A ‘ T f‘ fﬂ seqMDjlu—
RN

“‘ I I
\

il)

A e
I | |]
I . || |\
04t V U H v V‘ v \4‘/]

02 -

o
el
o

z‘o v . % ® " seqMDPILI

08 | ‘ ‘H

06 /\ ﬁ

AR

\
\
\
02 1

0 1‘0 20 :;0 4‘0 5‘0 a‘o 7‘0 80 gg qMD _PCLC

B.9 An evolving non-sequential similarity statement

The following is an example showing the evolution of similarity statements from
a non-sequential SimFinder run. The SimFinder parameters were:

164

Population size 50

Generations 100
Crossover 0.0
Mutation 0.3
Initial size 3
Max size N/A

Fresh blood chance 0.2
Similarity measure nonSeqVertex PLIOS
40

The shown subgraphs belong to the best similarity statement of each genera-
tion in question. This is not the same statement from generation to generation,
but a series of descendants of each other, each having a new mutation that
enlarges the subgraphs. The population also contains a lot of less good simi-
larity statements mutating aimlessly about. But the development of the best
individual shows that the GA is able to exploit a found match.

Only generations in which a change in the best similarity statement has oc-
curred are shown. At first (generations 8-12) the GA tries out different matches
of the same length. Then (gens. 13-41) it extends the match rather quickly, and
finally (gens. 42-100) the extension slows down a little. At generation 100, the
match was the same as at generation 80. The values of nonSeqVertex PLIOS
are shown in parentheses. Note that the best match is always a perfect match.
Therefore, the only difference in the similarity measure value is the one caused
by the size modifier.

165

0.5 10

e
zm%.%(. ja e
4@“)’} A) A\‘ﬂa L
3! %@‘i)

A & @)

0.0 0.5 1.0 1.5

L4

<R
A
Ries 15 ﬂ@: =5) =

- WCd
993
.(

Generation 23 (0.01306

~

245 250 255 26.0 00 05 1.0 15 20

SRR
ﬁgs{‘tﬁﬁgﬁg
Generation 24 (0.01153) ©

25 250 255 260

@
e il 7
b ASETLA

e
At
N Ty

)
Sroaest
it
\\\@

Ty
S

Py
{=Fp—(=

(S A S

Generation 14 (0.02073)

166

A\ L A\

ﬁb
W’"‘&)

Generation 35 (0.00926)

4.0 245 250 255 26.0 0.0 05 1.0 15 20

Generation 39 (0.00839)

240 245 250 255 26.0 (] 05 1.0 15 20

\\%f
ﬁa ,-‘(\ ﬂ

’\‘ &

\\\

X
@

e,
S _Q'j}; '{bsT o

G;e‘neratlon 80 (0. 00516)
Generation 100: same as generation 80.

167

C SimSegmenter examples

C.1 SimSegmenter run with nonSeqVertex_ PLIOS
The following settings were used in the simple test run described in 5.4.4, p.129.

SimSegmenter settings

File format midi
Partwise graph yes
Similarity measures nonSeqVertex_PLIOS
Population size 50
Motif search gens. 50
Occurrence search gens. 50
Gens. per limit check 20
Gens. after limit reached 30
Limit 0.05
Initial size 3
Max size 5
Crossover 0.0
Mutation 0.5
Fresh blood chance 0.4

The production rules for NT10 are shown in section 5.4.4. These NT10 rules
produce two compound vertices and a simple vertex, but in a different context
for each rule. The production rule for NT3 involves only simples vertices. When
the production rule is created as the result of a compound substitution, every
vertex connected to the inserted compound is included as context on the left-
hand side of the production. On the right hand side, in addition to the context,
NT3 produces four simple vertices: (50,0.5),(52,0.5),(53,0.5),(50,0.5). The rule
for NT9 includes an NT3 compound as context for the production.

[IR1] 1.0 2.0
]

1.0

¥ i

S

X
nt 3, ni=4, nd=0
20 [>

Figure 65: Production rule PR7 for non-terminal NT3 (nonSeqVertex PLIOS).

168

n.o 1.0 2.0

nt|4, ns=3, nd.:—.U
1

nt 3, ni=4, nd=0
20

nt 3, ns=4, nd=0

2.0 D

Figure 66: Production rule PR21 for non-terminal NT9 (nonSeqVertex PLIOS).

C.2 SimSegmenter run with nonSeqEdge DAPAL, -DIAL,
and -DFIAL

The following settings were used in the simple test run described in 5.4.4, p.131.

