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Abstract

In this article, we make a proposal for a gen-
eral definition of a Multiagent System, what-
ever may be the agents. We show how the
B method can be used to give this defini-
tion a formal aspect, and we introduce a few
proofs that can be then performed. Finally,
we introduce the notion of refinement and its
avantages in the context of the formal speci-
fication of multi-agent systems.
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1 Introduction

Multiagent systems are systems where calculus that
must be made are distributes among many different
entities. The way these entities interact is a crucial
problem, not only for efficiency reasons, but also be-
cause it determines the correctness of the result.

Formal specifications are technologies underlying
over mathematicals concepts and that allow to prove
the “correctness” of a program. A “correct” program is
a program that establish the properties it must guar-
antee. These methods are used by firms to prove “crit-
ical” systems, that is systems whose failure could en-
danger human lifes (transport control systems for in-
stance). However, writing formal specification is so
hard that this job concerns only the “critical kernel”
of these systems.

In this article, we present a way to write formal
specifications of multiagent systems in order to be able
to make proofs on its behaviour.

The first part describe our point of view of what a
multiagent system is. Then, we briefly describe the
formal method we use, namely the B method. The
main part of the article is devided into two sections :
the first one deals with the formal specification of a
multiagent system, and the second one deals with the
proof of this specification. At last, we conclude and
present the future work planned.

2 The multiagent system notion

There are many different definitions of multiagent sys-
tems ([Bouron, 1992, [J. and J., 1991], [Mike, 1999]).

Somme people consider every objet playing a role in
the system as an agent, whereas others think that an
entity must be pro-active to be an agent ([Luck and
d’Inverno, 1995al]). Moreover, these definition often
confuse properties of the agents with properties of the
system. Our goal in this article relying on the char-
acterisation of properties concerning just the system,
and as a consequence the evolution of its population
and the interactions between agents. So, we use an
abtact definition for the agents : an agent is simply
described by an automaton. We do not take about the
form of its actions : (decided at the beginning or not,
determined by a belief about the other agents or not,
etc.).
There are two reasons :

e we think that a great part of the properties of a
multiagent system is a consequence of the inter-
actions between agents, and the formal study of
them is not well studied ;

e the formal method we use implement the refine-
ment process. This is a way of specifying and
prooving properties in many steps : the proper-
ties that are proved at step n are preseved at step
n + 1 and so, can be used and do not have to be
proved again. So, the behaviour of the agents can
ben introduced during the refinement process.

The interaction model we choose is a model where
at every time, an agent can send messages to a set
of other agents. Every agent owns a buffer where
it queues messages recieved before it processes them.
The notion of “known agents”’ can be introduce dur-
ing the refinement process if we want to add the fact
that an agent can send messages only to the agents it
knows.

3 The B method

The B-method, described in [Abrial, 1996], has been
developed by Jean-Raymond Abrial. It is a formal
model-oriented specification method, that uses the
first-order logics, the arithmetics and the sets the-
ory to describe datas and properties on them. State
changes are described by operations, written as gen-
eralized substitutions.

An other important characteristic of the B method
is the refinement process ([Back and Sere, 1993],
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ification of the problem, we derive more and more
concrete and precise specifications until the specifi-
cation obtained can be automatically translated into
a programming language. A each step, the compat-
ibility with the previous step must be proved. An
other reason that made us choose the B method is the
CASE-Tool «Atelier B» [Stéria Méditerrannée, 1997,
performing automatically a great number of proofs.
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3.1 Example

A B specification is structured into machines. A ma-
chine is a module encapsulating variables. Figure 1
presents the beginning of a B machine allowing to
manage a car collection, where cars are described by
their color and registration number.

MACHINE

collection
SETS

CARS, NUMBERS, COLORS
VARIABLES

cars, registration, color
INVARIANT

cars C CARS A

registration € cars — NUMBERS A

color € cars - COLORS

Figure 1: collection.mch, static part

The MACHINE statement introduces the name
of the module. The SETS part defines data types
needed. They can be definite or not.

Types are assigned to variables in the invariant as
properties. For instance, the car variable represents
the set of cars of our collection. As there are CARS,
this is a subset of the CARS type. Each car we owns
is identified bye its registration number. Every car
has a registration number, and a registration number
corresponds to exactly one car. So, the registration
is an injection! from the set of our cars to the set of
legal registration numbers. This is indicated by the
second property of the invariant : — is the injection
symbol. At last, every car has one and only one color,
but many cars can have the same color. So, their is
a total function (—) from the set of our cars to the
COLORS set of allowed colors.

