
Alessandro Ricci, Mirko Viroli, Andrea Omicini
DEIS, Università degli Studi di Bologna

Sede di Cesena (Italy)

Agent Coordination Context:
From Theory to Practice

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

AT2AI Context

• MAS Middleware
- Infrastructure support for coordination and

organisation in agent societies

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Outline

• The Context: Engineering MAS Organisation and
Coordination in Synergy

• The Agent Coordination Context (ACC) Notion

• From Theory to Practice: ACC in TuCSoN

• Simple case study: Constrained CNP

• Future work

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Engineering MAS Social Dimensions

• First class abstractions for MAS Organisation and
Coordination
- Specifying and managing organisation structures and

rules
>> Roles, groups/societies, resources
>> Static and dynamic Relationships

- Engineering agent interaction space
>> E.g.: Coordination artifacts

- Security from Organisation & Coordination Synergy

• Continuum from design to runtime
- “Keeps the abstractions alive” motto
- Fundamental role of the infrastructures

>> From enabling to governing infrastructure

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

The Agent Coordination Context (ACC) Abstraction

• First class abstraction to model agent environment
and agent/environment interaction
- Runtime Interface (from inside-out)

>> What actions & perceptions the agent can do inside the environment
>> How agent actions affect the environment

- Engineering abstraction

ENVIRONMENT
ACC Control Room

Metaphor

an agent

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

ACC for Organisations
• Representing the set of roles activated and played

(dynamically) inside a structured organisation

• Working session inside an organisational context
- Entering by acquiring an ACC
- Using the ACC
- Leaving by releasing the ACC

• Formal contract between the agent and the
Institution (organisation)

• First class abstraction to map design abstractions
(roles, groups,...) at runtime
- Specification
- Enactment/Enforcing

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

ACC for Security

• Modelling and enacting Role-based Access Control
- RBAC-like approach

>> Reference model for engineering access control in complex
information systems

- Policies ruling agent actions / operations (access) on
organisational resources

• RBAC benefits
- Separation of Duty
- Flexible Security Administration
- Open & dynamic contexts

>> Dynamic activation/deactivation of role

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

ACC in Practice:
Extending TuCSoN

• TuCSoN Coordination Infrastructure
- Supporting agent coordination by means of first class

runtime coordination abstractions (coordination
artifacts)
>> Tuple Centre coordination model
>> General purpose customisable coordination artifacts

• From semaphors, synchronisers, to workflow engines
>> Activity Theory as a meta-model (Ricci et al, ESAW 2002)

- Coordination artifacts as organisation resources shared
and (concurrently) accessed/exploited by agents

- Domain-based topology
>> Gateway node + Places nodes

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Tuple Centres as Coordination Artifacts

acme.org

taskman

reaction(out(...),...)
reaction(out(...),...)

task_done(taskA,success,..)

task_done(taskB,success,..)

task_todo(taskC,info(...))

taskman@acme.org ?
out(task_done(taskB,success,result(...)))

taskman@acme.org ?
out(task_done(taskA,success,results(...)))

taskman@acme.org ?
in(task_todo(taskC,Info))

reaction(out(task_done(taskA,success,R1)),(
 rd_r(task_done(taskA,success,R1)),
 rd_r(task_done(taskB,success,R2)),
 out_r(task_todo(taskC,info(R1,R2))))).

reaction(out(task_done(taskB,success,R1)),(
 rd_r(task_done(taskB,success,R1)),
 rd_r(task_done(taskA,success,R2)),
 out_r(task_todo(taskC,info(R2,R1))))).

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

TuCSoN Space Overview

TuCSoN D
omain

TuCSoN
Nodes

Tuple centres

Gateway

$ORG

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

The ACC Extension

• Introducing an
organisation layer
- ACC for ruling access to

tuple centres
- Modelling organisation &

security in synergy with
coordination
>> SODA methodology

COORDINATION ARTIFACT LAYER (COORDINATION)

ACC LAYER (ORGANISATION)

OPERATING ENVIRONMENT LAYER

FABRIC/TOPOLOGY LAYER

ACC Use and Management

Tuple Centre Management

Node Topology
Node Discovery/Connection/Communication

Machines, OS, Network
(Communication/System Resources, Protocols, Services)

AGENT LAYER

Agents

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

ACC Layer

• Managing ACCs dynamic creation, exploitation and
destruction

• Support ACC Negotiation
- An agent enters an organisation by requesting an ACC

from a gateway node, specifying the roles to be
activated

• Support ACC Use
- Once obtained the ACC, the agent can participate to

coordination activities by executing operations allowed
by the ACC, by virtue of the activated roles

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

ACC Negotiation & Use

$ORG

Gateway

TuCSoN Nodes

Welcome
Service

Tuple Centres

1: Request ACC

2: Release ACC

3: Use ACC

ACC

in

out

…

TuCSoN Organisation

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Architecture Overview

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Design Details

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

The ACC as an Interface
• Operations to access tuple centres

- Operations as first class objects
ACC Interface ::=
 doAction(+ACCAction,-ActionID)|
 action(+ActionID,?ACCAction)|
 actionState(+ActionID,?ActionState)|
 getACCSpec(-ACCSpec)|getACCState(-ACCState)

ACCAction ::=
 CoordinationOp | Tid ? CoordinationOp |
 Tid @ Node ? CoordinationOp

CoordinationOp ::=
 out(T)|in(TT)|rd(TT)|inp(TT)|rdp(TT)|
 set_spec(T)|get_spec(TT)

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

The ACC as a Contract

• Description of the relationships between the agent
and the organisation
- Agent Role(s) policy

• State-full runtime entity enforcing the contract
- Representation of current role state
- Notion of local time
- Required to specify patterns/protocols

• Policy expressed as a Prolog theory

can_do(CurrentState,Action,NextState)
:-Conditions.