SimSegmenter settings
MuseData

no
nonSeqEdge _DAPAL, nonSeqEdge _DIAL,
nonSeqEdge DFTIAL

File format
Partwise graph
Similarity measures

Population size 50
Motif search gens. 100
Occurrence search gens. 100
Gens. per limit check 20
Gens. after limit reached 50
Limit 0.06
Initial size 3
Max size N/A
Crossover 0.0
Mutation 0.5
04

Fresh blood chance

The following pairs of subgraphs need not have been substituted simultane-
ously, i.e. they are derivations of some third and/or fourth pattern, which was
judged equal to these patterns under DI or DFI. The tonal viewpoint used is

notated to the left and right of the subgraphs.

169

DFI DI

365 3675 34.0 365 36.75 41.0

The subgraphs contained in the two NT'15’s beginning at 36.5 and 38.5.

DFI

365 3725 375 3775 38.0 385 39.25 395 39.75 40.0

1
1
1
|

¥

nt 7, ni=7, nd nt 7, ns=7, nd=1
1.5 1.5

The subgraphs contained in the two NT14’s.

DI DI

36.5 37 375 385 39.0 3495

nt 5, ns=3, nd=0
1.0

The subgraphs contained in the two NT7’s.

DFI DFI

365 3675 370 385 3875 340

The subgraphs contained in the two NT5’s.

170

D.1 Segmenting a chorale partwise sequentially

D Results from Simsegmenting

D.1.1 The segmented score

~ 10 6 W

e

=
=
A
o0
]

D)

u g e X
[as?
w_&mwﬁa X ﬁUoﬁm& mxx

T 1 M\L _-“,_‘ml_. > — ““_.l_1 m 1 ml!

T T v.(T | ——— 1 LI, T v (

[qEm Yasm gm0 ¥

LIq 1

| LA S I e |
1 11 1 11 1T
‘ 1

S 2
py=a oy

TR 0T 01"
“ m “‘_ T |

s | Y
a9 W

e

o a1 w
1 T o. 1 el |] T _“J I _]J_ T m = .— “_ | “ _hma_mﬁh L -
£

)
] |,
D]

I 1 14

e —— I I - I A0 LY

— e 4

1 | T

- _ : I 0144
_u e Lm F .L n_mcf,wmm. m

T 1 T T I mm_ T
-~ I ea _ v

Haow

67

1T =
e

85 AT apnar duW ‘nsaf

.1.2 The final graph

0ol

0=pu ‘g=1u ‘g
[Y

S

0=pu "£FsU G W

oy
0=pu ‘£=5u "2 W

0z
0=pu ‘£=5u g W
7

i 0§
OFPU ‘E=5u ‘g

0e
puE=5u G

.1
I
o @ |
¥ |
ol @ | 50
m 19 -m 05
e L 14 069 589 089
0T
0=pu ‘c=5u ‘g W
11 13
T

0z !
0=pu ‘g={u ‘g'w 0pu “4=su ‘g w

]

_ 0=pu ‘£=5u ‘g W

[y

@w@
w@
© @

3 3 & r
1
]
1
1

®

\

k4
0=Au ‘E=5u G W

§'49

\ !

08

09s

0es

0€
0=pu ‘£=s5u ‘g w

&

= ————

=

$1 ..)
pu ‘g=5u ‘gi1u

-

\

S08

0¥

I=puipg=s

r 5T
=pu ‘e=su ‘g W

0z
DFPU ‘E=5u g

(R4
pu jEg=s

009
0¥z

P pz =541 5 1
o

P g T=sp ‘9 0
0w

P pz=sp L
ove|,

WiEzZ=sy4 o1 ¥

172

D.2 Simsegmenting a fugue partwise sequentially

D.2.1 The segmented score

nt20 DFI x X X nt 10 DFI
nt 2 DFI
0 — e - D7l
€ <] — Wi @ &
3 SRR l 5‘*@
= = L,
|
nt 4DFI
“bb',, C - - -
X X X
nt 24 DFI nt 24 DFI nt 1 DFI
XX X
I~ A, —
l J L == i
X
.nt4 nt 15 m 15| nt I3 7 DFI
:‘;}, — — -
nt 14 DI
-nt 1 nt 0 DI
7
I - .7 L ;
P) ! g 7 i) L-E T »
X X X X X |[TWODAP
nt T14DFI
O]Pb » *bh 1
."w‘{, v —lpﬂ‘_ - — 1
S = -
mt 2 Di I
mt26-DFt " nt 3DFI
.nt 14
0 nt 2 DI
10
| « B
D Va = — .‘t
ya— i T T » H
O]
! nt 0, V== d l v nt 15
LB L] X X XX X X
— | 7 i
e o i = ~ —
v] — i 1 1 +—+= 1 1
BB = L MT5 (et
- Ee= IRt T8 DFT S
..nt3 nt 23 DFI
t 6 DFI 0] DFT e,
B ..nt2 nt6DFI ntl5s x x 1 | Sed
75 —] > £ [b‘.'hf' ®hey
1L —
D) B ——— B | 1
x _nt 16 DFI i
b nt 10 DFI
12480) J T ! T 1 1 1 } _J JL JL_ 1 | l\l - '{ L
X S—— e ———] v X
nt 16 DFI ntl2

