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Abstract
This paper describes a method for the alignment
of automatically recognized speech transcripts with
formatted documents manually derived from the
speech recognition results. Novel features of our
alignment method are a parametrizable scoring
function, an intelligent tokenization system drawing
on domain knowledge, and semantic comparisons.
The field of application are dictated medical reports
processed by automatic speech recognition.

1 Introduction
Current dictation systems aim at a literal transcrip-
tion of the dictation. Yet even trained persons do
not necessarily formulate in the exact form required
for the written document because of inherent differ-
ences between spoken and written language. This
becomes even more problematic for people with
less experience. As a result, utterances must be ex-
panded, restructured or reformulated to conform to
the required conventions for written reports. Fur-
thermore, recognition errors have to be corrected.
Trained typists routinely perform these tasks by
editing the draft document.

Future dictation systems will have to move away
from simply producing written drafts to producing
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documents conforming to the formal and informal
requirements of texts in their respective domains.
Literal transcriptions of the dictations are needed
in order to automatically learn recurrent reformu-
lations which turn the written text into the final re-
port. Such transcription corpora are currently scarce
as manual transcriptions of large stretches of speech
are extremely costly. The goal of the SPARC project
is to develop methods for the automatic reconstruc-
tion of literal transcriptions from large parallel cor-
pora of automatically produced draft transcriptions
and manually edited final documents. This will be
achieved by an in-depth analysis of non-matching
stretches of texts which takes into account semantic
and phonetic similarity.

A prerequisite for the reconstruction process is an
optimal and reliable alignment of document pairs
which can be used to identify and categorize mis-
matches between the two corresponding texts.

The paper is organized as follows: We start by
describing the causes for mismatches between the
draft and the final document and how these mis-
matches can be classified. We continue with a de-
scription of the various components of our aligner
and how they interact, followed by a discussion of
preliminary results. Since this paper describes work
still in progress, we conclude with an outlook on the
next steps to be taken.

2 Categorizing mismatches by source

Systematic mismatches between the result of the
speech recognition and a final written document
may be the result of three factors involved in dif-
ferent states of the document creation process:

• Mismatches due to the dictation
In producing a dictation, speakers often hes-



itate, repeat or correct themselves or give in-
structions to the system. This leads to a textual
form which needs to be translated into a coher-
ent, formatted written document. Knowledge
about speech phenomena in general and dicta-
tion in particular leads to the identification of
this type of mismatches.

• Mismatches due to speech recognition errors
Particularly in environments where texts have
to be dictated under time constraints or in
cases where users have little experience with
dictating, speech recognition error rates in-
crease. This leads to recognized textual pas-
sages which may bear a phonetic but not a
semantic resemblance to the dictated texts.
These mismatches can only be resolved by
using domain knowledge, by interpreting the
user’s intentions and by consulting information
about phonetic similarity.

• Mismatches due to document formatting
A human transcriptionist, who is familiar with
the domain and the requirements concerning
the specific type of text, creates the final doc-
ument by rephrasing and formatting. Knowl-
edge about formatting standards and prefer-
ences as well as typical reformulations based
on the recognition results can help identify and
categorize the mismatches.

Naturally, mismatches originating from different
steps in the document creation process are inter-
linked: e.g., frequent self-corrections may lead to
an error in the speech recognition result which is
then corrected and reformulated in the final docu-
ment. An extended alignment has to take into ac-
count these layered sources of mismatches in order
to come up with hypotheses concerning the differ-
ences (including their origins) between two texts.
The shorter two differing passages are, the easier
it is to categorize the mismatches and their sources.
Simple string matching does not allow for sophisti-
cated matching criteria. Therefore, the alignment
process needs to be extended to better correlate
chunks of recognized and written text.

3 Pattern analysis of mismatches
Mismatches resulting from the different stages in
the document creation process exhibit particular
patterns that can be used to categorize them. E.g., a
reformulation may be detected by finding a pair of
words (or phrases) that are semantically similar (or

equivalent), but phonetically dissimilar. A recogni-
tion error might be detected by finding chunks that
correspond to each other in the alignment, are pho-
netically similar, but have unrelated semantics.