The dynamic part is implemented by two state-
ments : initialisation and operations.

e the initialisation must establish the invariant,
that it it the values it assigns to variables must
be such that the invariant is true after the initial-
isation ;

e operations must keep the invariant true : if it
true before an operation is executed, it is still
true after.

Figure 2 shows an example of a dynamic part for
our collection machine.

'a function f is an injection if and only if f(x) = fy =
X=Yy
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cars := 0 ||
registration := § ||
color :=
OPERATIONS
change _color(voit, coul) =

PRE

voit € cars A

coul € COLORS
THEN

color(voit) := coul
END

add_car(immat, coul) =
PRE
immat € NUMBERS - ran(registration)
A coul € COLORS
THEN
ANY voit WHERE
voit € CARS-cars
THEN
cars := cars U {voit} ||
registration(voit):=immat ||
color(voit) := coul
END
END

Figure 2: collection.mch, dynamic part

3.2 Proofs
In the B method, Proofs may be separated in two
groups :

e invariance proofs ;

e refinement proofs.

In this article, we are only interested in abstract
specifications, so, we will not present refinement
proofs. There are two kinds of invariant proofs :

e Establishement of the invariant by the initialisa-
tion ;

e preservation fo the invariant by every operation.

3.3 A few symbols
Here are a little explanation of a few symbols used in
the sequel :
e fag—{(xy) | () € £Ax ¢ dom(g)) V (x)
€ g}
e a pair (x,y) can ben represented by x — y
e f(x) := y is equivalent to f ;== f < {x — y}

4 Formal specification of a multiagent
system in B

A multiagent System (MAS) is made of agents. These
agents are described by automata. An automaton is
described by a set of states and a set of transitions
between states. Transitions can be fired either spon-
taneously (pro-activity of the agent) or when a given
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model we choose, a transition can also send a message.

So, there are 3 kinds of data : AGENTS, STATES
and STIMULI (a transition is a relation between data
of these types, so there is no TRANSITION types). To
have an homogenous model, we see spontaneous tran-
sitions as standard transitions responding to a special
stimulus called NOTHING.

The skeleton of our specification is shown figure 3.

MACHINE
SMA
SETS
AGENTS; STATES; STIMULUS
CONSTANTS
NOTHING
PROPERTIES
NOTHING € STIMULUS

Figure 3: skeleton of our MAS model

4.1 Data

Data correspond to everything that can change in the
system. At first, it is possible to create et kill agents.
So, we need a set agents to know agents present in
the system. Moreover, each agent is characterized by
a set of stages, a set of transitions between these states
and its current states. Each agent is in one state and
no more, so, the state fonction is a total fonction.

The behaviour of an agent is described by a unique
transition system. So, The transition variable is a to-
tal function, and its domain is the set of agents in the
system. A transition is characterized by : a start state,
an initiator stimulus (it can be the NOTHING one), an
end state and a stimulus sent during the transition
(potentially NOTHING).

Figure 4 show a modelization of the first part of the
data of the system.

VARIABLES

agents, state, transition
INVARIANT

agents C AGENTS A

state € agents — STATESA

transition € agents
— ((STATES*STIMULUS) >
(STATES*STIMULUS))

Figure 4: elementary data of a MAS

Moreover, we suppose that an agent sends a mes-
sage to many agents. These messages remain available
to the receiver until it takes them into account (or it
dies). So, the set of pending messages is a set of cou-
ples whose first element is a message, and whose sec-
ond element is the list of the agents the message is sent
to. So, we add to our model the pendingMessages
variable, as shown figure 5.

2P(X) means the set of parts of X

pendingMessages
INVARIANT
pendingMessages C
P (agents))

(STIMULUS  *

Figure 5: other necessary data of a MAS

At the beginning, we do not know the precise state
of our system ; the only thing we know is that there
is no pending message.

