Coordination Tools for the Development of Agent-based Systems *

Enrico Dent:

Andrea Omicing

Alessandro Ricci

DEIS, Universita di Bologna DEIS, Universita di Bologna DEIS, Universita di Bologna

Viale Risorgimento, 2
40136 Bologna, Italy

email: edenti@deis.unibo.it

Abstract

Development and deployment tools are re-
quired to effectively support the engineering
of multi-agent systems (MAS). In particular,
tools are needed to monitor and debug inter-
agents aspects, such as interaction protocols,
coordination policies and environment con-
straints. By assuming interaction as a first-
class issue, this paper aims at identifying the
main aspects of support tools for an effective
agent infrastructure, and takes tuple-based
coordination infrastructures as its reference.
The role of support tools is discussed in a
simple case study: the development and de-
ployment of a well-known agent interaction
protocol, the Contract Net.

1 Coordination Issues in Agent-based
Development

A multiagent system (MAS) is more than just a sum
of individual agents: how agents interact with other
agents and the environment, and how they are organ-
ised in an ensemble, cannot be reasonably handled as
individual issues. In this respect, interaction should
be considered a fundamental design dimension — the
dimension of the social aspects that determine col-
lective behaviour. Interaction is then something that
can not be “added on” an already-designed system:
instead, it is a critical design issue, to be accounted
for since the earliest design phases.

But what does “taking interaction into account” ac-
tually means? Just defining and implementing a set
of interaction protocols — whatever mechanism is used
— is not enough, since nothing would ensure that the
agent ensemble behaves as desired, respecting global
constraints and ensuring the achievement of the de-
sired global system. Instead, exploiting interaction as
a crucial design dimension requires the ability to gov-
ern it in a precise, well-specified, and controlled way.
Yet, mastering interaction is much a less established
area [Wegner, 1997].

*This work has been partially supported by MIUR, and
by Nokia Research Center, Burlington, MA, USA.

Via Rasi e Spinelli, 176
47023 Cesena (FC), Italy

email: aomicini@deis.unibo.it

Via Rasi e Spinelli, 176
47023 Cesena (FC), Italy

email: aricci@deis.unibo.it

Constraining and governing interaction is precisely
the purpose of coordination [Gelernter and Carriero,
1992]: in the same way as agent languages and ar-
chitectures provide abstractions and tools to design
and build the single agents, coordination models, lan-
guages and architectures provide abstractions and
tools to manage and rule the interaction space. Effec-
tively governing interaction basically means the abil-
ity to specify and possibly enforce goals, constraints,
and desired properties that are not peculiar to a given
agent, but to an ensemble of agents, and also the
ability to adapt / modify this “social glue” dynami-
cally, at run-time — all, without affecting agent auton-
omy. While computation languages express the inner
working algorithm of an agent, coordination languages
express the agent’s observable behaviour — what is
needed to design its interaction protocol.

Dependencies in MAS can be classified in two types
[Schumacher, 2001], objective and subjective. Objec-
tive dependencies refer to inter-agent dependencies,
and typically concern the configuration of the system
in terms of the basic interaction media, agent gen-
eration / destruction, and environment organisation;
subjective dependencies, instead, refer to the intra-
agent dependencies towards other agents. The man-
agement of subjective dependencies is called subjective
coordination and is essentially concerned with intra-
agent aspects. The management of objective depen-
dencies, instead, is called objective coordination, and
is essentially concerned with inter-agent aspects, since
the dependencies are external to agents. So, in the
subjective case, coordination comes from the attitudes
of each individual towards the organisations/societies
it belongs to, while objective coordination prescinds
from the subjective view of the coordinated agents,
and promotes instead the separation between the in-
dividual perception of coordination and the global co-
ordination issues. As a result, objective coordination
enables the modelling and shaping of the interaction
space independently of the interacting entities.