A manual comparison was made to identify and
classify recurrent patterns of mismatches between
the output of an existing automated speech recogni-
tion system (ASR) and the final written document.
Several typical patterns were found in the process.

One of the most frequent mismatches is based on
recognition errors due tophonetic similarity: Ut-
terances are replaced by phonetically similar utter-
ances (eg. “are dressed” spoken and “her to rest”
recognized). A more complex problem arises in
combination with a word that is not contained in the
recognition lexicon. Whenever the speech recogni-
tion system is confronted with an unknown word, it
represents this word with a known word or a combi-
nation of several known words that are phonetically
similar to the original utterance (eg. “furosemide”
spoken and with “for us might” replaced). If no pho-
netically similar words are found, the recognizer in-
terprets some of the phonemes as hesitations, which
further complicates the problem.

Reformulations, expansionsandcompletionsare
the reasons for most differences between the draft
and the final document. The (arbitrary) insertion or
deletion of a single word is an often needed process
to reformat an utterance into a written text. Never-
theless, some reformulations and synonym replace-
ments are performed only due to transcriptionists’
formulation preferences and have no obvious, trace-
able reason.

Another origin of errors is the need to format
texts in order to give them structure. A good ex-
ample areheadings. If a heading is spoken in the
dictation, the system has to determine which part of
the utterance is supposed to be formatted as a head-
ing. If it was not spoken at all and the transcription-
ist has added the heading on the basis of formal re-
quirements or due to layout considerations, the mis-
match is not caused by a recognition error but rather
by subsequent formatting.

Many mismatches are the result of intrinsicprop-
erties of spoken language, e.g., repetitions, hesita-
tions or interruptions. A related problem are meta-
level utterances by the speaker, such as explicit
instructionson document formatting or document
construction. Utterances like “in addition to” or
“next number” require some kind of interpretation
and execution. These phenomena are hard to deal



with because they do not have a direct correspond-
ing representation in the final document.

Lastly, there are mismatches caused by the auto-
punctuation component of the recognizer. Commas
and periods are often placed arbitrarily by the auto-
matic system and have to be corrected by the tran-
scriptionist.

4 The Alignment Process

The starting point of our research was a rather sim-
ple alignment procedure used for the evaluation of
the automated dictation system by determining the
word error rate. The correspondence between the
recognizer results and the final document is mea-
sured by aligning the two texts minimizing the Lev-
enshtein (Levenshtein, 1966) distance.

In Levenshtein distance alignment, relations be-
tween two textual units are categorized as

• correct

• substitution

• insertion

• deletion.

Using only string equality as a measure for correct-
ness, we can count the mismatches but we cannot
interpret them. Except for the correct case, all other
labels correspond to a discrepancy. For our pur-
poses, the nature of the mismatch needs to be in-
dicated as well. Furthermore, alignment between
longer stretches of mismatches may become arbi-
trary with Levenshtein distance alignment because
frequent words (e.g. ’a’, ’the’, ’is’) may occur
more than once in such a stretch leading to mis-
alignments. Thus, more sophisticated strategies for
minimizing and categorizing mismatches in textual
passages are needed.

We decided to approach the task by designing a
powerful tokenization component which provides
both the appropriate granularity as well as a first
crude semantic categorization for the textual entities
to be matched by the extended alignment algorithm.
Tokens are compared regarding their semantic sim-
ilarity, and phonetic similarity is considered in or-
der to take into account recognition errors1. The
result of the alignment taking into account semantic
and phonetic information results in a more exact and

1Phonetic similarity in the context of the SPARC project,
which is not the focus of this paper, is investigated by our
project partners at the Technical University of Graz.

fine-grained alignment and an annotation for the as-
sociated patterns of mismatches which were found.
This information can then be used as a base for de-
termining the types and sources of mismatches.

In order to allow for extended alignment by in-
troducing and defining constraints, we separated
the dynamic programming scheme of the Leven-
shtein alignment procedure from the scoring func-
tion. Thus, in our implementation, the align func-
tion takes three arguments, two sequences with ele-
ments of arbitrary type, and a scoring function that
is to be called with two elements of these two se-
quences and should return 6 values:

• the penalty of pairing the two elements

• the penalty of pairing the first element with
empty

• the penalty of pairingemptywith the second
element

• 3 more values holding the labels for the above
mentioned 3 cases.