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Policy Examples
• Resource Access

• Msg Box Service

• Context awareness

User Role:
can_do(_,msg_box?out(msg(AgentID,Content)),_).
can_do(_,msg_box?in(msg(AgentId,Content)),_):-agent_id(AgentId).

Student Role:
can_do(_,printer ? out(doc_to_print(type(txt),Document)),_).

Professor Role:
can_do(_,printer ? out(doc_to_print(type(_),Document)),_).
can_do(_,printer ? rd(config(_)),_).

Technician Role:
can_do(_,printer ? out(config(_)),_).
can_do(_,printer ? rd(config(_)),_).

Guest Role:
can_do(_,Action, _):- session_time(ST), ST < T.
can_do(_, Tid ? out(_), _):-local_node(Node).

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Policy Examples
• Resource Access

• Msg Box Service

• Context awareness

User Role:
can_do(_,msg_box?out(msg(AgentID,Content)),_).
can_do(_,msg_box?in(msg(AgentId,Content)),_):-agent_id(AgentId).

Student Role:
can_do(_,printer ? out(doc_to_print(type(txt),Document)),_).

Professor Role:
can_do(_,printer ? out(doc_to_print(type(_),Document)),_).
can_do(_,printer ? rd(config(_)),_).

Technician Role:
can_do(_,printer ? out(config(_)),_).
can_do(_,printer ? rd(config(_)),_).

Guest Role:
can_do(_,Action, _):- session_time(ST), ST < T.
can_do(_, Tid ? out(_), _):-local_node(Node).

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Policy Examples
• Resource Access

• Msg Box Service

• Context awareness

User Role:
can_do(_,msg_box?out(msg(AgentID,Content)),_).
can_do(_,msg_box?in(msg(AgentId,Content)),_):-agent_id(AgentId).

Student Role:
can_do(_,printer ? out(doc_to_print(type(txt),Document)),_).

Professor Role:
can_do(_,printer ? out(doc_to_print(type(_),Document)),_).
can_do(_,printer ? rd(config(_)),_).

Technician Role:
can_do(_,printer ? out(config(_)),_).
can_do(_,printer ? rd(config(_)),_).

Guest Role:
can_do(_,Action, _):- session_time(ST), ST < T.
can_do(_, Tid ? out(_), _):-local_node(Node).

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

A more involved example:
A Constrained Contract Net Protocol

• The Contract Net Protocol
- Task allocation from masters to workers
- Masters make a task announcement, workers provide

their bids, and then the task is allocated to the winning
bidder, chosen by the master

- open systems perspective

• Desiderata
- explicitly specifying/enforcing master & worker

protocols
- avoiding malicious/wrong interactions

>> openness challenge

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

CNP with ACCs and a Coordination Artifact

• TuCSoN approach
- A coordination artifact for supporting the task

allocation coordination activity (tasks tuple centre)
- ACC for specifying & ruling agent actions, playing

master and worker roles

acme.org

tasks

reaction(out(...),...)
reaction(out(...),...)

A Master

A Worker

A Worker

A Worker

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

CNP Protocols & Coordination Laws

reaction(out(...),...)
reaction(out(...),...)

tasks

A Master

A Worker

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

ACC for Masters

organisation(acme).
role(master,task_distribution).
can_do(init, tasks ? out(announcement(Task)), task_announced(Task)).
can_do(task_announced(Task), tasks ? rd(announcement(Task)),_).
can_do(task_announced(Task), tasks ? rd(bids(Task),)),_).
can_do(task_announced(Task), tasks ? in(bids(Task),BidList)),award_bidder(Task,BidList)).
can_do(award_bidder(Task,BidList), tasks ? out(award(Task,Bid)), get_result(Task,Bid)):-
 element(Bid,BidList).
can_do(get_result(Task,_)), tasks ? rd(result(Task,_)),_).
can_do(get_result(Task,_)), tasks ? in(result(Task,_)),init).

ACC

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

ACC for Workers

organisation(acme).
role(worker,task_distribution).
can_do(init, tasks ? rd(announcement(_)),_).
can_do(init, tasks ? in(bid(Task,_,awarded)),awarded(Task)).
can_do(awarded(Task), tasks ? out(result(Task,_),init)).

ACC

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Outcome

• Separation of coordination concerns
- ACC for ruling individual agent (inter)actions

>> Local/subjective perspective
>> Enforcing organisational constraints

- Coordination artifacts for specifying/ruling society
interactions
>> objective perspective
>> Enforcing coordination laws

• Engineering benefits
- ACC as local (runtime) abstractions
- Coordination artifacts as global (runtime) abstractions

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

Ongoing & Future Work

• Testing the approach with real world applications
- Workflow Management Systems

• Exploiting ACC formal semantics based on process
algebra for verification of properties
- [Agent Coordination Contexts as Abstractions for the Formal

Specification and Enactment of Coordination & Security Policies (Omicini,
Ricci, Viroli) - Science of Compouter Progr. - to appear]

• Exploring the use of the ACC abstraction in other
MAS infrastructures
- JADE

AT2AI-4, April 2004, Wien ACC: From Theory to Practice

AT2AI Some Related
• [A Semantics for the Interaction of Agents with

Coordination Artifacts (Viroli, Ricci, Omicini)]
- ACC and Coordination artifacts synergy

• [An Ontological Approach to Harmonising Security
Models for Open Services (Juan Jim Tan et al.)]
- ACC as a concrete way to realise (implement, deploy)

the approach

• [Combining Gaia and JADE for MAS Development
(Moraitis et al)]
- Static vs. dynamic concept of roles & orgs
- Close vs. Open approach to MAS org & security