However, just providing a suitably-expressive (ob-
jective or subjective) coordination model is not
enough to effectively support the engineering of
Internet-based systems — suitable coordination tech-
nologies and run-time support should be made avail-
able as well. An efficient design, development and

deployment process requires suitable infrastructures,
providing designers and developers with a reliable sup-
port for commonly-required services: among these,
for the above reasons, coordination services should
be included as an essential item. To work with the
widest range of hardware devices and software plat-
forms, including PDAs and embedded systems, and
to support the widest set of applications, a coordi-
nation infrastructure for agent-based Internet appli-
cations should be easily deployable, light-weight, and
both statically and dynamically configurable. In addi-
tion, it should come along with effective methodologies
and tools supporting the design, development, and de-
bugging / monitoring of interaction.

To be effective, such methodologies and tools must
be related to the coordination model embedded in the
infrastructure: in particular, the support tools for sys-
tem development should be inspired by, and modelled
after, the metaphors and abstractions introduced by
the coordination model — otherwise, the gap between
theory and practice would likely make the design, de-
velopment and debugging task simply too hard and
complex. We claim that the definition of such method-
ologies and tools is a fundamental research issue: it is
the researchers’ responsibility to study and indicate
how the coordination model’s concepts and run-time
model should transpose onto suitable methodologies
and tools, so as to ensure fundamental properties for
system development — incremental development, sys-
tem verification and debugging, system maintenance,
etc.

2 Deployment Tools for Interaction

Here we focus on tools and environments for the
support of deployment (from debugging to testing,
from monitoring to analysis and run-time verifica-
tion) of the interaction-related aspects of multi-agent
systems. While literature on tools and toolkits for
the design and development of agent systems and
agent infrastructures abounds, very little seems to be
available concerning deployment tools [Ndumu et al.,
1999]. Perhaps this is due to the fact that (quot-
ing [Van Liederkerke and Avouris, 1995]) “designing
and building MAS is a complex process: the integrated
system debugging phase (...) presents particular dif-
ficulties (...) from the well-documented limitations
that a human faces when observing and monitoring a
collection of distributed concurrent processes” [Garcia-
Molina et al., 1994]. Yet, the need for tools supporting
the deployment of complex systems is clearly recog-
nised: [Rover et al., 1998] proposes a classification of
the most typical tools, categorised in debugging, test-
ing, verification tools, etc.

2.1 Debugging Tools in Concurrent /
Parallel Programming

Debugging a MAS is known to be a complex activ-
ity, aimed at identifying structural and functional er-
rors [Ndumu et al., 1999]: structural errors concern
the organisation, structure and relationships between
agents, while the second class involves errors in the

logic of the tasks to be performed. There is, how-
ever, one third class of errors, the coordination er-
rors, that occur when individual agent behaviour is
structurally and functionally correct, but the emer-
gent behaviour of the overall system is incorrect: this
is precisely where a suitable coordination infrastruc-
ture, providing ad hoc tools, can be of help.

Typically, traditional debugging tools in concur-
rent and distributed programming provide features
such as breakpoints on the single process, traps to
catch process exceptions, single-step tracing, and ex-
plicit read/write of selected memory location or CPU
registers; others go further, enabling traps on inter-
process communication, the ability to add/remove
inter-process messages, and the chance of control-
ling timeouts [McDowell and Helmbold, 1989; Garcia-
Molina et al., 1994]. The most recent and advanced
debugging/monitoring tools are event-based [Bates,
1995]: by catching event sequences, they make it pos-
sible to post-analyse and post-process event histories,
so as to reconstruct the distributed system behaviour.

However, it is known [McDowell and Helmbold,
1989] that observing the execution of concurrent pro-
cesses is not a neutral operation, since it can interfere
with the system behaviour (Probe Effect). This prob-
lem can be easily understood, since the addition of
any spy, print or trace operation alters the timing of
a process. So, for instance, critical races, which could
be the cause of the system’s malfunctioning, and the
very reason for debugging, may disappear in the new
“debugging-oriented” system configuration [Ndumu et
al., 1999].