As a simple example, the scoring function for a
simple edit distance alignment could be:

simplescore(x,y) {
if ( x eq y )

then return (0,1,1,"COR","DEL","INS")
else return (1,1,1,"SUB","DEL","INS")

}

However, for the task of error-type aware align-
ment of recognition results with corrected reports,
we use vectors of indices pointing to complex struc-
tures holding various features of both the recog-
nized and the written side. Thus, the scoring func-
tion can access different features of the items to
be aligned (e.g. the phonetic transcription of the
item) and, even more important, can also access the
context of itemi in question (e.g. by looking at
itemi − 1). Furthermore, additional measures such
as semantic similarity or phonetic similarity can be
applied, thus giving considerable room for inter-
pretation and scoring of mismatches. The idea is
to give unexplainable mismatches a higher penalty
than explainable (or minor) mismatches.

4.1 Tokenization
While reasonably well-performing general-purpose
tokenizers are meanwhile widely available for com-
mon languages such as English, these tokeniz-
ers generally fail to identify domain-specific com-
pounds, formatted expressions and formulae asone
concept or textual unit.



One potential problem with domain-specific to-
kenization is the effort to adapt it to a new field
of application. Consequently, we have taken much
care to implement our tokenizer in such a way as
to facilitate its adaption to new domains. Domain-
specific tokenization rules are derived from data
rather than being hand-crafted. Hence, the frame-
work and methodology created for the tokenization
of medical texts can easily be ported to completely
different application domains.

Our approach is strongly driven by the availabil-
ity of two resources that had initially been com-
piled for other purposes. One is a large morpholog-
ical lexicon. Since the primary domain in SPARC
are medical reports produced in hospitals, the lex-
icon was extended with a huge amount of medi-
cal terminology, most of which was gathered semi-
automatically from publicly available medical cor-
pora such as GENIA (Ohta et al., 2002) and UMLS
(Lindberg et al., 1993).

Second, from the ASR system we had grammars
available that encode the mappings between the
written, formatted form of an expression and its var-
ious spoken forms. As an example, a blood pressure
of ’99/75’ might be spoken as either of ’ninety-nine
slash seventy-five’, ’ninety-nine over seventy-five’
or ’ninety-nine seventy-five’. Apart from domain-
specific concepts such as medical dosages, units and
abbreviations, the grammar also covers general pur-
pose concepts such as ’date’.

Both resources were compiled into non-
deterministic finite-state transducers (FST - see
(Mohri, 1997)). The need for an FST instead of a
simple finite state automaton arises from the desire
to not only defineacceptable input, but rather
transform it into (possibly multiple) annotated
strings.

What do these annotations look like? In the
case of the morphological lexicon, each given word
form transduces to its lemma and the possible Part-
Of-Speech tags according to the PENN tag-set (cf.
(Marcus et al., 1993)):

hurts -> hurt+NNS
-> hurt+VBZ

The deformatting transducer follows the same
idea. However, this time, the applicable annotation
is chosen from a set of semantic concepts rather than
the PENN tag-set:

5 mg -> five milligram+Q_PHY

This tells us that ’5 mg’ is of type QPHY (a
physical quantity).

Because of our FST implementation, tokens are
not only recognized, but the tokenizer is also able to
annotate these tokens. The basic idea of segment-
ing textual input into tokens using an FST is simple
enough:

1. Preparation of the tokenization buffer: Fill the
buffer and normalize white-spaces while doing
so. The algorithm starts at position 0 of the
buffer.

2. At the current position in the buffer, perform
prefix search: Enumerate all prefixes at the cur-
rent position of the tokenization buffer that are
contained in the language of the transducer.

3. The longest prefix that matches is the next to-
ken. Update the position in the tokenization
buffer to point beyond the token just found (if
a white-space follows, skip it).