nt 17 DFI

p .nt1 nrHDFE nt 17 DFI
e = nt 11 DFI
91’) T—1 1 i — — — -H.:h'i w — J>7‘7151‘\uJ
1 I 1 1 1T 17 L) |
5 v B= - =
X X
t5 |
.. nt 10 nt 5DF n
P " 3y X
- —— o o et
v Il T | r - % r | "l !] } 73&-‘2&
| —— w u L-ﬁ Xi
Lt 12 X nt 8 DEI nt 5 DFI
..nt17 nt 2 DAP
19 ..nt1l ‘
- W = =T T s — I O s — I s —~
)’ 4 14 (7] 1 I 7 I; - 13 | 9 vy 07 { 1 d
&
DY) — —
h N %:
nts t4 DF
P e eme =" =
T i N & ‘j; =i
= | = Tx x x [x brr
~e TS nt 12 DFI
nt 14 DFI nt 21 DFI
2 w2 T O DAP nt 15
‘5 S e e
L 4 o 11 !
@_7= = —
..nt4 k——/t_
’ nt 0 DI nt 21 DIFT
o |
v F || T 1
_‘ 1
nt 7 DFI == = = =
nt 3 DFI
,s .ont2] p22DFL__ nt22 DFI x x L9 DFT
[N
3 :l"ﬂl IH_d_cl &] ‘Ji‘igdl
7 v g v 0—) v 7
.ntzlg x X g XK X XX
< n | r I ——
v e e o
i X X [b
.nt3 —IX XHI9DFI nt 2 DI
28 19 at 15 nt 2 DFI
..t X X X
. — — XXXX X-—H H r-ﬁ r.——1 ——H H . o
£ — — 4 ! H— A S s R S . S
Q)V 7 l Vi
L
HEUE ;‘r E] E X¥ TKRX X Xy X
X X XX XX X XX |X X X
T S VR XI x X X
1
I -‘l- ‘jlyl I' F — a} £y [%)
X

D.2.2 The final graph

i Lt} SLEIt sEn s (1413 s s wm o s LRt} o wol vl

L1 tiail] st0l wiol st 10t o sioot S001

v\ 7
'

A

i1

sEogt LTS SC6E

i
\ | esoitunim
T ¥

11 "
: .im.._s]

®

o

il

$ 13

D.3 Simsegmenting a chorale non-partwise non-sequentially

D.3.1 The score when segmented

Iq5w

8SE AME

SpnaL] SulW ‘NS

T 0 e o Iapw
~ L m__ EN.IJ M arm o — 4 L J __ -]_ .
o= et _ == S e
ST F P P ¢ AR |
.L \«_Kﬂc_:
I ___, B e | | ,\I‘% L = L W LD \L\ ﬁ_ L 2
T e = e e
0 F = Y I o | B A v FT—I"
= [agw
__ azw /o) Ia
/A lasw L | . 2 L o ! | o
= = : e
= ;_ e - 7t =<
F F F Lr £ ! dvaow
| e o
B e | __m\J% J m. ‘ m_ < m\ L}J 4l o
-~ q= < s — — e ; ey
" = r = . I L " O _ = v

D.3.2 The final graph

177

D.3.3 The graph grammar

The graph grammar is a list of production rules — one for each compound vertex
ever substituted in the mothergraph. Read about the experiment on page 141.