These problems are due to the lack of separation be-
tween computation and interaction: the state of com-
munication is not explicitly represented, and so can
not be observed without affecting the actors of com-
munication — which is precisely what changes irreme-
diably their previous behaviour. As a general prin-
ciple, observing a given level with no strong interfer-
ences calls for an explicit representation of that level
— a meta level observer, in fact. This does not mean
to avoid interferences at all: it does, however, reduce
their impact, since they can occur only at the meta
level.

2.2 Mediated Interaction

In mediated interaction models, interaction never oc-
curs directly between interacting entities: communica-
tion occurs via some kind of communication abstrac-
tion explicitly introduced for the purpose of enabling
communication. A typical form of mediated interac-
tion is blackboard-based interaction: there, interact-
ing entities write/read messages to/from the black-
board only. This approach makes it possible to achieve
some fundamental properties, such as name uncou-
pling, space uncoupling and time uncoupling — that is,
interacting entities do not necessarily have to know
each other explicitly, nor to be in the same place, not
even to co-exist at the same time, in order to com-
municate. Moreover, the set of messages in the black-
board represents at any time the state of communica-
tion, which can therefore be quite simply observed.

In tuple-based interaction [Rossi et al., 2001], orig-
inated by the Linda model [Gelernter and Carriero,
1992], the communication medium is the tuple space,
that is, a multi-set of tuples, which are ordered col-
lections of data chunks. Agents still communicate
by adding (out), removing (in) and reading (rd) tu-
ples to/from the tuple space, but access is associative,
based on a pattern-matching (or similar) mechanism.

The existence of explicit communication media
makes interaction a first-class issue: from the model
to the implementation, interaction is raised to deserve
explicit abstractions and places (blackboards or tu-
ple spaces) devoted to it — and to its own handling.
This key difference with respect to the previous ap-
proaches is what makes the communication state not
only explicitly available, but also observable without
affecting the communicating entities: in fact, since all
communication acts occur in given place(s), putting
such places under observation requires no change at
all on the previous system configuration, avoiding the
probe problem at that level a-priori.

2.3 Coordination and Tuple Centres

While communication means enabling interaction, co-
ordination means constraining and ruling interaction
[Wegner, 1996). In Linda tuple spaces, the coordina-
tion laws are built-in, since the primitive operations
are pre-defined, as their semantics. If such laws are in-
adequate to the application, changing the tuple space
behaviour is impossible: the desired overall behaviour
must be built upon the fixed tuple space behaviour,
charging agents to “fill the gap” — thus violating the
separation between computation and coordination.

To overcome this limitation, one must either add
new primitives to the basic tuple space model, or
change the semantics of the existing operations as
needed [Rossi et al., 2001]. Tuple centres [Omicini and
Denti, 2001b] are tuple spaces whose behaviour can
be defined by means of reactions to communication
events, expressed in the Turing-equivalent ReSpecT
language [Omicini and Denti, 2001al: a tuple centre
can then be programmed so as to feature potentially
any desired behaviour. Tuple centre behaviour is ex-
pressed in terms of ReSpecT specification tuples: cor-
respondingly, a tuple centre can be thought as made
of two parts — the tuple space, holding ordinary data
tuples, and the specification space, holding specifica-
tion tuples. So, both the state of communication and
the state of coordination, expressed uniformly as logic
tuples, are fully observable and modifiable.

Formally, given the set S of specification tuples, a
tuple centre state is described at any time by the set T
of ordinary tuples, the set W of the currently-pending
queries, and the set Z of triggered reactions, waiting
to be executed.! If the set S is empty, the tuple cen-
tre behaviour defaults to the standard tuple space be-
haviour. These sets provide different relevant views
over interaction: in particular, the current communi-

!For details on tuple centre and ReSpecT semantics,
we forward the interested reader to [Omicini and Denti,
2001b] and [Omicini and Denti, 2001a), respectively.

cation state is captured by sets T (data-oriented view)
and W (control-oriented view), while the current co-
ordination state is represented by the sets S (static
view) and Z (dynamic view) completed with the exe-
cution step of the tuple centre virtual machine.