4. Repeat steps 2. and 3. until the buffer is empty.

A number of additional issues have to be ad-
dressed. The first one is how to use multiple trans-
ducers, as is the case within the SPARC project.
Our solution is to build two prefix sets in each iter-
ation – one for each transducer – and then choose
the longest prefix contained in either of the two
sets. This approach is admittedly somewhat arbi-
trary, however, it reflects the greedy heuristic that
was already chosen when selecting the ’best’ prefix
from oneset.

Another problem arises from the fact that it can-
not be assumed that each single ’word’ in the to-
kenization buffer will be covered by either of the
transducers. If the prefix search returns two empty
sets, a fallback rule has to be applied which is guar-
anteed to find a token. For our tokenizer we apply
the same heuristics that most general purpose tok-
enizers apply.

Even if the two prefix sets are not both empty,
subtle issues remain. Consider the following con-
tents of the tokenization buffer at the current posi-
tion:

ofloxacin pivaloyloxymethyl ester
ˆ

If there is no lexicon entry for either “ofloxacin”
or the whole compound, the longest prefix that can
be found will probably be “of”. Returning the token



“of” is definitely not helpful. To avoid this effect,
heuristics had to be defined to render specific token
transitions as invalid (the transition between two al-
phabetical letters being an obvious candidate).

It is planned to migrate the fallback and token
transition rules into a third transducer. This way,
an additional amount of hard-coded logic can be ex-
pressed as mere data and conveniently be edited and
adapted to new problem fields.

While greedy tokenization is in general a good
heuristic, it may sometimes introduce subtle errors
– in particular in combination with the many multi-
word expressions contained in our lexicon. Con-
sider the lexicon entry “’up to”. This entry will
result in all occurrences of “up to” in a text being
treated as a single token. Usually, this is what we
want – but not always:

Correct Incorrect

Up to He
5 mg gets
are up to
indicated help
. her

.

In the first example, “Up to” takes the role of a
single adverb, and so it makes sense to treat it as
one token. In the second example, however, “up” is
a particle of “gets”. It would make more sense to
consider “gets up” as one token. But adding “gets
up” to the lexicon wouldn’t work in all cases, either:
consider a sentence like “He gets up to 5 mg.”

Admittedly, these examples are carefully con-
structed to demonstrate the difficulty, and in prac-
tice, they do not occur all too often. Still, they
show that perfect tokenization is still far from be-
ing reached. Some additional heuristics will have to
be implemented to catch these cases.

How can tokens be annotated? When perform-
ing prefix search, the solutions enumerated by the
FST implementation actually include the transduc-
tions for each prefix contained in the language of the
FST. When the longest prefix is chosen, the trans-
duction suffixes are returned along with it:

Longest Prefix Transductions Annotations

infarct infarct+NN NN,VB,VBP
infarct+VB
infarct+VBP

2. number two+ENM ENM

Using the approach described above, we achieve
good-quality tokenization even for sentences con-
taining highly domain-specific terminology, format-
tings and punctuation. Compared with general pur-
pose tokenizers, our specialized tokenizer is consis-
tently able to identify coherent concepts and return
them as one token:

SPARC Tokenizer Tokenizer of
TreeTagger

On <IN,JJ,NN,RB> On
December 6, 1999<DAT> December

6
,
1999

blood pressure <NN> blood
pressure

was <VBD> was
137/77 <BPR> 137/77
, <,>
temperature <NN> temperature
98.8 <NUM B> 98.8
, <,> ,
O2 <UNKN> O2
saturation <NN> saturation
95% <QPHY> 95

%
. <.> .

Compared to a more fine-grained tokenization as
delivered by most general purpose tokenizers, the
SPARC tokenization facilitates semantic interpre-
tation of sentences. Since coherent concepts (like
’December 6, 1999’ in the example above) are re-
turned as one single token, it is much easier to map
the individual tokens of a sentence to a functor-
argument structure or semantic grammar rules. In
addition, semantic methods are aided by the concept
annotations stemming from the deformatting trans-
ducer (QPHY, DAT, etc.).

The output of the tokenizer serves as the basis
for a HMM-based Part-Of-Speech tagger which was
adapted to make use of the set of possible annota-
tions for each token.