Production rule 1: PR1 nt 0 nonSeqBagIRTrie_DiatonicAbsPitch_Grp Orig(0)

200 240 250 220 28.0 200 24.0 245 25.0 260 285 270 280

350 360 40,0 35.0 360 365 370 380 40.0

178

Production rule 4: PR4 nt 1 nonSeqBagIRTrie_DiatonicInt_Grp Orig(0)

1.0 12.0 16.0 110 120 125 130 140 160

Production rule 5: PR5 nt 2 nonSeqBagIRTrie_DiatonicInt_Grp Orig(0)

350 360 40.0 40.5 41.5

179

Production rule 7: PR7 nt 3 nonSeqBagIRTrie_DiatonicInt_Grp Orig(0)

330 340 425 43.0 4.0 345 35.0 360 425 430

i
¢
.
6,

.r
it 2, ns=26, hd=1
/ 7.0 ‘

180

0. &.0

Production rule 10: PR10 nt 4 nonSeqBagIRTrie DiatonicInt_Grp Orig(0)
. oo 10

30 4.0
" ! b4
“ ’ : 2.0 |
\)‘/ ' \\ ! |
e s
i I I
nt 0, ns=16, nd=0
4.0

44.0

Production rule 11: PR11 nt 5 nonSeqBagIRTrie_DiatonicInt_Grp Orig(0)
45.0

200 24.0
59 (my
/@ \4.0

Ry

nt 5, ns=81, nd=
240

n.a

A
4.0

Ed

= p
\.\ 4‘/]
Mt 5, ns=38, nd=2[
Fuf 9.0

181

Production rule 13: PR13 nt 6 nonSeqBagIRTrie DiatonicInt_Grp Orig(0)

4.0

430

240

| ;
Production rule 14: PR14 nt 6 nonSeqBagIRTrie_DiatonicInt_Grp Orig(0)
240 45.0

24.0 48.0 0.0 19.0
[3 {nd=3

0.0 15.0

nt 5, ns=81, nd=3
240

182

References

[Bal92]

[Bel92]

[BK92]

[BRBM7S]

[Bri90]

[Cam00]

[Che02]

[CLR90]

[Con02]

[Cop91]

[Cop01]

[CW95)

[Dan93]

Mira Balaban. Understanding Music with Al: Perspectives on Music
Cognition, Eds.: M.Balaban, K.Ebcioglu, O.Laske, chapter Music
structures: interleaving the temporal and hierarchical aspects in
music, pages 110-38. Cambridge Mass., Menlo Park & London:
AAAI Press & MIT Press, 1992.

Bernard Bel. Understanding Music with Al: Perspectives on Music
Cognition, Eds.: M.Balaban, K.Ebcioglu, O.Laske, chapter Symbolic
and Sonic Representations of Sound-Object Structures, pages 64—
109. Cambridge Mass., Menlo Park & London: AAAT Press & MIT
Press, 1992.

Bernard Bel and Jim Kippen. Understanding Music with Al:
Perspectives on Music Cognition, Eds.: M.Balaban, K.FEbcioglu,
O.Laske, chapter Bol processor grammars, pages 366—413. Cam-
bridge Mass., Menlo Park & London: AAAI Press & MIT Press,
1992.

William Buxton, William Reeves, Ronald Baecker, and Leslie Mezei.
The use of hierarchy and instance in a data structure for computer
music. Computer Music Journal, 2(4):10-20, 1978.

Alexander R. Brinkman. Pascal Programming for Music Research.
The University of Chicago Press, Chicago, 1990.

Emilios Cambouropoulos. Extracting ‘significant’ patterns from mu-
sical strings. Invited Talk presented at London String Days, 2000.

Marc Chemillier. Informatique musicale, Traité IC2, FEds.: J.-
P. Briot, F. Pachet, chapter Grammaires, automates et musique.
Hermes, Paris, 2002.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to algorithms. MIT Press, 1990.

Darrell Conklin. Representation and discovery of vertical patterns
in music. In Smaill Anagnostopoulou, Ferrand, editor, Proceedings
of Second International Conference on Music and Artificial Intel-
ligence, ICMAI 2002., Edinburgh, Scotland, UK, September 2002.
Springer.

David Cope. Computers and Musical Style. Oxford University Press,
1991.

David Cope. Virtual Music: Computer synthesis of musical style.
MIT Press, 2001.

Darrell Conklin and Ian Witten. Multiple viewpoint systems for
music prediction. Journal of New Music Research, 24:51-73, 1995.

Roger Dannenberg. A brief survey of music representation issues,
techniques, and systems. Computer Music Journal, 17(3):20-30,
Fall 1993.

183

[FBYS]

[HMS87]

[Hol80]

[KHO2]

[LJ83]

[Mar97]

[Mar00]

[Mit01]

[MooT72]

[Moz70]

[MSJ92]

[Ock91]

[RoaT79]

[SF97]

Hoda Fahmy and Dorothea Blostein. A graph-rewriting paradigm
for discrete relaxation: Application to sheet-music recognition. In-
ternational Journal of Pattern Recognition and Artificial Intelli-
gence (IJPRAI), 12(6):763-799, 1998.