INITTALISATION
ANY ag, et, tr WHERE
ag C AGENTS A
et € ag — STATES A
tr € ag — ((STATES * STIMU-
LUS) ¢ (STATES * STIMULUS))
THEN
agents := ag ||
state := et ||
transition := tr ||
pendingMessages := ()
END

Figure 6: initialisation of the system

4.2 Evolution of the system

Of course, a multiagent system evolves. For instance,
it is possible to create an agent with its own transi-
tion system. This is the goal of the create operation
shown figure 7. This function create an agent with a
new identifier (this is the role of the ANY statement),
assigns to it the transition system (tr) and the initial
state (et given in parameters.

OPERATIONS
create(et, tr) =
PRE
et € STATES A
tr € (STATES * STIMULUS) <«
(STATES * STIMULUS)
THEN
ANY ag WHERE
ag € AGENTS \agents
THEN
agents := agentsU {ag} ||
state(ag) := et ||
transition(ag) := tr
END
END

Figure 7: creation of an agent

Agents can alos be created by cloning of an existing
agent. A clone has the same transition table as the
cloned agent, and starts its life in the state the cloned
agent was at the cloning time. However, pending mes-
sages sent to the cloned agent are not preserved for the
clone. The cloning operation is shown figure 8.
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ag € agents
THEN
ANY clone WHERE
clone € AGENTS \agents
THEN
agents := agentsU {clone} ||
state(clone) := state(ag) ||
transition(clone) := transition(ag)
END
END

Figure 8: cloning operation

There is another way to modify the agent popula-
tion : the death of an agent. When an agent dies, of
course, we must remove it from the set of agents in our
system. Moreover, to preserve invariant properties, we
also have to remove its transistion table and its cur-
rent state from the data we manage. If it was enough,
we would obtain the specification shown figure 9°.

die(ag) =

PRE
ag € agents

THEN
agents := agents \{ag}||
state := {ag} < state ||
transition := {ag} < transition ||
pendingMessages := messages

END

Figure 9: die, first version

This operation is however not so simple. Indeed,
some pending messages were possibly sent to the dy-
ing agent. So, we have to remove the fact that these
messages where sent to the dying agent. In order to
achieve this operation, a new set of pending messages
will be created. This new set will include all the mes-
sages from the old set minus the receipient removed,
and only those messages. Moreover, if a message was
only sent to the dying agent, this message must be re-
moved. The complete code of the operation is shown
figure 10.

4.3 Agent Action

At any moment, an agent can act (we use a model
of parallelism with interleaving). An agent can act
when it receives a stimulus (reactivity) or when it de-
cides to (proactivity). In our model, we introduced the
NOTHING stimulus. In our model, we introduced the
NOTHING stimulus, so, a unique operation can be used
to decribe reactivity and proactivity of the agents.
To act, an agent must have received a stimulus ¢ (it
can be the NOTHING stimulus) and must be in a state
s where this stimulus can be taken into account, ie.

39 = a < f represents the anti-restiction of the f func-

tion to the a set, ie. the g function is equal to the fonction
f restricted to its domain minus the set a

ulo\as) —

ag € agents
THEN
ANY messages WHERE
messages C (STIMULUS *
P(agents)) A
dom(messages) =
dom(messagesEnAttente) A
V(xx,yy).(xx — yy € messages =
ag ¢ yy A
(xx = yy € pendingMes-
sages or xx — (yy U {ag}) : pendingMessages))
A
V(xx,yy).(xx — yy € pendingMes-
sages A yy # {ag} = xx — (yy - {ag}) :
messages) A
{} ¢ ran(messages)
THEN
agents := agents \{ag}||
state := {ag} < state ||
transition := {ag} <4 transition ||
pendingMessages := messages
END
END

Figure 10: die, second version

a transition from the state s on the stimulus ¢ must
exist.

At last, the message received must be removed from
the list of the pending messages, the state of the agent
must be changed, and a message can potentially be
sent to other agents. This is illustrated on figure 11.

5 Proof of the specification

A formal specification of a system is useful only if we
try to prove it. In our context, we have to realize
invariance proofs. So, here is what we have to prove :

e at any time an agent must be in a valid state ;

e any agent of the system has a valid transition
table ;

e any message sent is meaningful for the system
and is sent to a subset of the agents present in
the system.

There are 42 proof obligations (theorems) to prove
to establish properties described before. Among these
one, 23 are “trivial”. Among the 19 leaving, 17
are proved automatically by the CASE tool we use
(namely, the Atelier B).