4.2 Semantic Matching

In order to measure semantic similarity, resources
that map words onto some kind of semantic rep-
resentation are needed. As our application domain
is medical reports, specialized medical terminology
has to be incorporated into the knowledge sources.
The resource we employ for that purpose is the Uni-
fied Medical Language System (UMLS, Lindberg et



al. (1993)), that comes with a metathesaurus, a se-
mantic network and a lexicon (SPECIALIST). The
morphosyntactic information from the lexicon was
worked into the finite-state transducer that is used
as a morphological lexicon and also as resource for
tokenization (see above).

The metathesaurus is a very large, multi-purpose,
and multi-lingual vocabulary database that contains
information about biomedical and health related
concepts, their various names, and the relationships
among them. Unfortunately, the relations between
UMLS concepts appear to depend on the particular
knowledge source the concept comes from, and the
depth it is modeled in that knowledge source. Nev-
ertheless, for checking synonymity of two words or
determining a rough degree of their semantic relat-
edness these relations appear to be sufficient. In
addition, all concepts in the metathesaurus are as-
signed to at least one semantic type from the UMLS
semantic network.

Furthermore, for English a high coverage re-
source, the WordNet lexical database (Fellbaum,
1998), is available. In Wordnet, English nouns,
verbs, adjectives and adverbs are organized into
synonym sets, each representing one underlying
lexical concept; the relations connecting WordNet
synsets are quite different from the relations be-
tween UMLS concepts. For our purpose the hyper-
nym relation is the most important synset relation.

A technical problem arises in combining the two
resources because of their idiosyncratic and quite
incomparable implementation. Therefore we have
transferred both resources to a relational database.
Thus, despite the different table structure, these re-
sources can be easily accessed simultaneously, and,
more important, information from both can be com-
bined in a single query.

As an example, consider the search from syn-
onyms (normalized to lower case) across both re-
sources. Note that the query variables$qwords
and$nstrs are computed from the query word ac-
cording to the conventions of WordNet and UMLS.
The query word is first stemmed, possibly re-
sulting in more than one root form. In case of
multi-word query terms, for WordNet the words
are joined with an underscore character, and, for
UMLS, a normalized string is constructed (putting
each word to lower case and alphabetically sorting
them). $qwords then contains a list of all query
terms formatted according to the WordNet standard,
$nstrs the list of the UMLS normalized strings.

The (slightly simplified) query below then returns
the union of all synonyms found in WordNet and
the UMLS metathesaurus.

select distinct word
from wn.s

where synset_id in
(select synset_id

from wn.s
where word in $qwords)

union
select distinct str

from mrconso
where cui in

(select cui
from mrxns_eng

where nstr in $nstrs)
and lat=’ENG’;

The following ordinal scale has been defined in
order to obtain a rough measure of semantic simi-
larity of two words:

7 identical (modulo case)

6 same root (only inflection)

5 synonymous

4 derived

3 siblings

2 same UMLS semantic type
or parent(word1,word2)
or parent(word2,word1)

1 direct hierarchical relation between semantic
types

0 no similarity at all

In the above context, parent(word1,
word2) means thatword1 maps to a con-
cept/synset (inter alia) that is a direct UMLS
superconcept or hypernym synset of one of the
concepts/synsetsword2 maps to. Two words are
siblings if they share at least one direct UMLS
superconcept or hypernym synset. The intuition
behind this was to check for a measure that is
available in both WordNet and UMLS, has a finer
granularity than the (rather crude) UMLS semantic
type and assures that both concepts have something
in common (the “supertype”).

The usefulness of that similarity measure and the
results obtained so far are discussed in the evalua-
tion section below.



Type Number Example
identical (modulo case) 1097 PERINEOPLASTY - perineoplasty
same root (only inflection) 4462 abnormality - abnormal
synonymous 3352 maximum - maximal
derived 338 diabetic - diabetes
formatting 2306 99% - ninety-nine percent
reformulation 4911 enlarged - large

Figure 1: Number of semantic similarity based realignments

5 Preliminary Evaluation

The alignment which incorporates semantic simi-
larity was evaluated on a test corpus consisting of
1747 reports. The error rates in these reports range
from 20% to 30%. For individual textual units, the
Levenshtein aligned reports contained 1,147,451
alignment tags and with the extended alignments,
1,122,971 alignment tags were assigned. For the
1747 reports, it was possible to classify 16466 align-
ments and to newly discover 50826 alignments (cf.
fig 1).