2.4 Deployment with Mediation

When interaction is mediated by some kind of explicit
communication media, observing interaction no longer
requires changes to the interacting entities, since the
communication state is represented and observable in
the communication medium. This chance does not
mean, however, that any interference with the system
is automatically avoided: in standard tuple spaces,
for instance, the insertion of a given tuple can only
be observed by explicitly checking this kind of event
by having an agent performing a suspensive matching
rd. So, observation still takes place at the same level
where communication occurs: this holds even if the
whole tuple set is retrieved via a sort of rdAll or copy-
All bulk primitive, which provides a snapshot, at that
given time, of the tuple space state. So, the interac-
tion histories of this communication medium change
with respect to the case where the observer agent is
not present. Moreover, some communication events
may not be observable by definition: in standard tuple
spaces, once again, rd operations cannot be observed,
since they cause no change to the communication state
(i.e., to the set of tuples).

Though mediated interaction does not guarantee
absence of interferences, yet it is the key to reduce such
interferences, bounding them inside an upper (meta)
level. In tuple centres, in particular, both the commu-
nication and the coordination state are explicitly rep-
resented, from the static and the dynamic viewpoints.
Since the tuple centre model is inherently able to per-
form operations (reactions) that are invisible to the
interacting entities, there is a degree of openness that
makes it possible to add observation inside the com-
munication media without affecting the communica-
tion level itself — that is, (i) no extra operations must
be added in order to achieve observability, and (7i) all
communication events are fully observable, whether
they change the tuple space state or not.

This feature provides a fundamental new tool, en-
abling us to monitor, debug and test interaction in a
configurable way. So, it is possible to implement vir-
tually any (computable) debugging policy — possibly,
providing some frequent debugging rules as recurring
debugging patterns. In particular, since any condition
can in principle be intercepted by some suitable reac-
tion, and handled accordingly, tuple centre-based de-
bugging suffers no a-priori limitations. This is a much
more flexible approach than many commercial pack-
ages”: TupleScope by Scientific Computing’s Linda
implementation (described in Linda user manual), for
instance, allows only a pre-defined set of conditions to
be captured and monitored — those that TupleScope’s
designers judged to deserve such “special treatment”.

At the meta level, tuple centres endorse a static and
a dynamic observation level. Statically, the set S of
specification tuples can be observed, even though with

the same limits discussed above for the tuple space.
From the dynamic viewpoint, tuple centres enable in
principle the set Z of triggered reactions to be ob-
served, along with the current state of the tuple cen-
tre virtual machine. Observation problems have not
disappeared, indeed: however, they have moved one
level up, to the meta level, where their impact can be
better handled.

3 Tools and Technologies

The tuple centre model has been exploited in the
TuCSoN [Omicini and Zambonelli, 1999] and LuCe
[Denti and Omicini, 2001] coordination infrastructures
and related technologies: some IDE tools have been
provided to support the deployment of the agent-
based applications, engineered upon tuple centre coor-
dination media. The simplest IDE tools provide a GUI
to access tuple centres by means of Linda-like com-
munication acts (i.e., coordination primitives) such as
out, in, rd, inp, and rdp. Moreover, the Inspector,
the most powerful IDE tool, enables the observation,
inspection and debugging of the relevant information
and activities related to both the tuple centre’s com-
munication and coordination states (some views are
shown in Figure 1, used for the case study developed
in Section 4). Since the (inter-)actions between the
Inspector and a tuple centre do not occur at the same
level as interactions between a tuple centre and agents,
but at the infrastructure (meta-)level, the communi-
cation state can be observed without incurring in the
probe problem.