In ordre to prove the 2 other proof obligations, we
must use the interactive mode of the prover : this a
man-machine interface to the prover, letting the user
guiding it. So, the proof is still made by the prover
(and can be considered as correct if we consider the
prover correct). Here are the two theorems that need
the interactive mode :

e when an agent dies, there is no more pending mes-
sage sent to him ;
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is a valid set of messages sent to agents present
in the system.

The first theorem is easily proved (one step is
enough). The second one is a little more complicated,
because it requires to prove two intermediate lemmas
(the proof is made in 11 steps). However, the global
proof of the specification is achieved.

6 Conclusion and future works

In this article, we present how the B method can be
used to specify multiagent systems. But the main as-
pect of this article is that we obtained a general formal
definition of a multiagent system. Then, this general
definition can be specialized through the refinement
steps.

Through the refinement process, proofs can be per-
formed at different levels. At the moment, only ab-
stract proofs have been achieved. However, even at
this level, some properties can be specified.

Other works hav been published on the formal spec-
ification of multiagent systemes. A survey can be
found in [Chaib-draa, 1997]. These works are clas-
sified in [d’Inverno et al., 1996], where three types of
works are determined : works around the Z method,
around temporal logic and on the combination of dif-
ferent logics. So, why is our work original ?

Most existing research concern the formal specifi-
cation of agents [Brazier et al., 1997; d’Inverno et
al., 1998], whereas our interest is about the spec-
ification of a multiagent system. Moreover, many
people use the Z method [d’Inverno et al., 1998;
d’Inverno and Luck, 1996; Luck and d’Inverno, 1995b].
We prefer the B method, and this difference is impor-
tant, because the B method give the set of proof obli-
gations to achieve to prove the correctness of the spec-
ification, whereas this is not clear in Z [Spivey, 1987;
Abrial, 1996]. Moreover, the language is more struc-
tured than Z, making the existance of an industrial
tool such as the Atelier B, a powerfull CASE tool
with a prover, possible. The refinement process is also
clearer in B. Finally, recent works exist on the usage of
the B method to specify distributed systems [Mermet
and Méry, 1997a; 1997b| and on the extension of the
B method to prove temporal properties in distributed
systems [Mermet, 1997].

Other approaches use Petri nets, and especially col-
ored Petri nets [El-Fallah-Seghrouchni et al., 1999]. A
model oriented method, such as B, makes the spec-
ification of big system easier, and the proof on big
system remain possible.

In the future, we will extend the work presented
here by a first refinement step corresponding to given
architectures such as eco-resolution, ants algorithms,
etc. At this level, new properties should be estab-
lished. Moreover, we will adapt works presented
in [Mermet, 1997] on the proof of liveness properties,
in order to perform proofs on the emergence of so-
lution when using multiagent systems to distributely
solve problems.

action =
ANY agent, stimulus, newd state, mess, ol-
dReceivers, newReceivers, messageRecieved,

deltaMessages WHERE
/* typing */
agent € agents A stimulus € STIMULUS A
/* stimulus recieved and the agent that
recieved it */
new_state € STATES A mess € STIMULUS
N
/* next state and stimulus to be sent */
oldRecievers C agents A
/* receivers of the message to send (mess) */
newRecievers C agents A
/* recievers of the sent message */
messageRecieved € STIMULUS * P(agents)

/* the pair: (stimulus, receivers) */

deltaMessages C STIMULUS * P(agents) A

/* the new pair(stimulus,recievers) for the
recieved message after it has been recieved */

/* link stimulus - agent - messageRecieved
*/

messageRecieved € pendingMessagesA

messageRecieved = (mess,oldRecievers)A

agent € oldRecieversA

(oldRecievers = {agent} = deltaMessages =
0) A

(oldRecievers # {agent} = deltaMessages =
{mess — (oldRecievers \ {agent})})A

/* the action itself */
((new _state,mess) €
tion(agent)[{state(agent) — stimulus}]
V ( new_state = state(agent) A mess =
NOTHING))A
(new_state = state(agent) =

transi-

(state(agent) €
dom(transition(agent)[{state(agent) +—  stim-
ulus}]) v

transition(agent)[{state(agent) + stimu-
lus}| = 0))A

(newRecievers = () <& (mess = NOTHING))
THEN
state(agent) := new _state ||
pendingMessages := pendingMessages \
{messageRecieved} U deltaMessages U ({NOTH-
ING} <9 {mess — newRecievers})
END

Figure 11: action of an agent
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