Lilia Hess and Brian H. Mayoh. Graphics and their grammars.
In Hartmut Ehrig, Manfred Nagl, Grzegorz Rozenberg, and Azriel
Rosenfeld, editors, Graph-Grammars and Their Application to Com-
puter Science, 3rd International Workshop, Warrenton, Virginia,
USA, December 2-6, 1986, volume 291 of Lecture Notes in Com-
puter Science, pages 232—249. Springer, 1987.

Steven R. Holtzman. A generative grammar definition language for
music. Interface, 9:1-48, 1980.

Tatsuya Aoyagi Keiji Hirata. Representation method and primi-
tive operations for a polyphony based on music theory gttm. IPSJ
Journal, 2002.

Fred Lerdahl and Ray Jackendoff. A Generative Theory of Tonal
Music. MIT Press, 1983.

John C. Martin. Introduction to languages and the theory of com-
putation. McGraw-Hill International Editions, 2nd edition edition,
1997.

Alan Marsden. Representing Musical Time - A Temporal-Logic Ap-
proach. Studies on new new music research (Ed. Marc Leman).
Swets & Zeitlinger, Lisse, The Netherlands, 2000.

Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT
Press, 2001.

James A. Moorer. Music and computer composition. Communica-
tions of the ACM, 15(2):104-113, February 1972.

Wolfgang A. Mozart. Zwdélf Variationen in C, KV 265, “Ah, vous
dirai-je maman”. Nagels Verlag, Kassel, 1970.

Benjamin O. Miller, Don L. Scarborough, and Jacqueline A. Jones.
Understanding Music with Al: Perspectives on Music Cognition,
Eds.: M.Balaban, K.Ebcioglu, O.Laske, chapter On the Perception
of Meter, pages 428-447. Cambridge Mass., Menlo Park & London:
AAAT Press & MIT Press, 1992.

Adam Ockelford. Representing Musical Structure, Eds.: Peter How-
ell, Robert West and Ian Cross, chapter 4: The Role of Repetitions
in Percieved Musical Structures, pages 129-160. Academic Press,
1991.

Curtis Roads. Grammars as representations for music. Computer

Music Journal, 3(1):48-55, 1979.

Eleanor Selfridge-Field, editor. Beyond MIDI, The Handbook of
Musical Codes. The MIT Press, 1997.

184

[Sim62]

[Sis01]

[Slo85)

[SS68]

[Ste84]

[SWHO3]

[Tem01]

[TW99]

[WHCO1]

[Whi01]

[Win68]

[ZM02]

Herbert A. Simon. The architecture of complexity. In Proceed-
ings of the American Philosophical Society, Vol. 106, pages 467-482,
Philadelphia, Pa, 1962.

Elaine Sisman. ‘Variations’ In The New Grove Dictionary of Music
and Musicians, Ed. Stanley Sadie. Macmillan Publishers Limited,
London, 2001.

John A. Sloboda. The Musical Mind. The cognitive psychology of
music. Clarendon Press, Oxford, 1985.

Herbert Simon and Richard Sumner. Formal Representation of Hu-
man Judgment, Ed.: Benjamin Kleinmuntz, chapter 8. Pattern in
music, pages 219-251. John Wiley & Sons, 1968.

Mark J. Steedman. A generative grammar for jazz chord sequences.
Music Perception, 2(1):52-77, Fall 1984.

Alan Smaill, Geraint Wiggins, and Mitch Harris. Hierarchical music
representation for analysis and composition. Computers and the
Humanities, 27:7-17, 1993.

David Temperley. The Cognition of Basic Musical Structures. MIT
Press, Cambridge, Massachusetts, 2001.

Peter M. Todd and Gregory M. Werner. Musical Networks: Par-
allel Distributed Perception and Performance, Eds. N.Griffith and
P.M.Todd, chapter Frankensteinian Methods for Music Composi-
tion, pages 313-339. Bradford Books, MIT Press, 1999.

Robert West, Peter Howell, and Ian Cross. Representing Musical
Structure, Eds.: Peter Howell, Robert West and Ian Cross, chapter
1: Musical Structure and Knowledge Representation, pages 1-30.
Academic Press, 1991.

Arnold Whittall. ‘Form’ in The New Grove Dictionary of Music
and Musicians, Ed. Stanley Sadie. Macmillan Publishers Limited,
London, 2001.

Terry Winograd. Linguistics and the computer analysis of tonal
harmony. Journal of Music Theory, Vol.12:2-49, Spring 1968.

David B. Vogel Zbigniew Michalewicz. How to Solve It: Modern
Heuristics. Springer, 2002.

185