With respect to the communication state, the In-
spector supports the dynamic observation of, and the
action on, both the set of tuples and the set of the
pending queries of a given tuple centre. By opening
the tuple view, the set T of the logic tuples stored in
the tuple centre (see Subsection 2.3) is displayed: the
Inspector provides the means to observe and change
such a set, along with facilities to tune inspection ac-
cording to one’s needs. In particular, observation can
be both real-time and on demand: in the first case,
each change occurring in the set is immediately no-
tified to Inspectors and shown by the tuple views,
while in the second case a snapshot of the tuple set is
taken only when explicitly requested via the Inspec-
tor’s GUI. It is also possible to filter the displayed
tuples by specifying a tuple template, as well as to
log and save the (possibly filtered) tuple set shown,
so as to track the evolution as a sequence of tuple set
snapshots. Moreover, the full content of the tuple set
can be replaced in one shot, by editing the list of dis-
played tuples. The Inspector also makes it possible to
observe the set W of the pending queries: the pend-
ing query view displays the list of the pending in and
rd queries, along with related information such as the
agent issuing the request, and the (tuple centre local)
time when the request itself was received. Filtering
and logging of the set content work as above.

The ability to specify the reactive behaviour of the
coordination medium can be exploited also to define
custom observation and debugging policies in terms of

reactions triggered by selected communication events:
external communication events are related to agent
communication acts, while internal ones are referred
to tuple medium’s actions on the tuple set. The
Turing-equivalence of ReSpecT provides the flexibility
to express computations for tracing, monitoring, and
debugging purposes, which can be particularly useful
when debugging complex, multi-stage interaction pro-
tocols involving different agent roles. In these situa-
tions, a tuple centre can be programmed so as to trace
protocol evolution, making it easier to identify faults,
wrong / malicious agents’ interaction behaviour, etc.
For instance, the following rule monitors the commu-
nication acts of agents providing an information (a
product price) and generates the related history:

reaction(out(price(Info)), (
current_agent(Id), current_time(Time),
out_r(price history(time(Time) ,who(Id),content(Info)))).

The rule below, instead, handles statistical informa-
tion about service requests:

reaction(in(service(Descr)),(pre,
in_r(service_counter(Descr,N)), N1 is N + 1,
out_r(service_counter (Descr,N1)))).

Such a flexibility can be very useful for infrastructure
maintenance, since it simplifies both interaction mon-
itoring and interaction problem detection. Coordina-
tion laws can also be exploited to prevent interactions
that are invalid / undesired in the current interaction
context. For instance, a tuple representing a vital in-
formation can be protected from unwanted removal
(i.e., from in operations) by a reaction like:

reaction(in(vital_info(Info)), (pre,
out_r(vital_info(Info)))).

In the same way, insertion of critical information could
be excluded or just restricted to trusted sources:

reaction(out(price(Who, Info)),(
no._r (source_authorised(Who)), in_r(price(Who, Info)))).

More generally, although coordination laws can be ex-
ploited for security purposes, security issues should
better be faced at a different (meta)level (for details
please see [Cremonini et al., 1999]).

Inspectors enable the coordination state of a tuple
centre to be observed and acted upon, too, by provid-
ing access to both the set S of reaction specifications
and the set Z of triggered reactions. The specifica-
tion view supports the editing of the ReSpecT code:
classical facilities such as syntax highlighting, syntax
checking, loading and saving source code, etc. are also
provided. In this way, the Inspector can be used to
dynamically inspect and change the coordination laws
ruling the interactions (of course, the same could be
done by means of the infrastructure API). The Inspec-
tor’s ability to observe and log the dynamic behaviour
of the coordination media in terms of triggered reac-
tions is crucial to debug coordination activities: in
fact, tracking successful and failed reactions simplifies
the understanding of the dynamics of the coordination
flow inside the tuple centre.

Finally, the Inspector enables the management of
tuple centres as coordination virtual machines, pro-
viding step-by-step tracing of the machine behaviour,
as traditional debuggers do. Since the tuple centre
virtual machine manages interactions as first class en-

out (announcement (Task))

wait (ExpireTime)
in(bids(Task,BidList))

Bid « selectWinner(BidList)
out (award (Task,Bid))
in(result(Task,Result)

DO WN -

rd (announcement (Task))

MyBid <« evaluate(Task)

in(bid(Task,MyBid, Answer))

if (Answer==’awarded’) {
Result « perform(Task)
out (result(Task,Result) }

DO WN =

Table 1: Agent behaviour in the CNP: Manager (left) and Contractor (right)

[

reaction(in(bid(Task,MyBid,Answer)), (pre,
out_r(contractor(Task, MyBid)),
in_r(bids(Task, L)),
out_r(bids(Task, [MyBid|L])))).