Although some of the additional alignments may
be misleading, the majority represents a good start-
ing point for proposing a relation between two seg-
ments of text. The rating of the alignment tags needs
to be further optimized.

6 Future Work

While an optimal alignment takes us a large step
closer toward our goal of mismatch interpretation,
there remain more complex errors and discrepancies
between the documents that require a higher-level
analysis and some kind of text understanding and
interpretation. This is where we will have to em-
ploy methods for a semantic matching of complete
sentences and chunks of text.

The first method is based on the headings. Titles
provide information about the content of the text in
the following paragraphs. In the domain of medi-
cal reports the number of unique headings is lim-
ited. On account of this, recurrent headings allow to
make expectations of the following content. For ex-
ample, under the title “medications” we can expect
a list of medications plus a specification of a dose
and the form of intake.

A prerequisite for making available this seman-
tic information is the interpretation of the heading
itself. Since headings come in many similar but
still subtly different phrasings, the first task is to
merge the different notations before the classifica-

tion can be applied. At the moment we follow two
approaches: on the one hand using keywords and
semantic type information and on the other hand us-
ing a grammar. How can we predict the content of a
paragraph and use this knowledge to disambiguate
the text under a heading: The first idea is to man-
ually compile a special grammar for recurrent con-
tent under a specific topic. Another approach is to
automatically learn concepts for the expected con-
tent like specific medical terms, lists of particular
information, collocations, etc.

All other ideas for semantic matching and text
understanding are based on well-established tech-
niques. Yet the fact that there is no annotated train-
ings corpus eliminates the possibility to use most
standard statistical procedures. Thus, our experi-
ments are currently restricted to automatically ex-
tracted semantic collocations and semantic role la-
beling based on phrase structure information.

A second route that has to be explored in improv-
ing the alignment and mismatch identification will
be the re-segmentation of the recognizer results in
some places. While on the corrected report side
our specialized tokenization procedure works fine,
on the spoken side the recognized words may be to-
tally unrelated to the token structure of the written
report, due to recognition errors.

Consider the following two mismatching regions:

1. KAPPA KDR901 (report)
cath lab eight the 901 (recognizer)

2. foramen ovale (report)
foraminal valley (recognizer)

While in the first case it is sufficient to concate-
nate recognized units to obtain phonetically highly
similar sequences, thus evidencing the mismatch
type of recognition error, the second case is more
complicated. Here, the concatenated phonetic string
has to be split within the first recognized word if we



want to obtain a phonetically matching sequence:
foramin—al valley.

However, given the high number of possible re-
combinations, these reconstruction steps have to be
severely constrained both by the phonetic matching
and the token structure of the report so that the re-
sults can still be handled. Obviously, semantics is
not much help in these cases.

7 Conclusion

In this paper, we have described a system which is
confronted with a novel task in a very application-
oriented setting. By approaching the task of recon-
structing an actually spoken dictation from a recog-
nition result and the final document, we have fo-
cused on finding an optimal alignment which takes
into account semantic and phonetic information.
This led the described work away from a simple
string-edit-distance alignment towards an extended
alignment which includes an annotation regarding
the mismatches between the two texts as they were
recognized by the system. Identifying and cate-
gorizing mismatches requires a layered approach
which relies on knowledge about the document cre-
ation process, the conventions of the domain, the
characteristics of spoken language particularly as
used in dictations, and mistakes and ambiguities
caused by the speech recognition system. Knowl-
edge about these heterogeneous, complex aspects
and their effects on each other is integrated into the
alignment process and forms the base for an even-
tual reconstruction of the spoken utterance.

Although the approach is tailored to our medi-
cal application, there are various task-independent
features of the alignment process which are poten-
tially important to ongoing work in other applica-
tions, i.e. the combination of an analysis of both
form and content of documents, the modelling of
similarities on the semantic and phonetic level and
their relations to different stages of a text in the doc-
ument creation process.
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