N

reaction(out(announcement(Task)), (
out_r(bids(Task, [1)))).

w

reaction(in(bids(Task,L)), (post,
in_r (announcement (Task)))).

4 reaction(out(award(Task,TheBid)), (
in_r (award(Task,TheBid)),
in_r(contractor(Task,TheBid)),
out_r(bid(Task,TheBid,awarded)),
out_r(refuse_others(Task)))).

o

reaction(out_r(refuse_others(Task)), (
in_r(refuse_others(Task)),
in_r (contractor (Task,TheBid)),
out_r(bid(Task,TheBid, ’not-awarded’)),
out_r (refuse_others(Task)))).
reaction(out_r(refuse_others(Task)), (
in_r(refuse_others(Task)),
no_r (contractor(_,.)) .

(o)

VA tracing new contractor
reaction(in(bid(Task,MyBid,Answer)), (pre,
current_time(T),
out_r (history(time(T),
new_bid_arrived(Task,MyBid)))))

7 tracing manager task announcement
reaction(out(announcement(Task)), (
current_time(T),
out_r(history(time(T),
new_task_announcement (Task))))).

% tracing the end of the bidding stage
reaction(in(bids(Task,L)), (pre,
current_time(T),
out_r(history(time(T),
task_announcement_expired(Task))))).

% tracing the announcement of the winner
reaction(out(award(Task,TheBid)), (
current_time(T),
out_r(history(time(T),
contract_awarded(Task,TheBid))))).

Table 2: ReSpecT coordination rules of the CNP protocol (left); reactions added to provide the interaction history of the CNP run (right)

tities, it is also possible to trap (and trace) instruc-
tions involving the acceptance of input communica-
tion events, the production of output communication
events, the collection of triggered reactions, the exe-
cution of reactions, etc. This is an very interesting
aspect, to be better explored in the future.

4 Case study

For sake of concreteness, we briefly illustrate the de-
ployment of the Inspector tool for the development
and debugging of a simple version of a well-known
agent interaction protocol — the Contract Net —, clar-
ifying some of the benefits of the coordination tools.
The Contract Net Protocol (CNP) is generally used to
solve the so-called connection problem: to find the ap-
propriate agent to work on a given task. According to
the terminology in [Huhns and Stephens, 1999], Man-
ager agents have tasks to be solved, while Contractor
agents are able to solve tasks. The involved coordina-
tion aspects, described as coordination laws of a tuple
centre, are expressed by the ReSpecT code shown in
Table 2 on the left, while the behaviour of both Man-
agers and Contractors is described in the pseudo-code
in Table 1: agent communication acts are put in par-

i
le

s

\
==

® gty e ovssnaten

(SPT——

=0

Figure 1: Tuple and pending query views during a CNP run
(left), and tuple views at the end of the CNP run (right) in the case
with reactions enabling history.

ticular evidence. It should be clear that such code im-
plements a very basic CNP version, whose purpose is
just to show how coordination occurs — not to consti-
tute a full-featured implementation of that protocol.

In Table 1, first Manager (left) announces a task to
be performed (line 1) and waits for bids: when the re-
lated timeout expires, it retrieves the list of bids from
potential contractors (line 3), selects the best bid ac-
cording to its evaluation (line 4), awards the contract
(line 5), and receives the result of the performed task
(line 6). On the other side, a Contractor (Table 1,
right) waiting for possibly-interesting task announce-
ments (line 1) evaluates its capability to respond to
this request (line 2), issues its bid, and starts waiting
for an answer. If the bid is accepted by the Manager
(answer awarded), the Contractor performs the task
(line 5) and outputs the computed result (line 6). Co-
ordination rules are expressed by the ReSpecT code
in Table 2 (left): note that the level of coordination,
implemented as tuple centre reactions (based on in_r,
out_r, etc.), is separated from the level of agent inter-
action acts (performed via in, out, rd, etc.).

When a Manager issues a task announcement, re-
action 2 is triggered and coordination data are set up
in the tuple centre (Figure 1). Each time a Contrac-
tor makes a bid, reaction 1 records the new proposal
and updates the bid list. When the Manager even-
tually collects the bids, reaction 3 removes the task
announcement: so, no more bids are considered. Fi-
nally, when Manager awards the contract, reaction 4
emits the tuple bid(Task, TheBid, awarded) to no-
tify the specific contractor waiting for that answer,
then triggers reaction 5 and 6: the first places the
refuse_others tuple, used to collect and remove the
information about other bidders (tuples contractor),
while reaction 6 notifies the other contractors emitting

the bid(Task, TheBid, ’not-awarded’) tuple.

To show the power of tuple centre based tools, let
us consider now the run-time inspection of the tu-
ple centre during the enactment of the contract net
protocol among a set of agents. By the tuple view
and the pending query view, it is possible to ob-
serve the evolution of the protocol and get information
about the involved participants. For instance, the tu-
ple and pending views in Figure 1 (left) show that a
task announcement was issued for the assignment of
the task purchase_book(isbn(’0876850867°)), that
three bids were proposed, and that the related Con-
tractors are waiting for an answer.

By incrementally extending the tuple centre be-
haviour (Table 2, right), we can document the pro-
tocol evolution explicitly, tracing each relevant step
and enabling the full history of the protocol interac-
tions to be easily observed. The tuple view in Figure 1
(right) shows the result of a complete run of a CNP,
including the above task announcement and bids, as
well as the award from the Manager to one of the bid-
ders. Despite its simplicity, the case study puts in
evidence the positive impact that tools such as the In-
spector could have in managing the complexity of co-
ordination, providing views to observe/act upon agent
interactions and means for creating suitable monitor-
ing/debugging policies according to the needs.

5 Lessons Learnt

Several proposals face the issue of suitable tools for the
debugging and testing of agent-based systems: yet,
rather than focusing on interaction as an independent
dimension, most of them try to bring computation-
specific metaphors and tools towards interaction. Re-
cent works [Graham et al., 2001] emphasize the need of
suitable infrastructure-based tools, providing support
for interaction inspection, monitoring and debugging.

One lesson learned is that debugging is much easier
when some form of mediated interaction (blackboards,
tuple spaces, tuple centres, etc.) is adopted instead of
point-to-point communication — whether they are low-
level sockets or high-level abstractions such as KQML
or FIPA ACL. There are basically two reasons for this:
(i) the time / space uncoupling properties of genera-
tive communication (as in the case of tuple spaces),
and (i) the ability to define the behaviour of the com-
munication media (as in the case of tuple centres).
Also, mediated interaction enables specific monitoring
and debugging tools to be associated to the commu-
nication media, thus bringing the metaphors used to
model the agent interaction space up to the develop-
ment and deployment phases.

From the software engineering viewpoint, we could
experiment the benefits of the separation between
agent computation and coordination. Interaction
specifications and protocols can be tested and de-
bugged independently of agents, either using special
debugging agents, or simulating them via suitable
tools — as our Inspector. In particular, the role of tools
seems crucial in helping engineers harnessing the in-
trinsic complexity of agent interaction, by providing

them with the most effective views on the state and
evolution over time of interaction within a MAS.

References

[Bates, 1995] Peter Bates. Debugging heterogeneous distributed
systems using event-based models of behaviour. ACM Transac-
tion on Computer Systems, 13(1):1-31, February 1995.

[Cremonini et al., 1999] Marco Cremonini, Andrea Omicini, and
Franco Zambonelli. Multi-agent systems on the Internet: Ex-
tending the scope of coordination towards security and topol-
ogy. In Francisco J. Garijo and Magnus Boman, editors, Multi-
Agent Systems Engineering, volume 1647 of LNAI, pages 77—-88.
Springer-Verlag, 1999.

[Denti and Omicini, 2001] Enrico Denti and Andrea Omicini. LuCe:
A tuple-based coordination infrastructure for Prolog and Java
agents. Autonomous Agents and Multi-Agent Systems,
4(1/2):139-141, March 2001.

[Garcia-Molina et al., 1994] Hector Garcia-Molina, Frank Ger-
mano, Jr, and Walter H. Kohler. Debugging a distributed com-
puting system. I[IEEE Transaction on Software Engineering,
10(2):210-218, March 1994.

[Gelernter and Carriero, 1992] David Gelernter and Nicholas Car-
riero. Coordination languages and their significance. Communi-
cations of the ACM, 35(2):97-107, February 1992.

[Graham et al., 2001] John Graham, Daniel McHugh, Micheal
Mersic, McGeary Foster, Victoria Windly, David Cleaver, and
Keith Decker. Tools for developing and monitoring agents in dis-
tributed muti agent systems. In Proc. of Autonomous Agents
2000 - Workshop on Infrastructures for Scalable MASs, 2001.

[Huhns and Stephens, 1999] Micheal Huhns and Larry Stephens.
Multiagent systems and societies of agents. In Gerhard Weiss,
editor, Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence, pages 79-120. The MIT Press, 1999.

[McDowell and Helmbold, 1989] Charles McDowell and David
Helmbold. Debugging concurrent programs. ACM Computing
Surveys, 21(4), December 1989.

[Ndumu et al., 1999] Divine Ndumu, Hyacinth Nwana, Lyndon
Lee, and Jaron Collis. Visualizing and debugging distributed
multi-agent systems. In Proceedings of Autonomous Agents
1999. ACM, 1999.

[Omicini and Denti, 2001a] Andrea Omicini and Enrico Denti. For-
mal ReSpecT. In Agostino Dovier, Maria Chiara Meo, and An-
drea Omicini, editors, Declarative Programming — Selected Pa-
pers from AGP’00, volume 48 of Electronic Notes in Theoretical
Computer Science, pages 179-196. Elsevier Science B. V., 2001.

[Omicini and Denti, 2001b] Andrea Omicini and Enrico Denti.
From tuple spaces to tuple centres. Science of Computer Pro-
gramming, 41(3):277-294, November 2001.

[Omicini and Zambonelli, 1999] Andrea Omicini and Franco Zam-
bonelli. Coordination for Internet application development.
Journal of Autonomous Agents and Multi-Agent Systems,
2(3):251-269, September 1999. Special Issue: Coordination
Mechanisms for Web Agents.

[Rossi et al., 2001] Davide Rossi, Giacomo Cabri, and Enrico
Denti. Tuple-based technologies for coordination. In Andrea
Omicini, Franco Zambonelli, Matthias Klusch, and Robert Tolks-
dorf, editors, Coordination of Internet Agents, chapter 4, pages
83-109. Springer-Verlag, March 2001.

[Rover et al., 1998] Diane Rover, Abdul Waheed, Matt Mutka, and
Aleksandar Bakic. Software tools for complex distributed sys-
tems: Toward integrated tool environments. IEEE Concurrency,
6(2):40-54, 1998.

[Schumacher, 2001] Michael Schumacher. Objective Coordination
in Multi- Agent System Engineering — Design and Implementa-
tion, volume 2039 of LNAI. Springer-Verlag, April 2001.

[Van Liederkerke and Avouris, 1995] Marc Van Liederkerke and
Nicholas Avouris. Debugging multi-agent systems. Information
and Software Technology, 37(2):103-112, 1995.

[Wegner, 1996] Peter Wegner. Coordination as constrained inter-
action. In Paolo Ciancarini and Chris Hankin, editors, Pro-
ceedings of the 1st International Conference on Coordination
Languages and Models, volume 1061 of LNCS, pages 28-33.
Springer-Verlag, April 15-17 1996.

[Wegner, 1997] Peter Wegner. Why interaction is more powerful
than computing. Communications of the ACM, 40(5):80-91,
May 1997.

